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In this supplementary material, we prove Lemma 3 and
Theorem 4 in Section 2.3 of the main paper. Let us first
recall the definition of pseudo-dimension.

Definition 1 (Shattering Mohri et al., 2018, Def. 10.1)
Let G be a family of functions from X to R. A set

{1, ..., xm} C X is said to be shattered by G if there
existty, ..., t,, € R such that,
sign(g(x1) — t1)
f(z) = g eG | =2m
Sign(g(xm) - tm)
Definition 2 (pseudo-dimension Mohri et al, 2018,

Def. 10.2)

Let G be a family of functions from X to R. Then, the
pseudo-dimension of G, denoted by Pdim(G), is the size
of the largest set shattered by G.

In the following we consider that the expected loss of any hy-
pothesis i € F is defined by R(h) = E(x vy [((Y, h(X))]
and its empirical loss by R(h) = 7 22:1 ((Y,h(X)). To
prove Lemma 3 and Theorem 4, we need the following two
results.

Theorem 1 (Srebro, 2004, Theorem 35)

The number of sign configurations of m polynomials, each

. . n
of degree at most d, over n variables is at most (%)
forallm >n > 2.

Theorem 2 (Mohri et al., 2018, Theorem 10.6)

Let H be a family of real-valued functions and let G =
{x — L(h(z), f(x)) : h € H} be the family of loss func-
tions associated to H. Assume that the pseudo-dimension of
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G is bounded by d and that the loss function L is bounded
by M. Then, for any § > 0, with probability at least ) over
the choice of a sample of size m, the following inequality

holds forall h € H:

2d log (%) Y log (%)
m om

R(h) < R(h)+ M

1. Proof of Lemma 3

We now prove Lemma 3 in Section 2.3 of the main paper.

Lemma 3 The pseudo-dimension of the real-valued func-

tion class F with domain ML, x [q] x [q] defined by
F={(X,s,t) = (®(X)),, : ®(X) =D _A; XA}
j=1

is upper bounded by pqr log( 86pq)

Proof: It is well known that the pseudo-dimension of a
vector space of real-valued functions is equal to its dimen-
sion (Mohri et al., 2018, Theorem 10.5). Since Fisa
subspace of the p?¢?-dimensional vector space

(@(X))St :

of real-valued functions with domain M,, x [¢] X
pseudo-dimension of F is bounded by p?q?

{(X,5,t) ® € £(M,;M,)}

[q] the

Now, let m < p2?¢? and let {(Xk, s, tr) iy be a set
of points that are pseudo-shattered by F with thresh-
olds ¢y, -+ ,t;,, € R. Then for each binary labeling
(u1,-- ,um) € {—,+}™, there exists ® € F such that
sign(®(Xg, s, tr) — vr) = ug. Any function ® € F can
be written as

(X, s,t) ZA XAl ., (1)

j=1

where A; € My, Vj € [r]. If we consider the pgr entries
of A;,j =1,...,r, as variables, the set {®(Xy, s, tr) —
v i, can be seen (using Eq. 1) as a set of m polynomials
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of degree 2 over these variables. Applying Theorem 1 above,
we obtain that the number of sign configurations, which is

par
equal to 2™, is bounded by (ZZT) . The result follows

since m < p?q¢>. |

2. Proof of Theorem 4

In this section, we prove Theorem 4 in Section 2.3 of the
main paper.

Theorem 4 Let { : M, — R be a loss function satisfying

1

(YY) =52 ¢(a Y3)
s,t

for some loss function £’ : R — RT bounded by . Then for

any 6 > 0, with probability at least 1 — § over the choice

of a sample of size |, the following inequality holds for all

he F:

8epq

rlog(822) log(-L og (1
R(h)SR(h)+7\/pq st Tl)l ) 1g2§5).

Proof: For any h : M, — M, we define  : M, x [q] x
[q] — R by h(X,s,t) = (h(X))St. Let D denote the
distribution of the input-output data. We have

R(h) = Ex,y)~pll(Y, h(X))]

1
= 3 2 Byl (Y h(X)ud
s,t

=Ex,v)~p M(Yst, h(X, s, t))],

s,t~U(q)

where U (q) denotes the discrete uniform distribution on [g].

It follows that R(h) = R(h). By the same way, we can

show that R(h) = R(h). The generalization bound is then
obtained using Theorem 2 above. |
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