
Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

A. Proofs
Proof of Theorem 1

Proof. First, by definition, the shortest path from s to itself is 0. In the following, therefore, we assume that s 6= s′.

We show by induction that each Vk(s, s′) in Algorithm (4) is the cost of the shortest path from s to s′ in 2k steps or less.

Let τk(s, s′) denote a shortest path from s to s′ in 2k steps or less, and let Vk(s, s′) denote its corresponding cost. Our
induction hypothesis is that Vk−1(s, s′) is the cost of the shortest path from s to s′ in 2k−1 steps or less. We will show that
Vk(s, s′) = minsm {Vk−1(s, sm) + Vk−1(sm, s

′)}.

Assume by contradiction that there was some s∗ such that Vk−1(s, s∗) + Vk−1(s∗, s′) < Vk(s, s′). Then, the concatenated
trajectory [τk−1(s, s∗), τk−1(s∗, s′)] would have 2k steps or less, contradicting the fact that τk(s, s′) is a shortest path
from s to s′ in 2k steps or less. So we have that Vk(s, s′) ≤ {Vk−1(s, sm) + Vk−1(sm, s

′)} ∀sm. Since the graph
is complete, τk(s, s′) can be split into two trajectories of length 2k−1 steps or less. Let sm be a midpoint in such a
split. Then we have that Vk(s, s′) = {Vk−1(s, sm) + Vk−1(sm, s

′)}. So equality can be obtained and thus we must have
Vk(s, s′) = minsm {Vk−1(s, sm) + Vk−1(sm, s

′)}.

To complete the induction argument, we need to show that V0(s, s′) = c(s, s′). This holds since for k = 0, for each s, s′,
the only possible trajectory between them of length 1 is the edge s, s′.

Finally, since there are no negative cycles in the graph, for any s, s′, the shortest path has at most N steps. Thus, for
k = log2(N), we have that Vk(s, s′) is the cost of the shortest path in N steps or less, which is the shortest path between s
and s′.

Proof of Proposition 1

Proof. The SGTDP Operator T is non-linear and not a contraction, but it is monotonic:

∀s, g : Vα(s, g) ≤ Vβ(s, g)→ ∀s, g : TVα(s, g) ≤ TVβ(s, g). (11)

To show (11), let s′m = arg minsm {Vβ(s, sm) + Vβ(sm, g)}. Then:

TVα(s, g) = min
sm
{Vα(s, sm) + Vα(sm, g)} ≤ Vα(s, s′m) + Vα(s′m, g)

≤ Vβ(s, s′m) + Vβ(s′m, g) = min
sm
{Vβ(s, sm) + Vβ(sm, g)} = TVβ(s, g)

Back to the proof. By denoting e = (1, 1, 1, 1, ..., 1) we can write (6) as:

V0 − eε ≤ V̂0 ≤ V0 + eε

Since T is monotonic, we can apply it on the inequalities:

T (V0 − eε) ≤ T V̂0 ≤ T (V0 + eε)

Focusing on the left-hand side expression (the right-hand side is symmetric) we obtain:

T (V0 − eε)(s, s′) = min
sm
{(V0 − eε)(s, sm) + (V0 − eε)(sm, s′)} = min

sm
{V0(s, sm) + V0(sm, s

′)− 2ε} = TV0(s, s′)− 2ε

leading to:

TV0 − 2eε ≤ T V̂0 ≤ TV0 + 2eε

Using (6):

TV0 − (2 + 1)eε ≤ T V̂0 − eε ≤ V̂1 ≤ T V̂0 + eε ≤ TV0 + (2 + 1)eε

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Proceeding similarly we obtain for V̂2:

T 2V0 − [2(2 + 1) + 1]eε ≤ V̂2 ≤ T 2V0 + [2(2 + 1) + 1]eε

And for every k ≥ 1:

T kV0 − (2k+1 − 1)eε ≤ V̂k ≤ T kV0 + (2k+1 − 1)eε

‖V̂k − Vk‖∞ = ‖V̂k − T kV0‖∞ ≤ (2k+1 − 1)ε (12)

For k = log2N we obtain:

‖V̂log2N − V
∗‖∞ = ‖V̂log2N − Vlog2N‖∞ ≤ ε(2N − 1)

Proof of Proposition 2

Proof. For every iteration k, the middle state of any greedy SGT path with length 2k is ŝm =

arg minsm

{
V̂k−1(s, sm) + V̂k−1(sm, g)

}
. Thereby ŝm fulfils the identity V̂k−1(s, ŝm) + V̂k−1(ŝm, g) = T V̂k−1(s, g),

for every iteration k, where T is the SGT operator. The next two relations then follow:

|V̂k−1(s, ŝm) + V̂k−1(ŝm, g)− Vk(s, g)| = |T V̂k−1(s, g)− Vk(s, g)| ≤
≤ |T V̂k−1(s, g)− V̂k(s, g)|+ |V̂k(s, g)− Vk(s, g)| ≤ (13)

≤ ε+ (2k+1 − 1)ε = 2k+1ε

|Vk−1(s, ŝm) + Vk−1(ŝm, g)− Vk(s, g)| ≤|V̂k−1(s, ŝm) + V̂k−1(ŝm, g)− Vk(s, g)|+
+ |Vk−1(s, ŝm)− V̂k−1(s, ŝm)|+ (14)

