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Abstract
Many AI problems, in robotics and other do-
mains, are goal-based, essentially seeking trajec-
tories leading to various goal states. Reinforce-
ment learning (RL), building on Bellman’s opti-
mality equation, naturally optimizes for a single
goal, yet can be made multi-goal by augmenting
the state with the goal. Instead, we propose a
new RL framework, derived from a dynamic pro-
gramming equation for the all pairs shortest path
(APSP) problem, which naturally solves multi-
goal queries. We show that this approach has
computational benefits for both standard and ap-
proximate dynamic programming. Interestingly,
our formulation prescribes a novel protocol for
computing a trajectory: instead of predicting the
next state given its predecessor, as in standard
RL, a goal-conditioned trajectory is constructed
by first predicting an intermediate state between
start and goal, partitioning the trajectory into two.
Then, recursively, predicting intermediate points
on each sub-segment, until a complete trajectory
is obtained. We call this trajectory structure a sub-
goal tree. Building on it, we additionally extend
the policy gradient methodology to recursively
predict sub-goals, resulting in novel goal-based al-
gorithms. Finally, we apply our method to neural
motion planning, where we demonstrate signifi-
cant improvements compared to standard RL on
navigating a 7-DoF robot arm between obstacles.

1. Introduction
Many AI problems can be characterized as learning or opti-
mizing goal-based trajectories of a dynamical system, for
example, robot skill learning and motion planning (Mülling
et al., 2013; Gu et al., 2017; LaValle, 2006; Qureshi et al.,
2018). The reinforcement learning (RL) formulation, a

1EE Department, Technion 2Osaro Inc.. Correspondence
to: Tom Jurgenson <tomj@campus.technion.ac.il>, Aviv Tamar
<avivt@technion.ac.il>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

popular framework for trajectory optimization based on
Bellman’s dynamic programming (DP) equation (Bertsekas
& Tsitsiklis, 1996), naturally addresses the case of a single
goal, as specified by a single reward function. RL formula-
tions for multiple goals have been proposed (Schaul et al.,
2015; Andrychowicz et al., 2017), typically by augmenting
the state space to include the goal as part of the state, but
without changing the underlying DP structure.

On the other hand, in deterministic shortest path problems,
multi-goal trajectory optimization is most naturally repre-
sented by the all-pairs shortest path (APSP) problem (Rus-
sell & Norvig, 2010). In this formulation, augmenting the
state and using Bellman’s equation is known to be sub-
optimal1, and dedicated APSP algorithms such as Floyd-
Warshall (Floyd, 1962) build on different DP principles.
Motivated by this, we propose a goal-based RL framework
that builds on an efficient APSP solution, and is also ap-
plicable to large or continuous state spaces using function
approximation.

Our key idea is that a goal-based trajectory can be con-
structed in a divide-and-conquer fashion. First, predict a
sub-goal between start and goal, partitioning the trajectory
into two. Then, recursively, predict intermediate sub-goals
on each sub-segment, until a complete trajectory is obtained.
We call this trajectory structure a sub-goal tree (Figure 1),
and we develop a DP equation for APSP that builds on it
and is compatible with function approximation. We further
bound the error of following the sub-goal tree trajectory in
the presence of approximation errors, and show favorable
results compared to the conventional RL method, intuitively,
due to the sub-goal tree’s lower sensitivity to drift.

The sub-goal tree can also be seen as a general parametric
structure for a trajectory, where a parametric model, e.g.,
a neural network, is used to predict each sub-goal given
its predecessors. Based on this view, we develop a policy
gradient framework for sub-goal trees, and show that con-
ventional policy-gradient techniques such as control variates
and trust regions (Greensmith et al., 2004; Schulman et al.,
2015) naturally apply here as well.

Finally, we present an application of our approach to neu-

1This is equivalent to running the Bellman-Ford single-goal
algorithm for each possible goal state (Russell & Norvig, 2010).
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Figure 1. Trajectory prediction methods. Upper row: a conventional Sequential representation. Lower row: Sub-Goal Tree representation.
Solid arrows indicate predicted segments, while dashed arrows indicate segments that still require to be predicted. By concurrently
predicting sub-goals, a Sub-Goal Tree only requires 3 sequential computations, while the sequential requires 8.

ral motion planning – learning to navigate a robot between
obstacles (Qureshi et al., 2018; Jurgenson & Tamar, 2019).
Using our policy gradient approach, we demonstrate navigat-
ing a 7-DoF continuous robot arm safely between obstacles,
obtaining marked improvement in performance compared
to conventional RL approaches.

