
Evaluating the Performance of RL Algorithms

Appendix

A. Other Normalization Methods
A simple normalization technique is to map scores on an environment j that are in the range [aj , bj] to [0, 1], i.e., g(x, j) :=
(x− aj)/(bj − aj) (Bellemare et al., 2013). However, this can result in normalized performance measures that cluster in
different regions of [0, 1] for each environment. For example, consider one environment where a the minimum is −100,
the maximum is 10 and a uniform random policy can score around 0. Similarly consider a second environment where the
minimum score is 10, maximum is 1,000, and random gets around 20. On the first environment, algorithms will tend to
have a normalized performance near 1 and in the second case most algorithms will have a normalized performance near 0.
So in the second environment algorithms will likely appear worse than algorithms in the first regardless of how close to
optimal they are. This means the normalized performances are not really comparable.

A different version of this approach uses the minimum and maximum mean performance of each algorithm (Bellemare
et al., 2013; Balduzzi et al., 2018). Let µ̂i,j be the sample mean of Xi,j . Then this normalization method uses the following
function, ḡ(i, j) := (µ̂i,j −mini′ µ̂i′,j)/(maxi′ µ̂i′,j −mini′ µ̂i′,j). This sets the best algorithm’s performance on each
environment to 1 and the worst to 0, spreading the range of values out over the whole interval [0, 1]. This normalization
technique does not correct for nonlinear scaling of performance. As a result algorithms could be near 0 or 1 if there is an
outlier algorithm that does very well or poorly. For example, one could introduce a terrible algorithm that just chooses one
action the whole time. This makes the environment seem easier as all scores would be near 1 except for this bad algorithm.
We would like the evaluation procedure to be robust to the addition of poor algorithms.

An alternative normalization technique proposed by Whiteson et al. (2011) uses the probability that one algorithm outper-
forms another on an environment, j, i.e., Pr(Xi,j ≥ Xk,j). This technique is intuitive and straight forward to estimate but
neglects the difference in score magnitudes. For example, consider that algorithm i always scores a 1.0 and algorithm k
always scores 0.99, the probability that i is better than k is 1, but the difference between them is small, and the normalized
score of 1.0 neglects this difference.

B. α-Rank and our Implementation
The α-Rank procedure finds a solution to a game by computing the stationary distribution of strategy profiles when each
player is allowed to change their strategy. This is done by constructing a directed graph where nodes are pure strategies
and edges have weights corresponding to the probability that one of the players switches strategies. This graph can be
represented by a Markov matrix, C ∈ [0, 1]|S|×|S|. The entry Cs,s′ corresponds to a probability of switching from a strategy
s to s′. Only one player is allowed to change strategies at a time, so the possible transitions for a strategy s = (i, (j, k)), are
any strategies s′ = (i′, (j, k)) or s′ = (i, (j′, k′)) for all i′, k′ ∈ A and j′ ∈M.

The typical α-Rank procedure uses transition probabilities, Cs,s′ , that are based on a logistic transformation of the payoff
difference ul(s′) − ul(s). These differences are scaled by a parameter α and as α approaches∞, the transition matrix
approximates the Markov Conley chain (MCC), which is the motivation for using α-Rank as a solution concept for games.
See the work of Omidshafiei et al. (2019) for more detailed information. The entries of the matrix for valid transitions are:

Cs,s′ =

{
η

1−exp (−α(ul(s
′)−ul(s)))

1−exp (−αn(ul(s′)−ul(s)))
if ul(s′)= ul(s)

η
n if ul(s′) = ul(s)

and Cs,s = 1−
∑
s′ 6=s

Cs,s′ ,

where η = (
∑
k |Sk| − 1)−1, l represents the player who switched from strategy s to s′, n is the population constant (we

set it to 50 following the prior work). The equilibrium over strategies is then given by the stationary distribution d of the
Markov chain induced by C, i.e., d is a distribution such that d = dC̃. The equilibrium solution p∗, q∗ are then the sum of
probabilities in d for each strategy, i.e., p∗s1 =

∑
s2∈S2

ds1,s2 and q∗s2 =
∑
s1∈S1

ds1,s2 . The aggregate performance can
then be computed using q∗ as in (1).

Theoretically, the hyperparameter α could be chosen arbitrarily high and the matrix C would still be irreducible, i.e., for all
s ∈ S, ds > 0 and d is unique. However, due to numerical precision issues, a high value of α sets transition probabilities
to zero for some dominated strategies, i.e., ul(s′) < ul(s), which can result in a matrix that is reducible. The suggested
method to chose α is to tune it on a logarithmic scaled to find the highest value such that the transition matrix, C, is still
irreducible (Omidshafiei et al., 2019).