+ |Vk−1(ŝm, g)− V̂k−1(ŝm, g)| ≤
≤|V̂k−1(s, ŝm) + V̂k−1(ŝm, g)− Vk(s, g)|+ 2 · (2k − 1)ε

Combining the two inequalities yields:

|Vk−1(s, ŝm) + Vk−1(ŝm, g)− Vk(s, g)| ≤ (2k+1 + 2 · (2k − 1))ε ≤ 2k+2ε (15)

Explicitly writing down relation (15) for all the different sub-paths we obtain:

|Vlog2(N/2)
(s0, sN/2) + Vlog2(N/2)

(sN/2, sN) − Vlog2(N)(s0, sN) | ≤ 4Nε

|Vlog2(N/4)
(s0, sN/4) + Vlog2(N/4)

(sN/4, sN/2) − Vlog2(N/2)
(s0, sN/2) | ≤ 2Nε

|Vlog2(N/4)
(sN/2, s3N/4) + Vlog2(N/4)

(s3N/4, sN) − Vlog2(N/2)
(sN/2, sN) | ≤ 2Nε

|Vlog2(N/8)
(s0, sN/8) + Vlog2(N/8)

(sN/8, sN/4) − Vlog2(N/4)
(s0, sN/4) | ≤ Nε

|Vlog2(N/8)
(sN/4, s3N/8) + Vlog2(N/8)

(s3N/8, sN/2) − Vlog2(N/4)
(sN/4, sN/2) | ≤ Nε

|Vlog2(N/8)
(sN/2, s5N/8) + Vlog2(N/8)

(s5N/8, s3N/4)− Vlog2(N/4)
(sN/2, s3N/4)| ≤ Nε

|Vlog2(N/8)
(s3N/4, s7N/8) + Vlog2(N/8)

(s7N/8, sN) − Vlog2(N/4)
(s3N/4, sN) | ≤ Nε

...

|V0(s0, s1) + V0(s1, s2) − V1(s0, s2) | ≤ 8ε

|V0(s2, s3) + V0(s3, s4) − V1(s2, s4) | ≤ 8ε

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 4. Example graph with a start and goal states s, g where the optimal path has a total cost of Nε while ε-approximated Bellman
might form a path with total cost of infinity

...

|V0(sN−2, sN−1) + V0(sN−1, sN) − V1(sN−2, sN) | ≤ 8ε

Summing all the inequalities, along with the triangle inequality, lead to the following:

|
N−1∑
i=0

V0(si, si+1)− Vlog2(N)(s0, sN)| ≤ 4N log2 (N)ε

The identities c(si, si+1) = V0(si, si+1) and V ∗(s0, sN) = Vlog2N (s0, sN) complete the proof.

Proposition 2 provides a bound on the approximate shortest path using SGTDP. In contrast, we show that a similar bound
for the sequential Bellman approach does not hold. For a start and goal pair s, g, and an approximate Bellman value
function V̂ B , let sB0 , . . . , s

B
N denote the greedy shortest path according to the Bellman operator, i.e., s0 = s, sN = g and

for 1 ≤ k < N : sk+1 = arg minsm

{
c(sk, sm) + V̂ B(sm, g)

}
. Note that the greedy Bellman update is not guaranteed to

generate a trajectory that reaches the goal, therefore we add g as the last state in the trajectory, following our convention
that the graph is fully connected. When evaluating the greedy trajectory error in the sequential approach, we deal with
two different implementation cases: Using one approximated value function or N approximated value functions. The
next proposition shows that when using one value function the greedy trajectory can be arbitrarily bad, regardless of ε.
Propositions (4) and (5) show that the error of the greedy trajectory, using N value functions, have a tight O(N2) bound.
Proposition 3. For any ε, β, there exists a graph and an approximate value function V̂ B satisfying ‖V̂ B − V ∗‖∞ ≤ εN ,
such that

∑N−1
i=0 c(si, si+1) ≥ V ∗(s, g) + β.

Proof. We show a graph example (Figure 4), where a ε-approximate Bellman value function V̂ B might form the path
s0, s0, . . . , s0, g with a total cost of infinity. (Reminder: The graph is fully connected, all the non-drawn edges have infinity
cost), while the optimal path s0, s1, . . . , sN−1, g has a total cost of Nε.
As V̂ B is independent of the current time-step k, and the optimal values for s and s1 are Nε and (N − 1)ε respectively,
due to approximation error V̂ B (for every time-step) might suggest that the value of s0 is lower than the value of s1:
V̂ B(s0, g) − Nε ≤ V̂ B(s1, g) + Nε. The resulting policy will choose to stay in s0 for the first N − 1 steps. Since the
maximum path length is N and the path must end at the goal, the last step will be directly from s0 to g, resulting in a cost of
infinity.

Proposition 4. For a finite state graph, start and goal pair s, g, and sequence of ε-approximate Bellman value functions
V̂ B0 , . . . , V̂ BN satisfying ‖V̂ Bk+1 − TBV̂ Bk ‖∞ ≤ ε and ‖V̂ B0 − V0‖∞ ≤ ε, let s0, . . . , sN denote the greedy Bellman path,
that is: s0 = s, sN = g, sk+1 = arg minsk+1

c(sk, sk+1) + V̂ BN−k−2(sk+1, g), etc. We have that
∑N−1
i=0 c(si, si+1) ≤

V ∗(s, g) + (N2 −N)ε = V ∗(s, g) +O(N2).