2. Related work
In RL, the idea of sub-goals has mainly been investigated
under the options framework (Sutton et al., 1999). In this
setting, the goal is typically fixed (i.e., given by the re-
ward in the MDP), and useful options are discovered us-
ing some heuristic such as bottleneck states (McGovern
& Barto, 2001; Menache et al., 2002) or changes in the
value function (Konidaris et al., 2012). While hierarchi-
cal RL using options seems intuitive, theoretical results for
their advantage are notoriously difficult to establish, and
current results require non-trivial assumptions on the op-
tion structure (Mann & Mannor, 2014; Fruit et al., 2017).
Interestingly, by investigating the APSP setting, we obtain
general and strong results for the advantage of sub-goals.

Universal value functions (Schaul et al., 2015; Andrychow-
icz et al., 2017) learn a goal-conditioned value function
using the Bellman equation. In contrast, in this work we
propose a principled motivation for sub-goals based on the
APSP problem, and develop a new RL formulation based on
this principle. A connection between RL and the APSP
has been suggested by Kaelbling (1993); Dhiman et al.
(2018), based on the Floyd-Warshall algorithm. However,
as discussed in Section 4.2, these approaches become un-
stable once function approximation is introduced. Goal-
conditioned policies are also related to universal plans in the
classical planning literature (Schoppers, 1989; Kaelbling,
1988; Ginsberg, 1989), and in this sense SGTs can be used
to approximate universal plans using learning.

Sub-goal trees can be seen as a form of trajectory repre-
sentation (as we discuss in Section 5.2). Such has been
investigated for learning robotic skills (Mülling et al., 2013;
Sung et al., 2018) and navigation (Qureshi et al., 2018). A
popular approach, dynamical movement primitives (Ijspeert
et al., 2013), represents a continuous trajectory as a dynami-
cal system with an attractor at the goal, and was successfully
used for RL (Kober et al., 2013; Mülling et al., 2013; Peters
& Schaal, 2008). The temporal segment approach of Mishra
et al. (2017), on the other hand, predicts segments of a
trajectory sequentially. In the context of video prediction,
Jayaraman et al. (2019) proposed to predict salient frames
in a goal-conditioned setting by a supervised learning loss
that focuses on the ‘best’ frames. This was used to predict a
list of sub-goals for a tracking controller. In contrast, we in-
vestigate the RL problem, and predict sub-goals recursively.

Approximate APSP solutions have been traditionally ex-
plored in the non-learning setting. Approaches such as
in Thorup & Zwick (2005); Chan (2010); Williams (2014)
compute k-optimal paths (k > 1) in running time that is
sub-cubic in the number of vertices in the graph. These
methods require full knowledge of the graph and process
each vertex at least once. In contrast, our learning-based
approach can generalize to unseen states (vertices) by learn-
ing from similar states, potentially scaling to very large
or even continuous state spaces, as we demonstrate in our
experiments.

3. Problem Formulation and Notation
We are interested in optimizing goal-conditioned tasks in
dynamical systems. We restrict ourselves to determinis-
tic, stationary, and finite time systems, and consider both
discrete and continuous state formulations.2

2The deterministic setting is fundamental to our approach, and
therefore we do not build on the popular Markov decision pro-
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In the discrete state setting, we study the all-pairs shortest
path (APSP) problem on a graph. Consider a directed and
weighted graph with N nodes s1, . . . , sN , and denote by
c(s, s′) ≥ 0 the weight of edge s→ s′.3 By definition, we
set c(s, s) = 0, such that the shortest path from a node to
itself is zero. To simplify notation, we can replace uncon-
nected edges by edges with weight∞. Thus, without loss of
generality, throughout this work we assume that the graph is
complete. The APSP problem seeks the shortest paths (i.e.,
a path with minimum sum of costs) from any start node s
to any goal node g in the graph:

min
T,s0=s,s1,...,sT−1,sT=g

T−1∑
t=0

c(st, st+1). (1)

In the continuous state case, we consider a deterministic
controlled dynamical system in discrete time, defined over a
state space S and an action space U : where st, st+1 ∈ S are
the states at time t and t+1, respectively, ut ∈ U is the con-
trol at time t, and f is a stationary state transition function.
Given an initial state s0 and a goal g, an optimal trajectory
reaches g while minimizing the sum of non-negative costs
c̄(s, u) ≥ 0:

min
T,u0,...,uT

T∑
t=0

c̄(st, ut), s.t. st+1 =f(st, ut), sT =g. (2)

To unify our treatment of problems (1) and (2), in the remain-
der of this paper we abstract away the actions as follows. Let
c(s, s′) = minu c̄(s, u) s.t. s′ = f(s, u), and c(s, s′) =∞
if no transition from s to s′ is possible. Then, for any start
and goal states s, g, Eq. (2) is equivalent to:4

min
T,s0=s,s1,...,sT−1,sT=g

T−1∑
t=0

c(st, st+1). (3)

Note the similarity of Problem (3) to the APSP problem
(1), where feasible transitions of the dynamical system are
represented by edges between states in the graph. In the
rest of this paper, we study solutions for (1) and (3), for all
start and goal pairs s, g. We are particularly interested in
large problems, where exact solutions are intractable, and
approximations are required.