Evaluating the Performance of RL Algorithms

This strategy works when the payoffs are known, but when they represent empirical samples of performance, then the value
of α chosen will depend on the empirical payoff functions. Setting α based solely on the empirical payoffs could introduce
bias to the matrix based on that sample. So we need a different solution without a data dependent hyperparameter.

In the MCC graph construction, all edges leading to strategies with strictly greater payoffs have the same positive weight.
All edges that lead to strategies with the same payoff have he same weight but less than that of the strictly greater payoff.
There are no transitions to strategies with worse payoffs. As α→∞ the transitions probabilities quickly saturate to η if
ul(s

′) > ul(s) and 0 if ul(s′) < ul(s). So we construct the transition matrix, C, differently using the saturation values to
set the transition probabilities C is close to the MCC construction. The entries for C that represent valid transitions in the
graph are:

Cs,s′ :=


η if ul(s′) > ul(s)
η
m if ul(s′) = ul(s)

0 otherwise
Cs,s := 1−

∑
s′ 6=s

Cs,s′ . (2)

However, this often makes the transition matrix reducible, i.e., the stationary distribution might have mass on only
one strategy. To ensure C is irreducible we follow the damping approach used in PageRank (Page et al., 1999), i.e.,
C̃ = γC+ (1−γ)(1/|S|), where γ ∈ (0, 1) is a hyperparameter and 1−γ represents the probability of randomly switching
to any strategy in S . During a Monte-Carlo simulation of transitions through C̃, states will transition from s to s′ according
to C, but with probability 1− γ the transition ignores C and switches to some strategy s′ ∈ S chosen uniformly at random.

For γ = 1 the matrix is unchanged and represents the MCC solution, but is reducible. For γ near one, the stationary
distribution will be similar to the solution given by the MCC solution with high weight placed on dominate strategies and
small weight given to weak ones. As γ → 0 the stationary distribution becomes more uniform as it is only considering
shorter sequences of transitions before a random switch occurs. This method differs from the infinite-α approach presented
by Rowland et al. (2019), but in the limit as γ → 1 and α→∞, the solutions have small differences. The approach using γ
has a benefit in that there is no data dependent hyperparameter and it has a simple interpretation.

We chose to set γ = (|S| − 1)/(|S|) so that the expected number of transitions to occur before a random jump is |S|. This
allows for propagation of transition probabilities to cover every strategy combination. We could have chosen to set γ near
one, e.g., γ = 1 − 10−8, but this would make the computation of the confidence intervals take longer. This is because
optimizing the C within confidence intervals [C−, C+] (defined in the next section) is equivalent finding the optimal value
function of a Markov decision process (MDP) with a discount parameter of γ. See the work of de Kerchove et al. (2007);
Fercoq et al. (2013); Csáji et al. (2014) for more information on this connection. Solving and MDP with a discount γ near
1.0 causes the optimization process of value iteration and policy iteration to converge slower than if γ is small. So we chose
γ such that it could still find solutions near the MCC solution, but remain computationally efficient.

Using this new definition of C we use the following alternative but equivalent method to compute the aggregate performance
more efficiently (Fercoq et al., 2013):

yi =
1− γ
|S|

∑
s∈S

v(s) v = (I − γC)−1Ri, (3)

where Ri ∈ R|S| is a vector with entries Ri(s) := E[FXk,j
(Xi,j)] with s = (s1, s2) and s2 = (j, k). Notice that s1 is

ignored because i is already specified by Ri.

C. Confidence Intervals on the Aggregate Performance
In this section, we detail the PBP procedure for computing confidence intervals Y − and Y + on the aggregate performance y
and prove that they hold with high probability. That is, we show that for any confidence level δ ∈ (0, 0.5];

Pr(∀i ∈ A, yi ∈ [Y −i , Y
+
i]) ≥ 1− δ.

We will first describe the PBP procedure to compute confidence intervals and then prove that they valid. A list of the symbols
used in the construction of confidence intervals and their description are provided in Table 3 to refresh the reader. The steps
to compute the confidence intervals are outlined in Algorithm 1.