Proof. Denote Vk as the Bellman value function at iteration k, V̂k as the ε-approximated Bellman value function and TB as
the Bellman operator. Using the properties ‖TBV̂k−1 − V̂k‖∞ ≤ ε and ‖Vk − V̂k‖∞ ≤ kε (Bertsekas & Tsitsiklis, 1996,
Pg. 332), the following relation holds:

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 5. Example graph with a start and goal states s, g. The edges costs are marked in black labels, the Bellman value function at iteration
k is marked in green and the ε-approximated Bellman value is marked in red. The optimal path has a total cost of V ∗(s, g) = (N − 1)ε
while the ε-approximated Bellman might form the path going through all the states with a total cost of N2 −Nε/2 = V ∗(s, g)+O(N2).

for 0 ≤ k ≤ N − 2:

c(sk, sk+1) = c(sk, sk+1) + V̂N−k−2(sk+1, g)− V̂N−k−2(sk+1, g)

= (TBV̂N−k−2)(sk, g)− V̂N−k−2(sk+1, g)

≤ (V̂N−k−1(sk, g) + ε)− V̂N−k−2(sk+1, g)

≤ VN−k−1(sk, g) + (N − k − 1)ε+ ε− VN−k−2(sk+1, g) + (N − k − 2)ε

≤ VN−k−1(sk, g)− VN−k−2(sk+1, g) + 2(N − k − 1)ε

for k = N − 1:

c(sk, sk+1) = c(sN−1, g) = V0(sN−1, g)

Summing all the path costs:

N−1∑
k=0

c(sk, sk+1) = V0(sN−1, g) +

N−2∑
k=0

c(sk, sk+1)

≤ V0(sN−1, g) +

N−2∑
k=0

VN−k−1(sk, g)− VN−k−2(sk+1, g) + 2(N − k − 1)ε

= V0(sN−1, g) + VN−1(s0, g)− V0(sN−1, g) + (N2 −N)ε = V ∗(s0, g) + (N2 −N)ε

Proposition 5. The error bound stated in Proposition(4),
∑N−1
i=0 c(si, si+1)− V ∗(s, g) ≤ O(N2), is indeed a tight bound.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Proof. We show a graph example (Figure 5),where a sequence of ε-approximate Bellman value functions V̂0, . . . , V̂N−1
might form the path from the start to the goal state, going through all the available states, with a total cost of (N2 −N)/2 =
O(N2), while the optimal path (s0, sN−1, sN) has a total cost of V ∗(s, g) = (N − 1)ε.
The Bellman value of every state sk, 0 ≤ k ≤ sN−3: VN−k−1(sk, g) = (N − k − 1)ε, where N − k − 1 is the time
horizon from state sk to the goal. Since the ε-approximate Bellman value function at every state sk might have a maximum
approximation error of (N − k − 1)ε, it might suggest that V̂N−k−1(sk, g) = 0 for every 1 ≤ k ≤ N − 2. The Bellman
value for state sN−1 is 0 and the ε-approximate Bellman value might be δ for some 0 < δ ≤ ε. The greedy Bellman policy
has to determine at every state sk, 0 ≤ k ≤ sN−3, whether to go to sk+1 or to sN−1. Since both possible actions have an
immediate cost of (N − k− 1)ε, the decision will only be based on the evaluation of sk+1 and sN−1 with the ε-approximate
Bellman value function: V̂N−k−1(sk, g) = 0 < δ = V̂0(sN−1, g). Therefore, the greedy bellman policy will decide at every
state sk to go to sk+1, forming the path with a total cost of

∑N−1
k=1 kε = N2 −Nε/2

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

B. Policy Gradient Theorem for Sub-goal Trees
In this section we provide the mathematical framework and tool we used in the Policy Gradient Theorem 2 in Section 5.2
which allows us to formulate the SGT-PG algorithm (Section 5.2). The SGT the prediction process (Eq.(8)) no-longer
decomposes sequentially like a MDP, therefore, we provide a different mathematical construct:

Finite-depth Markovian sub-goal tree (FD-MSGT) is a process predicting sub-goals (or intermediate states) of a trajectory
in a dynamical system as described in (3). The process evolves trajectories recursively (as we describe in detail below),
inducing a tree-like decomposition for the probability of a trajectory as described Eq. (8). In this work we consider trees
with fixed levels D (corresponding to finite-horizon MDP in sequential prediction RL with horizon T = 2D) 7. Formally,
a FD-MSGT is comprised of (S, ρ0, c,D) where S is the state space, ρ0 is the initial start-goal pairs distribution, c is a
non-negative cost function obeying Eq. (3), and D is the depth of the tree 8.

Recursive evolution of FD-MSGT: Formally, an initial pair (s0 = s, sT = g) ∼ ρ0 is sampled, defining the root of the
tree. Next, a policy π(sT

2
|s0, sT) is used to predict the sub-goal sT

2
, creating two new tree nodes of depth D corresponding

to the segments (s0, sT
2

) and (sT
2
, sT). Recursively each segment is again partitioned using π resulting in four tree nodes of

level D − 1 corresponding to segments (s0, sT
4

), (sT
4
, sT

2
), (sT

2
, s 3T

4
) and (s 3T

4
, sT). The process continues recursively

until the depth of the tree is 1. This results in Eq.(8), namely,

Pr
π

[τ |s, g] = Pr
π

[s0, . . . , sT |s, g] = Pr
π

[s0, . . . , sT
2
|s, sm] Pr

π
[sT

2
, . . . , sT |sm, g]π(sm|s, g).