Notation: Let τ=s0, . . . , sT denote a state trajectory. Also,
denote ci:j =

∑j−1
t=i c(st, st+1), the cost of several subse-

quent states and cτ = c0:T as the total trajectory cost. Let

cess framework. We leave the investigation of similar ideas to
stochastic and time varying systems for future work. We note
that deterministic systems are popular in RL applications, such
as Bellemare et al. (2013); Duan et al. (2016).

3Technically, and similarly to standard APSP algorithms (Rus-
sell & Norvig, 2010), we only require that there are no negative
cycles in the graph. To simplify our presentation, however, we
restrict c to be non-negative.

4In practice, and as we report in our experiments, such an
abstraction can be easily implemented using an inverse model.

τ(s0, sm)=s0, . . . , sm denote the segment of τ starting at
s0 and ending at sm. We denote the trajectory concatenation
as τ=[τ(s0, sm), τ(sm, sT )], where it is implied that sm ap-
pears only once. For a stochastic trajectory distribution con-
ditioned on start and goal, we denote Prπ[si, . . . , sj |s, g] as
shorthand for Prπ[si, . . . , sj |si=s,sj=g].

4. Approximate Dynamic Programming
In this section we study a dynamic programming principle
for the APSP problem (1). We will later extend our solution
to the continuous case (3) using function approximation.

One way to solve (1) is to solve a single-goal problem
for every possible goal state. The RL equivalent of this
approach is UVFA, suggested by Schaul et al. (2015), where
the state space is augmented with the goal state, and a goal-
based value function is introduced. The UVFA is optimized
using standard (single-goal) RL, by learning over different
goals. Alternatively, our approach builds on an efficient
APSP dynamic programming algorithm, as we propose next.

4.1. Sub-Goal Tree Dynamic Programming

By our definition of non-negative costs, the shortest path
between any two states is of length at most N . The main
idea in our approach is that a trajectory between s and g
can be constructed in a divide-and-conquer fashion: first
predict a sub-goal between start and goal that optimally
partitions the trajectory to two segments of length N/2
or less: s, . . . , sN/2 and sN/2, . . . , g. Then, recursively,
predict intermediate sub-goals on each sub-segment, until a
complete trajectory is obtained. We term this composition a
sub-goal tree (SGT), and we formalize it as follows.

Let Vk(s, s′) denote the shortest path from s to s′ in 2k steps
or less. Note that by our convention about unconnected
edges above, if there is no such trajectory in the graph then
Vk(s, s′) = ∞. We observe that Vk obeys the following
dynamic programming relation, which we term sub-goal
tree dynamic programming (SGTDP).
Theorem 1. Consider a weighted graph with N nodes and
no negative cycles. Let Vk(s, s′) denote the cost of the
shortest path from s to s′ in 2k steps or less, and let V ∗(s, s′)
denote the cost of the shortest path from s to s′. Then, Vk
can be computed according to the following equations:

V0(s, s′) = c(s, s′), ∀s, s′ : s 6= s′;

Vk(s, s) = 0, ∀s;
Vk(s, s′) =min

sm
{Vk−1(s, sm)+Vk−1(sm, s

′)},∀s,s′:s 6=s′.

(4)

Furthermore, for k ≥ log2(N) we have that Vk(s, s′) =
V ∗(s, s′) for all s, s′.

The proof of Theorem 1, along with all other proofs in this
paper, is reported in the supplementary material.
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Given V0, . . . , Vlog2(N), Theorem 1 prescribes the following
recipe for computing a shortest path for every s, g, which
we term the greedy SGT trajectory:5

s0 = s, sN = g (5)

sN/2 ∈ argmin
sm

{
Vlog2(N)−1(s0, sm)+Vlog2(N)−1(sm, sN )

}
,

sN/4 ∈ argmin
sm

{
Vlog2(N)−2(s0, sm)+Vlog2(N)−2(sm, sN/2)

}
,

s3N/4 ∈ argmin
sm

{
Vlog2(N)−2(sN/2, sm)+Vlog2(N)−2(sm, sN )

}
,

. . .

The SGT can be seen as a general divide-and-conquer
representation of a trajectory, by recursively predicting sub-
goals. In contrast, the construction of a greedy trajectory
in conventional RL (using the Bellman equation) proceeds
sequentially, by predicting state (or action) after state. This
is illustrated in Figure 1. We next investigate the advantages
of the SGT structure compared to the sequential approach.

In conventional RL, it is well known that in the presence
of errors, following a greedy policy may suffer from drift
– accumulating errors that may hinder performance (Ross
et al., 2011). In the goal-based setting, intuitively, the error
magnitude scales with the distance from the goal. Our main
observation is that the SGT is less sensitive to drift, as the
sub-goals break the trajectory into smaller segments with
exponentially decreasing errors. We next formalize this idea,
by analyzing an approximate DP formulation.