Evaluating the Performance of RL Algorithms

Symbol List
Symbol Description

A set of algorithms in the evaluation
M set of environments in the evaluation
Xi,j random variable representing performance of algorithm i on environment j
Ti,j number of samples of performance for algorithm i on environment j
xi,j,t the tthsample of performance of algorithm i on environment j and sorted such that xi,j,t−1 ≤ xi,j,t
D data set containing all samples of performance for each algorithm on each environment

y ∈ R|A| yi is the aggregate performance for each algorithm i
Y −, Y + ∈ R|A| lower and upper confidence intervals on y computed using D

δ ∈ (0, 0.5] confidence level for the aggregate performance
FXi,j cumulative distribution function (CDF) ofXi,j and is also used for normalization
F̂Xi,j

empirical cumulative distribution function constructed using samples xi,j,·
F−Xi,j

, F+
Xi,j

lower and upper confidence intervals on FXi,j computed using D
zi,j,k performance of algorithm i, i.e., zi,j,k = E[FXk,j

(Xi,j)]
Z−i,j,k, Z

+
i,j,k lower and upper confidence intervals on zi,j,k computed using D.

s1 ∈ S1 strategy for player p where S1 = A and s1 is often denoted using i
s2 ∈ S2 strategy for player q where S2 =M×A and s2 is often denoted using (j, k)
s ∈ S joint strategy where S = S1 × S2, and s = (s1, s2) is often denoted as (i, (j, k))

p ∈ ∆(S1) strategy for player p represented as a distribution over S1

q ∈ ∆(S2) strategy for player q represented as a distribution over S2

up(s) payoff for player p when s is played, i.e.,up(s) = E[FXk,j
(Xi,j)]

uq(s) payoff for player q when s is played, i.e., uq(s) = −up(s)
u−l (s), u+

l (s) confidence intervals on ul(s) for player l ∈ {p, q} computed using D

Table 3. List of symbols used to create confidence intervals on the aggregate performance.

Recall that the aggregate performance for an algorithm i is

yi :=

|M|∑
j=1

|A|∑
k=1

q∗j,kE[FXk,j
(Xi,j)],

where q∗ is the equilibrium solution to the game specified in Section 4.2. To compute valid confidence intervals Y −, Y + on
y using a dataset D, the uncertainty of q∗ and mean normalized performance zi,j,k = E[FXk,j

(Xi,j)]. PBP accomplishes
this by three primary steps. The first step is to compute confidence intervals Z−i,j,k, Z

+
i,j,k on zi,j,k such that

Pr
(
∀(i, j, k) ∈ A×M×A, zi,j,k ∈ [Z−i,j,k, Z

+
i,j,k]

)
≥ 1− δ.

The second step is to compute the uncertainty set Q containing all possible q∗ that are compatible with Z− and Z+. The
last step is to compute the smallest and largest possible aggregate performances for each algorithm over these sets, i.e.,

Y −i = min
q∈Q

|M|∑
j=1

|A|∑
k=1

qj,kZ
−
i,j,k and Y +

i = max
q∈Q

|M|∑
j=1

|A|∑
k=1

qj,kZ
+
i,j,k.

PBP follows this process, except in the last two steps Q is never explicitly constructed to improve computational efficiency.
Intuitively, the procedure provides valid confidence intervals because all values to compute the aggregate performance
depend on the normalized performance. So by guaranteeing with probability at least 1− δ that the true mean normalized
performances will be between Z− and Z+, then so long as the the upper (lower) confidence interval computed is at least as
large (small) as the maximum (minimum) of the aggregate score for any setting of z ∈ [Z−, Z+], the confidence intervals
will be valid.

Evaluating the Performance of RL Algorithms

Algorithm 1 Performance Bound Propagation (PBP)
1: Input: dataset D containing samples of performance and a confidence level δ ∈ (0, 0.5])
2: Output: Y −, Y + confidence intervals on the aggregate performance

3: δ′ ← δ/(|A||M|);
4: sort ascending({xi,j,t}

Ti,j

t=1);
5: // Compute confidence intervals for the CDFs
6: for i, j ∈ A×M do
7: F−Xi,j

, F+
Xi,j
← dkw bound({xi,j,t}

Ti,j

t=1, δ
′); // computation shown in (4)

8: end for
9: // Compute confidence intervals on the mean normalized performance

10: for i, j, k ∈ A×M×A do
11: Z−i,j,k ← F−Xk,j

(xi,j,T)−
∑T−1
t=0

[
F−Xk,j

(xi,j,t+1)− F−Xk,j
(xi,j,t)

]
F+
Xi,j

(xi,j,t);

12: Z+
i,j,k ← F+

Xk,j
(xi,j,T+1)−

∑T
t=1

[
F+
Xk,j

(xi,j,t+1)− F+
Xk,j

(xi,j,t)
]
F−Xi,j

(xi,j,t);
13: end for
14: // Construct game quantities
15: S = A× (M×A); strategy profile set
16: γ ← |S|−1

|S|
17: C−, C+ ← bound markov matrix(Z−, Z+) as defined in (7).
18: // Optimize aggregate performance over all possible C ∈ [C−, C+]
19: for i ∈ A do
20: v ← find optimal valuefunction(C−, C+, Ri = −Z−i,·,·); // solve (8)

21: Y −i ←
(1−γ)
|S|

∑
s∈S |v(s)|

22: v ← find optimal valuefunction(C−, C+, Ri = Z+
i,·,·); // solve (8)

23: Y +
i ←

(1−γ)
|S|

∑
s∈S |v(s)|

24: end for

We break the rest of this section into two subsections. The first subsection discusses constructing the confidence intervals
on the mean normalized performance and proving their validity. The second subsection describes how to construct the
confidence intervals on the aggregate performance proves their validity.