FD-MSGT results in
∑D−1
d=0 2d = 2D − 1 sub-goals, and 2D + 1 overall states (including s and g), setting T = 2D. Finally,

c defines the cost of the prediction c(τ) = c0:T , and is evaluated on the leaves of the FD-MSGT tree according to Eq. (3).
Figure 3b illustrates a FD-MSGT of D = 2. The objective of FD-MSGT is to find a policy π : S2 → S minimizing the
expected cost of a trajectory Jπ = Eτ∼ρ(π) [cτ].

Non-recursive formulation for trajectory likelihood: We next derive a non-recursive formulation of Eq. (8), using the
notations defined in Theorem 2, namely, si,d = s(i−1)·2d , si,dm = s(2i−1)·2d−1 , gi,d = si·2d , and Ci,dτ = c(i−1)·2d:i·2d is the
sum of costs from si,d to gi,d of τ . We re-arrange the terms in (8) grouping by depth resulting in a non-recursive formula,

Pr
π

[τ |s, g] = Pr
π

[s0, . . . sT |s, g] =

D∏
d=1

2D−d∏
i=1

π

(
si,dm

∣∣∣∣si,d, gi,d) . (16)

For example consider a FD-MSGT with D = 3 (T = 8). Given s0 = s and s8 = g, the sub-goals will be s1, . . . s7. We
enumerate the two products in Eq. (16) resulting in:

1. D = 3: Results in a single iteration of i = 1 = 23−3.

s1,3 = s(1−1)·23 = s0, s1,3m = s(2·1−1)·23−1 = s4, g1,3 = s1·23 = s8

2. D = 2: In this case i ∈ [1, 23−2 = 2].

s1,2 = s(1−1)·22 = s0, s1,2m = s(2·1−1)·22−1 = s2, g1,2 = s1·22 = s4

s2,2 = s(2−1)·22 = s4, s2,2m = s(2·2−1)·22−1 = s6, g2,2 = s2·22 = s8

3. D = 1: Finally, predicts the leaves resulting in i ∈ [1, 23−1 = 4].

s1,1 = s(1−1)·21 = s0, s1,1m = s(2·1−1)·21−1 = s1, g1,1 = s1·21 = s2

s2,1 = s(2−1)·21 = s2, s2,1m = s(2·2−1)·21−1 = s3, g2,1 = s2·21 = s4

s3,1 = s(3−1)·21 = s4, s3,1m = s(2·3−1)·21−1 = s5, g3,1 = s3·21 = s6

s4,1 = s(4−1)·21 = s6, s4,1m = s(2·4−1)·21−1 = s7, g4,1 = s4·21 = s8
7Extending MSGT to infinite recursion without a depth restrictions (similar to infinite-horizon MDP) is left for future work.
8Note the crucial difference between MSGTs and MDPs. MSGTs operate on pairs of states from S, whereas MDPs, which are usually

not goal conditioned, operate on single states.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Allowing us to assert the equivalence of the explicit and recursive formulations in this case.

B.1. Proof of Theorem 2

Let πθ be a policy with parameters θ, we next prove a policy gradient theorem (Theorem 3) for computing∇θJπθ , using the
following proposition:

Proposition 6. Let πθ be a policy with parameters θ of a FD-MSGT with depth D, then

∇θ log Pr
ρ(πθ)

[τ] =

D∑
d=1

2D−d∑
i=1

∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d) (17)

Proof. First, we express Prρ(πθ)[τ] using Eq. 16 and ρ0 obtaining,

Pr
ρ(πθ)

[τ] = ρ(s0, sT) ·
D∏
d=1

2D−d∏
i=1

πθ

(
si,dm

∣∣∣∣si,d, gi,d) .
Next, by taking the log we have,

log Pr
ρ(πθ)

[τ] = log ρ(s0, sT) +

D∑
d=1

2D−d∑
i=1

log πθ

(
si,dm

∣∣∣∣si,d, gi,d).
and taking the gradient w.r.t θ yields Eq. (17)

Proposition 6 shows that the gradient of a trajectory w.r.t. θ does not depend on the initial distribution. This allows us to
derive a policy gradient theorem:

Theorem 3. Let πθ be a stochastic SGT policy, ρ(πθ) be a trajectory distribution defined above, and T = 2D. Then

∇θJ(θ) = Eρ(πθ)
[
cτ · ∇θ log Pr

ρ(πθ)
[τ]

]
= Eρ(πθ)

cτ · D∑
d=1

2D−d∑
i=1

∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)
.

Proof. To obtain∇θJ(θ) we write Eq. (9) as an explicit expectation and use∇xf(x) = f(x) · ∇x log f(x):

∇θJ(θ) =
∑
τ

c(τ) · ∇θ Pr
ρ(πθ)

[τ] =
∑
τ

c(τ) · Pr
ρ(πθ)

[τ] · ∇θ log Pr
ρ(πθ)

[τ] = Eρ(πθ)
[
c(τ)∇θ log Pr

ρ(πθ)
[τ]

]
This proves the first equality. For the second equality we substitute∇θ log Prρ(πθ)[τ] according to Eq. (17).