4.2. SGT Approximate DP

Similar to standard dynamic programming algorithms, the
SGTDP algorithm iterates over all states in the graph, which
becomes infeasible for large, or continuous state spaces. For
such cases, inspired by the approximate dynamic program-
ming (ADP) literature (Bertsekas, 2005), we investigate
ADP methods based on SGTDP.

Let T denote the SGTDP operator, (TV )(s, s′) =
minsm {V (s, sm) + V (sm, s

′)}. From Theorem 1, we
have that V ∗ = T log2(N)V0. Similarly to standard ADP
analysis (Bertsekas, 2005), we assume an ε-approximate
SGTDP operator that generates a sequence of approximate
value functions V̂0, . . . , V̂log2(N) that satisfy:

‖V̂k+1 − T V̂k‖∞ ≤ ε, ‖V̂0 − V0‖∞ ≤ ε, (6)

where ‖x‖∞ = maxs,s′ |x(s, s′)|. The next result provides
an error propagation bound for SGTDP.6

5Note that the cost of the greedy SGT trajectory is optimal,
however, its length is by definition N . Thus, a shorter-length
trajectory with the same cost may exist. Simple modifications of
SGT to find the shortest-length cost optimal trajectory are possible,
but we do not consider them here.

6For conventional RL, ‖ · ‖p errors bounds were developed by

Proposition 1. For the sequence V̂0, . . . , V̂log2(N) satisfy-
ing (6), we have that ‖V̂log2(N) − V ∗‖∞ ≤ ε(2N − 1).

A similar O(εN) error bound is known for ADP based on
the approximate Bellman operator (Bertsekas & Tsitsiklis,
1996, Pg. 332). Thus, Proposition 1 shows that given the
same value function approximation method, we can expect
a similar error in the value function between the SGT and
sequential approaches. However, the main importance of
the value function is in deriving a policy, in this case, a
trajectory from start to goal. As we show next, the shortest
path derived from the approximate SGTDP value function
can be significantly more accurate than a path derived using
the Bellman value function.

We first discuss how to compute a greedy trajectory.
Given a sequence of ε-approximate SGTDP value functions
V̂0, . . . , V̂log2(N) as described above, one can compute the
greedy SGT trajectory by plugging the approximate value
functions in (5) instead of their respective accurate value
functions. We term this the approximate greedy SGT tra-
jectory, and provide an error bound for it.

Proposition 2. For a start and goal pair s, g, and se-
quence of value functions V̂0, . . . , V̂log2(N) generated by an
ε-approximate SGTDP operator, let s0, . . . , sN denote the
approximate greedy SGT trajectory as described above. We
have that

∑N−1
i=0 c(si, si+1) ≤ V ∗(s, g) + 4N log2 (N)ε.

Thus, the error of the greedy SGT trajectory is
O(N log2 (N)). In contrast, for the greedy trajectory ac-
cording to the standard finite-horizon Bellman equation, a
tight O(N2) bound holds (Ross et al., 2011, we also pro-
vide an independent proof in the supplementary material).
Thus, the SGT approach provides a strong improvement
in handling errors compared to the sequential method. In
addition, the SGT approach requires us to compute and store
only log2(N) different value functions. In comparison, a
standard finite horizon approach would require storing N
value functions, which can be limiting for large N . Fi-
nally, during trajectory prediction, sub-goal predictions for
different branches of the tree are independent and can be
computed concurrently, allowing an O(log2(N)) prediction
time, whereas sequentially predicting sub-goals is O(N).
We thus conclude that the SGT provides significant benefits
in both approximation accuracy, prediction time, and space.

Why not use the Floyd-Warshall Algorithm? At this
point, the reader may question why we do not build
on the Floyd-Warshall (FW) algorithm for the APSP
problem. The FW method maintains a value func-
tion VFW (s, s′) of the shortest path from s to s′, and

Munos & Szepesvári (2008), and are more suitable for the learning
setting. We leave such investigation to future work, and emphasize
that our simpler ‖·‖∞ bounds still show the fundamental soundness
of our approach.
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updates the value using the relaxation VFW (s, s′) :=
min {VFW (s, s′), VFW (s, sm) + VFW (sm, s

′)}. If the up-
dates are performed over all sm, s, and s′ (in that sequence),
VFW will converge to the shortest path, requiring O(N3)
computations, compared to O(N3 logN) for SGTDP (Rus-
sell & Norvig, 2010). One can also perform relaxations in
an arbitrary order, as was suggested by Kaelbling (1993),
and more recently by Dhiman et al. (2018), to result in
an RL style algorithm. However, as was already observed
by Kaelbling (1993), the FW relaxation requires that the val-
ues always over-estimate the optimal costs, and any under-
estimation error, due to noise or function approximation,
gets propagated through the algorithm without any way of
recovery, leading to instability. Our SGT approach avoids
this problem by updating Vk based on Vk−1, resembling
finite horizon dynamic programming, and, as we proved,
maintains stability in presence of errors. Furthermore, both
Kaelbling (1993); Dhiman et al. (2018) showed results only
for table-lookup value functions. In our experiments, we
have found that replacing the SGTDP update with a FW re-
laxation (described in the supplementary) leads to instability
when used with function approximation.