C.1. Confidence intervals on the normalized performance

The normalized performance zi,j,k = E[FXk,j
(Xi,j)] has two unknowns, FXk,j

and the distribution of Xi,j . To compute
confidence intervals on zi,j,k for all i, j, k, confidence intervals are needed on the output on all distribution functions FXi,j .
The confidence intervals on the distributions can then be combined to get confidence intervals on zi,j,k.

To compute confidence intervals on FXi,j we assume that Xi,j is bounded on the interval [aj , bj] for all i ∈ A and j ∈M.
Let F̂Xi,j

be the empirical CDF with

F̂Xi,j (x) :=
1

Ti,j

Ti,j∑
t=1

1xi,j,t≤x,

where Ti,j is the number of samples of Xi,j , xi,j,t is the tth sample of Xi,j , and 1A = 1 if event A is true and 0 otherwise.
Using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al., 1956) with tight constants (Massart, 1990), we

Evaluating the Performance of RL Algorithms

define F−Xi,j
and F+

Xi,j
to be the lower and upper confidence intervals on FXi,j

, i.e.,

F+
Xi,j

(x) :=


1 if x ≥ b
min(1.0, F̂Xi,j

(x) + ε) if a ≤ x < b

0 if x < a

F−Xi,j
(x) :=


1 if x ≥ b
max(0.0, F̂Xi,j (x)− ε) if a ≤ x < b

0 if x < a

and ε =

√
ln 2

δ′

2Ti,j
, (4)

where δ′ ∈ (0, 0.5] is a confidence level and we use δ′ = δ/(|A||M|). By the DKW inequality with tight constants the
following property is known:

Property 1 (DKW with tight constants confidence intervals).

Pr
(
∀x ∈ R, FXi,j (x) ∈ [F−Xi,j

(x), F+
Xi,j

(x)]
)
≥ 1− δ′.

Proof. See the works of Dvoretzky et al. (1956) and Massart (1990).

Further, by the union bound we have that

Pr
(
∀i ∈ A,∀j ∈M,∀x ∈ R, FXi,j (x) ∈ [F−Xi,j

(x), F+
Xi,j

(x)]
)
≥ 1− δ. (5)

To construct confidence intervals on the mean normalized performance, we will use Anderson’s inequality (Anderson, 1969).
Let X be a bounded random variable on [a, b], with sorted samples x1 ≤ x2 ≤ · · · ≤ xT , x0 = a, and xT+1 = b. Let
g : R→ R be a monotonically increasing function. Anderson’s inequality specifies for a confidence level δ ∈ (0, 0.5] the
following high confidence bounds on E[g(X)]:

E[g(X)] ≥ g(xT) −
T−1∑
t=0

[g(xt+1)− g(xt)]F
+
X (xt)

E[g(X)] ≤ g(xT+1) −
T∑
t=1

[g(xt+1)− g(xt)]F
−
X (xt),

where F+/−
X uses the DKW inequality with tight constants and as defined in (4).

Anderson’s inequality can be used to bound the mean normalized performance since FXk,j
is a monotonically increasing

function and δ ∈ (0, 0.5]. Since FXk,j
is unknown, we replace g in Anderson’s inequality with F−Xk,j

for the lower bound
and F+

Xk,j
for the upper bound. This gives the following confidence intervals for zi,j,k:

Z−i,j,k = F−Xk,j
(xi,j,T) −

T−1∑
t=0

[
F−Xk,j

(xi,j,t+1)− F−Xk,j
(xi,j,t)

]
F+
Xi,j

(xi,j,t)

Z+
i,j,k = F+

Xk,j
(xi,j,T+1) −

T∑
t=1

[
F+
Xk,j

(xi,j,t+1)− F+
Xk,j

(xi,j,t)
]
F−Xi,j

(xi,j,t),

(6)

where T = Ti,j , xi,j,0 = aj , and xi,j,T+1 = bj . We now prove the following lemma:

Lemma 1. If Z− and Z+ are computed by (6), then:

Pr
(
∀i, k ∈ A,∀j ∈M, zi,j,k ∈ [Z−i,j,k, Z

+
i,j,k]

)
≥ 1− δ.