The policy gradient theorem allows estimating∇J(θ) from on policy data collected using πθ. We next show how to improve
the estimate in Theorem 3 using control variates (baselines). We start with the following baseline-reduction proposition.

Proposition 7. Let πθ be a policy with parameters θ of a FD-MSGT with depth D, and let bi,d = b(si,d, gi,d) be any fixed
function bi,d : S2 → R, then

Eρ(πθ)

 D∑
d=1

2D−d∑
i=1

bi,d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)
 = 0. (18)

Proof. First we establish a useful property. Let pθ(z) be some parametrized distribution. Differentiating
∑
z pθ(z) = 1

yields ∑
z

(∇ log pθ(z))pθ(z) = Eθ(∇ log pθ(z)) = 0. (19)

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Then we expand the left-hand side of Eq. (18), and use Eq. (19) in the last row:

Eρ(πθ)

 D∑
d=1

2D−d∑
i=1

bi,d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)
 =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
bi,d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)] =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
Eρ(πθ)

[
bi,d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣si,d, gi,d]] =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
bi,d · Eρ(πθ)

[
∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣si,d, gi,d]] =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
bi,d · 0

]
= 0,

which concludes the proof.

We define b : S2 → R as a segment-dependent baseline if b is a fixed function that operates on a pair of states s and g. The
last proposition allows us to reduce segment-dependent baselines, bi,d, from the estimations of ∇J(θ) without bias. Finally,
in the next proposition we show that instead of estimating∇J(θ) using cτ we can instead use Ci,d as follows:

Proposition 8. Let πθ be a policy with parameters θ of a FD-MSGT with depth D, then:

∇θJ(θ) =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
c(i−1)·2d:i·2d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)]

Proof. We have that:

∇θJ(θ) =Eρ(πθ)

cτ · D∑
d=1

2D−d∑
i=1

∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)
 =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
cτ · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)]

=

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
Eρ(πθ)

[
cτ · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT]]. (20)

The first transition is the expectation of sums, and the second is the smoothing theorem. We next expand the inner expectation
in Eq. (20), and partition the sum of cost cτ into three sums: between indices 0 to (i − 1) · 2d, (i − 1) · 2d to i · 2d, and
finally from i · 2d to T .

Eρ(πθ)
[
cτ · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT]
= Eρ(πθ)

[(
c0:(i−1)·2d + ci·2d:T

)
· ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT]
+ Eρ(πθ)

[
c(i−1)·2d:i·2d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT] .
Next, by the definition of FD-MSGT the costs between s0 to s(i−1)·2d and si·2d to sT , are independent of the policy
predictions between indices (i− 1) · 2d to i · 2d – making them constants. As we showed in Proposition 7, we obtain that

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

this expectation is 0. Thus the expression for∇θJ(θ) simplifies to:

∇θJ(θ) =

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
Eρ(πθ)

[
cτ · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT]]

=

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
Eρ(πθ)

[
c(i−1)·2d:i·2d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)∣∣∣∣s0 . . . si,d, gi,d . . . sT]]

=

D∑
d=1

2D−d∑
i=1

Eρ(πθ)
[
c(i−1)·2d:i·2d · ∇θ log πθ

(
si,dm

∣∣∣∣si,d, gi,d)] (21)

Finally, combining Propositions 7 and 8 in Theorem 3 provides us Theorem 2 in the main text.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

C. Batch RL Baselines
In Algorithm 3 we present a goal-based versions of fitted-Q iteration (FQI) (Ernst et al., 2005) using universal function
approximation (Schaul et al., 2015), which we used as a baseline in our experiments.

Algorithm 3 Fitted Q with Universal Function Approximation
Algorithm

1 Input: dataset D = {s, u, c, s′}, Goal reached threshold δ
2 Create transition data set Dtrans = {s, u, s′} and targets Ttrans = {c} with s, s′, c taken from D

3 Fit Q̂(s, u, s′) to data in Dtrans

for k : 1...K do
4 Create random goal data set Dgoal = {s, u, g} and targets

Tgoal =
{{

c(s, u) + min
u′

Q̂(s′, u′, g)||s′−g||>δ

}}
with s, u, s′ taken from D and g randomly chosen from states in D

5 Fit Q̂(s, u, s′) to data in Dgoal

end

Next, in Algorithm 4 we present an approximate dynamic programming version of Floyd-Warshall RL (Kaelbling, 1993)
that corresponds to the batch RL setting we investigate. This algorithm was not stable in our experiments, as the value
function converged to zero for all states (when removing the self transition fitting in line 7 of the algorithm, the values
converged to a constant value).