5. Sub-Goal Tree RL Algorithms
Motivated by the theoretical results of the previous section,
we present algorithms for learning SGT policies. We start
with a value-based batch-RL algorithm with function ap-
proximation in Section 5.1. Then, in Section 5.2, we present
a policy gradient approach for SGTs.

5.1. Batch RL with Sub-Goal Trees

We now describe a batch RL algorithm with function ap-
proximation based on the SGTDP algorithm above. Our
approach is inspired by the fitted-Q iteration (FQI) algo-
rithm for finite horizon Markov decision processes (Tsitsik-
lis & Van Roy 2001; see also Ernst et al. 2005; Riedmiller
2005 for the discounted case). Similar to FQI, we are given
a data set of M random state transitions and their costs
{(si, s′i, ci)}Mi=1, and we want to estimate Vk(s, s′) for ar-
bitrary pairs (s, s′). Assume that we have some estimate
V̂k(s, s′) of the value function of depth k in SGTDP. Then,
for any pair of start and goal states s, g, we can estimate
V̂k+1(s, g) as

V̂k+1(s, g) = min
sm

{
V̂k(s, sm) + V̂k(sm, g)

}
. (7)

Thus, if our data consisted of start and goal pairs, we could
use (7) to generate regression targets for the next value
function, and use any regression algorithm to fit V̂k+1(s, s′).
This is the essence of the Fitted SGTDP algorithm (Algo-
rithm 1). Since our data does not contain explicit goal states,
we simply define goal states to be randomly selected states
from within the data (lines 6,7 in Alg. 1).

The first iteration k = 0 in Fitted SGTDP, however, requires
special attention. We need to fit the cost function for con-
nected states in the graph, yet make sure that states which
are not reachable in a single transition have a high cost. To
this end, we fit the observed costs c to the observed transi-
tions s, s′ in the data (lines 2,5 in Alg. 1), and a high cost
Cmax to transitions from the observed states to randomly
selected states (lines 3,5 in Alg. 1). We also fit a cost of zero
to self transitions (lines 4,5 in Alg. 1).

Our algorithm also requires a method to approximately solve
the minimization problem in (7). In our experiments, we dis-
cretized the state space and performed a simple grid search.
Other methods could be used in general. For example, if Vk
is represented as a neural network, then one can use gradient
descent. Naturally, the quality of Fitted SGTDP will depend
on the quality of solving this minimization problem.

Algorithm 1 Fitted SGTDP
Algorithm

1 Input: dataset D = {s, c, s′}, max path cost Cmax
2 Create real transition data:

Dtrans = {s, s′} with targets Ttrans = {c} from D
3 Create fake transition data:

Drandom = {s, srand} with targets Trandom =
{Cmax} with s, srand random states from D

4 Create self transition data:
Dself = {s, s} with targets Tself = {0} with s taken
from D

5 Fit V̂0(s, s′) to data in Dtrans, Drandom, Dself and tar-
gets Ttrans, Trandom, Tself
for k : 1...K do

6 Create goal data Dgoal = {s, g} and targets
Tgoal={minsm{V̂k−1(s, sm)+V̂k−1(sm, g)}} with
s, g randomly chosen from states in D

7 Fit V̂k(s, s′) to data in Dgoal and targets in Tgoal

end

5.2. Sub-Goal Trees Policy-Gradient

The minimization over sub-goal states in Fitted SGTDP
can be difficult for high-dimensional state spaces. A similar
problem arises in standard RL with continuous actions (Bert-
sekas, 2005; Kalashnikov et al., 2018), and has motivated
the study of policy search methods, which directly optimize
the policy (Deisenroth et al., 2013). Following a similar
motivation, we propose a policy search approach based on
SGTs. Inspired by policy gradient (PG) algorithms in con-
ventional RL (Sutton et al., 2000; Deisenroth et al., 2013),
we propose a parametrized stochastic policy that approxi-
mates the optimal sub-goal prediction, and we develop a
corresponding PG theorem for training the policy.