Algorithm 4 Approximate Floyd Warshall
Algorithm

1 Input: dataset D = {s, u, c, s′}, Maximum path cost Cmax
2 Create transition data set Dtrans = {s, s′} and targets Ttrans = {c} with s, s′, c taken from D
3 Create random transition data set Drandom = {s, srand} and targets Trandom = {Cmax} with s, srand randomly

chosen from states in D
4 Create self transition data set Dself = {s, s} and targets Tself = {0} with s taken from D

5 Fit V̂ (s, s′) to data in Dtrans, Drandom, Dself

for k : 1...K do
6 Create random goal and mid-point data set Dgoal = {s, g} and targets

Tgoal =
{

min
{
V̂ (s, g), V̂ (s, sm) + V̂ (sm, g)

}}
with s, sm, g randomly chosen from states in D

7 Create self transition data set Dself = {s, s} and targets Tself = {0} with s taken from D

8 Fit V̂ (s, s′) to data in Dgoal, Dself

end

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

D. Learning SGT with Supervised Learning
In this section we describe how to learn SGT policies for deterministic, stationary, and finite time dynamical systems
from labeled data generated by an expert. This setting is commonly referred to as Imitation Learning (IL). Specifically,
we are given a dataset Dπ∗ = {τi}Ni=1 of N trajectory demonstrations, provided by an expert policy π∗. Each trajectory
demonstration τi from the dataset Dπ∗ , is a sequence of Ti states, i.e. τi = si0, s

i
1 . . . s

i
Ti

.9 In this work, we assume a
goal-based setting, that is, we assume that the expert policy generates trajectories that lead to a goal state which is the last
state in each trajectory demonstration. Our goal is to learn a policy that, given a pair of current state and goal state (s, g),
predicts the trajectory that π∗ would have chosen to reach g from s.

D.1. Imitation learning with SGT

In this section, we describe the learning objectives for sequential and sub-goal tree prediction approaches under the IL
settings. We focus on the Behavioral Cloning (BC)(Pomerleau, 1989) approach to IL, where a parametric model for a policy
π̂ with parameters θ is learned by maximizing the log-likelihood of observed trajectories in Dπ∗ , i.e.,

θ∗ = arg max
θ

Eτi∼Dπ∗
[
logPπ̂(τi = si0, s

i
1, . . . s

i
T |si0, siT ; θ)

]
. (22)

Denote the horizon T as the maximal number of states in a trajectory. For ease of notation we assume T to be the same for
all trajectories10. Also, let si = si0 and gi = siTi denote the start and goal states for τi. We ask – how to best represent the
distribution Pπ̂(τ |s, g; θ)?

The sequential trajectory representation (Pomerleau, 1989; Ross et al., 2011; Zhang et al., 2018; Qureshi et al., 2018), a popu-
lar approach, decomposes Pπ̂(s0, s1, . . . sT |s, g; θ) by sequentially predicting states in the trajectory conditioned on previous
predictions. Concretely, let ht = s0, s1, . . . , st denote the history of the trajectory at time index t, the decomposition as-
sumed by the sequential representation is Pπ̂(s0, s1, . . . sT |s, g; θ) = Pπ̂(s1|h0, g; θ)Pπ̂(s2|h1, g; θ) . . . Pπ̂(sT |hT−1, g; θ).
Using this decomposition, (22) becomes:

θ∗ = arg max
θ

Eτi∼Dπ∗
[
T∑
t=1

logPπ̂(sit+1|hit, gi; θ)

]
. (23)

We can learn Pπ̂ using a batch stochastic gradient descent (SGD) method. To generate a sample (st, ht−1, g) in a training
batch, a trajectory τi is sampled from Dπ∗ , and an observed state sit is further sampled from τi. Next, the history hit−1
and goal gi are extracted from τi. After learning, sampling a trajectory between s and g is a straight-forward iterative
process, where the first prediction is given by s1 ∼ Pπ̂(s|h0 = s, g; θ), and every subsequent prediction is given by
st+1 ∼ Pπ̂(s|ht = (s, s1, . . . st), g; θ). This iterative process stops once some stopping condition is met (such as a target
prediction horizon is reached, or a prediction is ’close-enough’ to g).

The Sub-Goal Tree Representation: In SGT we instead predict the middle-state in a divide-and-conquer approach.
Following Eq. (8) we can redefine the maximum-likelihood objective as

θ∗=arg max
θ

Eτi∼Dπ∗
[
logPπ̂(siT/2|s

i, gi; θ)+logPπ̂(siT/4|s
i, siT/2; θ)+logPπ̂(si3T/4|s

i
T/2, g

i; θ). . .
]
. (24)

To organize our data for optimizing Eq. (24), we first sample a trajectory τi from Dπ∗ for each sample in the batch. From τi
we sample two states sia and sib and obtain their midpoint sia+b

2

. Pseudo-code for sub-goal tree prediction and learning are
provided in Algorithm 5 and Algorithm 6.

D.2. Imitation Learning Experiments

We compare the sequential and Sub-Goal Tree (SGT) approaches for BC. Consider a point-robot motion-planning problem
in a 2D world, with two obstacle scenarios termed simple and hard, as shown in Figure 6. In simple, the distribution of
possible motions from left to right is uni-modal, while in hard, at least 4 modalities are possible.

9We note that limiting our discussion to states only can be easily extended to include actions as well by concatenating states and
actions. However, we refrain from that in this work in order to simplify the notations, and remain consistent with the main text.