Stochastic SGT policies: A stochastic SGT policy
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π(s′|s1, s2) is a stochastic mapping from two endpoint
states s1, s2 ∈ S to a predicted sub-goal s′ ∈ S. Given
a start state s0 = s and goal sT = g, the likelihood of
τ=s0, s1, . . . , sT under policy π is defined recursively by:

Pr
π

[τ |s, g] = Pr
π

[s0, . . . , sT |s, g] (8)

= Pr
π

[s0, . . . , sT
2
|s, sm] Pr

π
[sT

2
, . . . , sT |sm, g]π(sm|s, g),

where the base of the recursion is Prπ[st, st+1|st, st+1] =
1 for all t ∈ [0, T − 1]. This formulation assumes that sub-
goal predictions within a segment depend only on states
within the segment, and not on states before or after it. This
is analogous to the Markov property in conventional RL,
where the next state prediction depends only on the previous
state, but adapted to a goal-conditioned setting.

Note that this recursive decomposition can be interpreted as
a tree. Without loss of generality, we assume this tree has a
depth of D thus T = 2D (repeating states to make the tree
a full binary tree does not incur extra cost as c(s, s) = 0).

We now define the PG objective. Let ρ0 denote a distribution
over start and goal pairs s, g ∈ S. our goal is to learn a
stochastic policy πθ(s′|s1, s2), characterized by a parameter
vector θ, that minimizes the expected trajectory costs:

J(θ) = Jπθ =Eτ∼ρ(πθ) [cτ ] , (9)

where the trajectory distribution ρ(πθ) is defined by first
drawing (s, g) ∼ ρ0, and then recursively drawing interme-
diate states as defined by Eq. (8). Our next result is a PG
theorem for SGTs.

Theorem 2. Let πθ be a stochastic SGT policy, ρ(πθ) be a
trajectory distribution defined above, and T = 2D. Then

∇θJ(θ) = Eρ(πθ)
[
cτ · ∇θ log Pr

ρ(πθ)
[τ ]

]
(10)

= Eρ(πθ)

 D∑
d=1

2D−d∑
i=1

Ci,dτ ·∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)
,

where si,d = s(i−1)·2d , si,dm = s(2i−1)·2d−1 , gi,d = si·2d ,
and Ci,dτ = c(i−1)·2d:i·2d is the sum of costs from si,d to gi,d

of τ . Furthermore, let the baseline bi,d = b(si,d, gi,d) be
any fixed function bi,d : S2 → R, then Ci,dτ in (10) can be
replaced with Ci,dτ − bi,d.

The main difference between Theorem 2 and the standard
PG theorem (Sutton et al., 2000) is in the calculation of
∇θ log Prρ(πθ)[τ ], which in our case builds on the tree-
based construction of the SGT trajectory. The summations
over i and d in Theorem 2, are used to explicitly state indi-
vidual sub-goal predictions: d iterates over the depth of the
tree, and i iterates between sub-goals of the same depth.

Using Theorem 2, we can sample a trajectory τ using πθ,
obtain its cost cτ , and estimate of the gradient of J(θ) using
cτ and the gradients of individual decisions of πθ.

In the policy gradients literature, variance reduction using
control variates, and trust-region methods such as TRPO and
PPO play a critical role (Greensmith et al., 2004; Schulman
et al., 2015; 2017). The baseline reduction in Theorem 2
allows similar results to be derived for SGT, and we sim-
ilarly find them to be important in practice. Due to space
constraints, we report these in the supplementary.

5.3. The SGT-PG Algorithm

Algorithm 2 SGT-PG
Algorithm

1 Input: D - depth, N - episodes per cycle, E - environ-
ment

2 init π1, . . . , πD with parameters θ1, . . . , θD
3 for d : 1...D do
4 if d > 1 then
5 θd ← θd−1 // init πd from πd−1

end
6 while convergence criterion for πd not met do
7 D = {(τi, cτi)}Ni=1 ←collect(d,N,E)
8 ∇θdJ(θd)←compute-PG(θd,D)
9 θd ←optimizer.step(θd,∇θdJ(θd))

end
end

Procedure collect(d, N , E)
1 for i : 1 . . . N do
2 (si, gi) ∼ ρ0
3 si1, . . . , s

i
2d−1← predict-subgoals(si, gi, d)

4 τi = [si, si1, . . . , s
i
2d−1, g

i]

5 cτi = [cj:j+1]2
d−1
j=1 ← E.evaluate(τi)

end
6 return {(τi, cτi)}Ni=1

Following the theoretical results in Section 4.1, where the
greedy SGT trajectory used a different value function to
predict sub-goals at different depths of the tree, we can
expect a stochastic SGT policy that depends on the depth
in the tree (d in Theorem 2) to perform better than a depth-
independent policy. Theorem 2 holds true when π depends
on d, similarly to a time-dependent policy in standard PG
literature. We denote such a depth dependent policy as
πd, for d ∈ 1, . . . , D. At depth d = 0, no sub-goal is
predicted resulting in (s, g) being directly connected. Next,
π1 predicts a sub-goal sm, segmenting the trajectory to two
segments of depth 0: (s, sm) and (sm, g). The recursive
construction continues, π2 predicts a sub-goal and calls π1
on the resulting segments, and so on until depth D.
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An observation that we found important for improving train-
ing stability, is that the policies can be trained sequentially.
Namely, we first train the d-depth policy, and only then start
training d + 1-depth policy, while freezing all policies of
depth ≤ d.