10For trajectories with Ti < T assume sTii repeats T − Ti times, alternatively, generate middle states from data until Ti = T

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Algorithm 5 Sub-Goal Tree BC Trajectory Prediction
Algorithm

1 Input: parameters θ of parametric distribution Pπ̂ , start state s, goal state g, max depth K
2 return [s] + PredictSGT(θ, s, g, K) +[g]

Procedure PredictSGT(θ, s1, s2, k)
if k > 0 then

1 Predict midpoint sm ∼ Pπ̂(sm|s1, s2; θ)
2 return PredictSGT(θ, s1, sm, k − 1) + [sm] + PredictSGT(θ, sm, s2, k − 1)

end

Algorithm 6 Sub-Goal Tree BC SGD-Based Training
Algorithm

1 Input: dataset D =
{
τi = si0, s

i
1 . . . s

i
Ti

}N
i=1

, train steps M , batch size B
2 Initialize parameters θ for parametric distribution Pπ̂(sm|s, g; θ)

for i : 1...M do
3 Sample batch of size B, each sample: τi ∼ D, s1, s2 ∼ τi
4 sm ← Get midpoint of [s1, s2] according to τi for all items in batch
5 Update θ by minimizing the negative log-likelihood loss:

L = − 1

B
·
B∑
b=1

∇θ logPπ̂(sbm|sb1, sb2; θ)

end
return θ

(a) (b)

Figure 6. IL Experiment domains and results. The simple domain (a) and hard domain (b). A point robot should move only on the white
free-space from a room on one side to the room on the other side while avoiding the blue obstacles. SGT plan (blue) executed successfully,
sequential plan (green) collides with the obstacles.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Success Rate Prediction Times (Seconds) Severity
Sequential SGT Sequential SGT Sequential SGT

Simple 0.541 0.946 487.179 28.641 0.0327 0.0381
Hard - 2G 0.013 0.266 811.523 52.22 0.0803 0.0666
Hard - 4G 0.011 0.247 1052.62 53.539 0.0779 0.0362

Table 3. Results for IL experiments.

For both scenarios we collected a set of 111K (100K train + 10K validation + 1K test) expert trajectories from random start
and goal states using a state-of-the-art motion planner (OMPL’s(Şucan et al., 2012) Lazy Bi-directional KPIECE (Şucan &
Kavraki, 2009) with one level of discretization). To account for different trajectory modalities, we chose a Mixture Density
Network (MDN)(Bishop, 1994) as the parametric distribution of the predicted next state, both for the sequential and the
SGT representations. We train the MDN by maximizing likelihood using Adam (Kingma & Ba, 2014). To ensure the same
model capacity for both representations, we used the same network architecture, and both representations were trained and
tested with the same data. Since the dynamical system is Markovian, the current and goal states are sufficient for predicting
the next state in the plan, so we truncated the state history in the sequential model’s input to contain only the current state.

For simple, the MDNs had a uni-modal multivariate-Gaussian distribution, while for hard, we experimented with 2 and 4
modal multivariate-Gaussian distributions, denoted as hard-2G, and hard-4G, respectively. As we later show in our results
the SGT representation captures the demonstrated distribution well even in the hard-2G scenario, by modelling a bi-modal
sub-goal distribution.

We evaluate the models using unseen start-goal pairs taken from the test set. To generate a trajectory, we predict sub-goals,
and connect them using linear interpolation. We call a trajectory successful if it does not collide with an obstacle en-route to
the goal. For a failed trajectory, we further measure the severity of collision by the percentage of the trajectory being in
collision.

Table 3 summarizes the results for both representations. The SGT representation is superior in all three evaluation criteria
- motion planning success rate, trajectory prediction times (total time in seconds for the 1K trajectory predictions), and
severity. Upon closer look at the two hard scenarios, the Sub Goal Tree with a bi-modal MDN outperforms sequential with
4-modal MDN, suggesting that the SGT trajectory decomposition better accounts for multi-modal trajectories.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

model # Sub-goals Success rate

SGT-PG
1 0.646±0.053
3 0.663±0.153
7 0.696±0.116

SeqSG
1 0.616±0.013
3 0.576±0.013
7 0.49±0.02

Table 4. Success rate on the NMP poles scenario

E. Technical Details for NMP Experiments Section 6.2
In this appendix we provide the full technical details of our policy gradient experiments presented in Section 6.2. We start by
providing the explicit formulation of the NMP environment. We further provide a sequential-baseline not presented in the
main text and its NMP environment and experimental results related to this baseline. We also present another challenging
scenario – poles, and the results of SGT-PG and SeqSG in it. Finally, we conclude with modeling-related technical details 11.

E.1. Neural Motion Planning Formulation

In Section 6.2, we investigated the performance of SGT-PG and SeqSG executed in a NMP problem for the 7DoF Franka
Panda robotic arm. That NMP formulation, denoted here as with-reset, allows for independent evaluations of motion
segments, a requirement for FD-MSGT. The state s ∈ R9 describes the robot’s 7 joint angles and 2 gripper positions,
normalized to [−1, 1]. The models, SGT-PG and SeqSG, are tasked with predicting the states (sub-goals) in the plan.

A segment (s, s′) is evaluated by running a PID controller tracking a linear joint motion from s to s′. Let sPID denote
the state after the PID controller was executed, and let αfree and αcollision be hyperparameters. We next define a cost
function that encourages shorter paths, and discourages collisions; if a collision occurred during the PID execution, or
5000 simulation steps were not enough to reach s′, a cost of αfree · ||s− sPID||2 + αcollision · ||s′ − sPID||2 is returned.
Otherwise, the motion was successful, and the segment cost is αfree · ||s− s′||2. In our experiments we set αfree = 1 and
αcollision = 100. Figures 9 and 10 show the training curves for the self-collision and wall scenarios respectively.

E.2. The SeqAction Baseline

We also evaluated a sequential baseline we denoted as SeqAction, which is more similar to classical RL approaches. Instead
of predicting the next state, SeqAction predicts the next action to take (specifically the joint angles difference), and a position
controller is executed for a single time-step instead of the PID controller of the previous methods.