Our algorithm implementation, SGT-PG, is detailed in Al-
gorithm 2. SGT-PG predicts sub-goals, and interacts with
an environment E that evaluates the cost of segments (s, s′).
SGT-PG maintains D depth-specific policies: {πi}Di=1 ,
each parametrized by {θi}Di=1 respectively (i.e., we do not
share parameters for policies at different depths, though this
is possible in principle). The policies are trained in sequence,
and every training cycle is comprised of on-policy data col-
lection followed by policy update. The collect method
collects on-policy data given N , the number of episodes to
generate; d, the index of the policy being trained; and E,
the environment. We found that for reducing noise when
training πd, it is best to sample from πd only and take the
mean predictions of {πi}d−1i=1 . The compute-PG method,
based on Eq. (10), uses the collected data D, and estimates
∇θdJ(θd). We found that similar to sequential RL, adding
a trust region using the PPO optimization objective (Schul-
man et al., 2017) provides stable updates (see Section E.4
for specific loss function). Finally, optimizer.step up-
dates θd according to any SGD optimizer algorithm, which
completes a single training cycle for πd. We proceed to train
the next policy πd+1 when a pre-specified convergence crite-
rion is met, for instance, until the expected cost of predicted
trajectories E [cτ ] stops decreasing.

6. Experiments
In this section we compare our SGT approach with the
conventional sequential method (i.e. predicting the next
state of the trajectory). We consider APSP problems
inspired by robotic motion planning, where the goal is
to find a collision-free trajectory between a pair of start
and goal states. We illustrate the SGT value functions
and trajectories on a simple 2D point robot domain,
which we solve using Fitted SGTDP (Section 6.1, code:
https://github.com/tomjur/SGT batch RL
.git). We then consider a more challenging domain
with a simulated 7DoF robotic arm, and demon-
strate the effectiveness of SGT-PG (Section 6.2 code:
https://github.com/tomjur/SGT-PG.git).

6.1. Fitted SGTDP Experiments

We start by evaluating the Fitted SGTDP algorithm. We
consider a 2D particle moving in an environment with ob-
stacles, as shown in Figure 2a. The particle can move a
distance of 0.025 in one of the eight directions, and suffers
a constant cost of 0.025 in free space, and a large cost of 10
on collisions. Its task is reaching from any starting point to

(a) (b)
Figure 2. Batch RL experiment. (a) A robot needs to navigate
between the (hatched) obstacles. Blue - SGT prediction, green -
trajectory tracking sub-goals using an inverse model. (b) Approx-
imate values V̂k(s, g = [0.9, 0.9]) for several values of k. Note
how the reachable region to the goal (non-yellow) grows with k.

within a 0.15 distance of any goal point without collision.
This simple domain is a continuous-state optimal control
Problem (2), and for distant start and goal points, as shown
in Figure 2a, it requires relatively long-horizoned planning,
making it suitable for studying batch RL algorithms.

To generate data, we sampled states and actions uniformly
and independently, resulting in 125K (s, u, c, s′) tuples. As
for function approximation, we opted for simplicity, and
used K-nearest neighbors (KNN) for all our experiments,
with Kneighbors = 5. To solve the minimization over states
in Fitted SGTDP, we discretized the state space and searched
over a 50× 50 grid of points.

A natural baseline in this setting is FQI (Ernst et al., 2005;
Riedmiller, 2005). We verified that for a fixed goal, FQI
obtains near perfect results with our data. Then, to make it
goal-conditioned, we used a universal Q-function (Schaul
et al., 2015), requiring only a minor change in the algorithm
(see supplementary for pseudo-code).

To evaluate the different methods, we randomly chose 200
start and goal points, and measured the distance from the
goal the policies reach, and whether they collide with ob-
stacles along the way. For FQI, we used the greedy policy
with respect to the learned Q function. The approximate
SGTDP method, however, does not automatically provide a
policy, but only a state trajectory to follow. Thus, we experi-
mented with two methods for extracting a policy from the
learned sub-goal tree. The first is training an inverse model
fIM (s, s′) – a mapping from s, s′ to u, using our data, and
the same KNN function approximation. To reach a sub-goal
g from state s, we simply run fIM (s, g) until we are close
enough to g (we set the threshold to 0.15). An alternative
method is first using FQI to learn a goal-based policy, as de-
scribed above, and then running this policy on the sub-goals.
The idea here is that the sub-goals learned by approximate
SGTDP can help FQI overcome the long-horizon planning
required in this task. Note that all methods use exactly the
same data, and the same function approximation (KNN),
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(a) (b)
Figure 3. Motion planning with SGT-PG. (a) Illustration of start (red) and goal (blue) positions of the end effector in wall domain. (b)
SGT Trajectory. Note a non-trivial rotation between s2 to s3 (marked with orange circles) allowing linear motion from s3 to g. In the
supplementary material we also show a 7 sub-goals path.