SeqAction operates on a finite-horizon MDP (with horizon of T = 5000 steps). We follow the sequential NMP formulation
of Jurgenson & Tamar (2019); the agent gets a high cost on collisions, high reward when reaching close to the goal, or a small
cost otherwise (to encourage shorter paths). We denote this NMP variant no-reset as segments are evaluated sequentially,
without resetting the state between evaluations. To make the problem easier, after executing an action in no-reset, the
velocity of all the links is manually set to 0.

Similarly to Jurgenson & Tamar (2019), we found that sequential RL agents are hard to train for neural motion planning with
varying start and goal positions without any prior knowledge or inductive bias. We trained SeqAction in the self-collision
scenario using PPO (Schulman et al., 2017), and although we achieved 100% success rate when fixing both the start and the
goal (to all zeros and all ones respectively), the model was only able to obtain less than 0.1 success rate when varying the
goal state, and showed no signs of learning when varying both the start and the goal.

E.3. The poles Scenario

We tested both SGT-PG and SeqSG on another scenario we call poles where the goal is to navigate the robot between poles
as shown in Figures 7 and 8. Similar to the previous scenarios, Table 4 shows the success rates of both models for 1, 3, and 7
sub-goals. Again, we notice that SGT-PG attains much better results and improves as more sub-goals are added, while the
performance of SeqSG deteriorates. Moreover, even for a single sub-goal, SGT-PG obtains better success rates compared to

11The code is attached to the submission (a GitHub project will be posted here upon acceptance)

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 7. Robot trajectory poles scenario predicted with SGT-PG with 7 sub-goals. Top left start state, bottom right goal state. Notice that
the two final segments s6 to s7 and s7 to g are longer than the rest, but are made possible by the robot getting into position in state s6.
Note that SGT-PG failed to find a trajectory for this (s, g) pair with less sub-goals, indicating the hardness of the path.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 8. Start (blue) and goal (red) states in the test set of the poles scenario. Note that the agents are not exposed to these particular
states during training.

SeqSG. The high range displayed by SGT-PG is due to one random seed that obtained significantly lower scores.

E.4. Neural Network Architecture and Training Procedure

We next provide full technical details regarding the architecture and training procedure of SGT-PG and SeqSG described in
Section 6.2.

Architecture and training of SGT-PG: The start and goal states, s and g, are fed to a neural network with 3 hidden-layers
of 20 neurons each and tanh activations. The network learns a multivariate Gaussian-distribution over the predicted sub-goal
with a diagonal covariance matrix. Since the covariance matrix is diagonal, the size of the output layer is 18 = 2 · 9, 9
elements learn the bias, and 9 learn the standard deviation in each direction. To predict the bias, a value of s+g2 is added
to the prediction of the network. To obtain the final standard deviation, we add two additional elements to the standard
deviation predicted by the neural network : (1) a small value (0.05), to prevent learning too narrow distributions, and (2) a
learnable coefficient in each of the directions that depends on the distance between s and g, which allows large segments to
predict a wider spread of sub-goals. These two changes were incorporated in order to mitigate log-likelihood evaluation
issues.

SGT-PG trains on 30 (s, g) pairs per training cycle, using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.005 on the PPO objective (Schulman et al., 2017) augmented with a max-entropy loss term with coefficient 1, and a PPO
trust region of ε = 0.2. As mentioned in Section 5.2, when training level d for a single (s, g) pair, we sample M sub-goals
(in our experiments M = 10) from the multivariate Gaussian described above, take the mean predictions of policies of
depth d− 1 and lower, and take the mean of costs as a (s, g)-dependent baseline. The repetition allows us to obtain a stable
baseline without incorporating another learnable module – a value function. We found this method to be more stable than
training on 300 different start-goal pairs (no repetitions). During test time we always take the mean prediction generated by
the policies.

Architecture of SeqSG: This model has two components, a policy and a value function. The policy architecture is identical
to that of SGT-PG. Note that only a single policy is maintained as the optimal policy is independent of the remaining

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 9. Success rates over training episodes of the self-collision scenario.

horizon12. We also found that learning the covaraince matrix causes stability issues for the algorithm, so the multivariate
Gaussian only learns a bias term. The value function of SeqSG has 3 layers with 20 neurons each, and Elu activations. It
predicts a single scalar which approximates V (s, g), and is used as a state-dependent baseline to reduce the variance of the
gradient estimation during training.

In order to compare apples-to-apples, SeqSG also trains on 30 (s, g) pairs with 10 repetitions each. We trained the policy
with the PPO objective (Schulman et al., 2017) with trust region of ε = 0.05. We used the Adam optimizer (Kingma & Ba,
2014), with learning rate of 0.005 but we clipped the gradient with L2 norm of 10 to stabilize training. The value function is
trained to predict the value with mean-squared error loss. We also trained it with Adam with a learning rate of 0.005 but
clipped the gradient L2 norm to 100.

We note that finding stable parameters for SeqSG was more challenging than for SGT-PG, as apparent by the gradient
clippings, the lower trust region value, and our failure to learn the mutivariate Gaussian distribution covariance matrix.

12Also, a policy-per-time-step approach will not scale to larger plans, as we cannot maintain T = 2D different policies.

Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Figure 10. Success rates over training episodes of the wall scenario.