Avg. Distance
to Goal

Avg. Collision
Rate

approx. SGTDP + IM 0.13 0.25
approx. SGTDP + FQI 0.29 0.06

FQI 0.58 0.02

Table 1. Results for controllers of batch-RL experiments.
making for a fair comparison.

In Table 1 we report our results. FQI only succeed in reach-
ing the very closest goals, resulting in a high average dis-
tance to goal. Fitted SGTDP (approx. SGTDP+IM), on the
other hand, computed meaningful sub-goals for almost all
test cases, resulting in a low average distance to goal when
tracked by the inverse model. Figure 2 shows an example
sub-goal tree and a corresponding tracked trajectory. The
FQI policy did learn not to hit obstacles, resulting in the low-
est collision rate. This is expected, as colliding leads to an
immediate high cost, while the inverse model is not trained
to take cost into account. Interestingly, combining the FQI
policy with the sub-goals improves both long-horizon plan-
ning and short horizoned collision avoidance. In Figure 2b
we plot the approximate value function V̂k for different k
and a specific goal at the top right corner. Note how the
reachable parts of the state space to the goal expand with k.

6.2. Neural Motion Planning

An interesting application domain for our approach is neu-
ral motion planning (NMP, Qureshi et al., 2018) – learning
to predict collision-free trajectories for a robot among ob-
stacles. Here, we study NMP for the 7DoF Franka Panda
robotic arm. Due to lack of space, full technical details of
this section appear in supplementary Section E.1.

We follow an RL approach to NMP (Jurgenson & Tamar,
2019), using a cost function that incentivizes short, collision-
free trajectories that reach the goal. The state space is the
robot’s 7 joint angles, and actions correspond to predicting
the next state in the plan. Given the next predicted state, the
robot moves by running a fixed PID controller in simulation,
tracking a linear joint motion from current to next state, and

Model
# Sub-
goals

self-
collision wall

SGT-PG
1 1.±0. 0.896±0.016
3 1.±0. 0.973±0.007
7 0.996±0.007 0.973±0.007

SeqSG
1 1.±0. 0.676±0.034
3 0.983±0.007 0.593±0.047
7 0.88±0.03 0.487±0.037

Table 2. Success rates for the NMP scenarios.

a cost is incurred based on the resulting motion.

We formulate NMP as approximate APSP as follows. A
model predicts T − 1 sub-goals, resulting in T motion seg-
ments. Those segments are executed and evaluated indepen-
dently, i.e. when evaluating segment (s, s′) the robot first
resets to s, and the resulting cost is based on its travel to s′.

Our experiments include two scenarios: self-collision and
wall. In self-collision, there are no obstacles and the chal-
lenge is to generate a minimal distance path while avoiding
self-collisions between the robot links. The more challeng-
ing wall workspace contains a wall that partitions the space
in front of the robot (see Figure 3). In wall, the shortest path
is often nonmyopic, requiring to first move away from the
goal in order to pass the obstacle.

We compare SGT-PG with a sequential baseline, Sequential
sub-goals (SeqSG), which prescribes the sub-goals predic-
tions sequentially. For appropriate comparison, both models
use a PPO objective (Schulman et al., 2017), and a fixed
architecture neural network to model the policy. All other
hyper-parameters were specifically tuned for each model.

Table 2 compares SGT-PG and SeqSG, on predictions of 1,
3, and 7 sub-goals. We evaluate success rate (reaching goal
without collision) on 100 random start-goal pairs that were
held out during training (see Figure 3a). Each experiment
was repeated 3 times and the mean and range are reported.
Note that only 1 sub-goal is required to solve self-collision,
and both models obtain perfect scores. For wall, on the
other hand, more sub-goals are required, and here SGT
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significantly outperforms SeqSG, which was not able to
accurately predict several sub-goals.

7. Conclusion
We presented a framework for multi-goal RL that is derived
from a novel first principle – the SGT dynamic program-
ming equation. For deterministic domains, we showed that
SGTs are less prone to drift due to approximation errors,
reducing error accumulation from O(N2) to O(N logN).
We further developed value-based and policy gradient RL
algorithms for SGTs, and demonstrated that, in line with
their theoretical advantages, SGTs demonstrate improved
performance in practice.

Our work opens exciting directions for future research, in-
cluding: (1) can our approach be extended to stochastic en-
vironments? (2) how to explore effectively based on SGTs?
(3) can SGTs be extended to image-based tasks? Finally,
we believe that our ideas will be important for robotics and
autonomous driving applications, and other domains where
goal-based predictions are important.
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