Proof. By Anderson’s inequality we know that Z+
i,j,k is an high confidence upper bound on E[F+

Xk,j
(Xi,j)] and similarly

Z−i,j,k is a high confidence lower bound on E[F+
Xk,j

(Xi,j)], i.e.,

Evaluating the Performance of RL Algorithms

Pr
(
E[F−Xk,j

(Xi,j)] ≥ Z−i,j,k
)
≥ 1− δ′/2

Pr
(
E[F+

Xk,j
(Xi,j)] ≤ Z+

i,j,k

)
≥ 1− δ′/2.

By Property 1 we know that Pr
(
∀x ∈ R, FXk,j

(x) ∈ [F−Xk,j
(x), F+

Xk,j
(x)]

)
≥ 1− δ′, thus

Pr
(
∀i, k ∈ A,∀j ∈M, zi,j,k ∈ [Z−i,j,k, Z

+
i,j,k]

)
≥ 1− 2δ′,

where 2δ′ comes from combining the failure rates of confidence intervals on the CDFs FXi,j
and FXk,j

. The confidence
intervals on the mean normalized performances can only fail if the confidence intervals on CDFs fail. As stated in (5),
all confidence intervals on the CDFs contain the true CDFs with probability at least 1 − δ. Thus, all mean normalized
performances hold with probability at least 1− δ.

The confidence intervals given by Z− and Z+ are guaranteed to hold for T ≥ 1, and δ ∈ (0, 0.5], but are often conservative
requiring a large number samples to identify a statistically meaningful result. So we empirically test alternatives that have
either stricter assumptions or weaker theoretical justification.

C.2. Confidence intervals on the aggregate performance

In this section we will provide details on how to compute the confidence intervals on the aggregate performance using
the confidence intervals on the mean normalized performance and then prove that they hold with high confidence. To
construct confidence intervals and prove their validity we will make the following steps. First, we show that for a fixed
weighting q that valid confidence intervals can be computed directly by using interval arithmetic. Second, we describe
how to characterize the uncertainty of the game. Third, we make a connection between aggregate performance using the
equilibrium solution q∗ and the optimal average reward for a Markov decision process. Lastly we describe an optimization
procedure for computing the optimal average reward, which corresponds to finding the lower and upper confidence intervals.

Before discussing how to bound the aggregate performance using the game theoretic solution, consider the case when
weights q can be any probability distribution over algorithms and environments chosen before the experiment begins.
Let weights q ∈ [0, 1]|A|×|M|, such that

∑
j∈M

∑
k∈A qj,k = 1. Let ỹi =

∑
j∈M

∑
k∈A qj,kzi,j,k be the aggregate

performance for an algorithm i ∈ A. The corresponding confidence intervals for ỹi are Ỹ −i =
∑
j∈M

∑
k∈A qj,kZ

−
i,j,k and

Ỹ +
i =

∑
j∈M

∑
k∈A qj,kZ

+
i,j,k.

Lemma 2. If weights q are independent of the data D, then:

Pr
(
∀i ∈ A, ỹi ∈ [Ỹ −i , Ỹ

+
i]
)
≥ 1− δ

Proof. Applying the result of Lemma 1, all confidence intervals produced by Z−i,j,k and Z+
i,j,k contain zi,j,k with probability

1− δ. So interval arithmetic can be used to compute confidence intervals on the aggregate performance without changing the
probability of failure, i.e., Ỹ −i =

∑
j∈M

∑
k∈A qj,kZ

−
i,j,k and Ỹ +

i =
∑
j∈M

∑
k∈A qj,kZ

+
i,j,k for each algorithm i ∈ A.

With these intervals then

Pr
(
∀i ∈ A, ỹi ∈ [Ỹ −i , Ỹ

+
i]
)
≥ 1− Pr

 ⋃
i,k∈A,j∈M

zi,j,k /∈ [Z−i,j,k, Z
+
i,j,k]


≥ 1− δ.

This method of aggregating performance highlights how the uncertainty of normalized scores propagates to the confidence
intervals of the aggregate performance for a fixed weighting. Next we will show how to compute confidence intervals on y
when using the dynamic weighting produce by the equilibrium solution to the two player game.

Evaluating the Performance of RL Algorithms

Instead of considering all possible equilibrium solutions q∗, recall that yi depends on the Markov matrix C as shown in (3).
To construct confidence intervals on yi the uncertainty in creating the matrix C as defined in (2) needs to be considered
(Rowland et al., 2019). The definition of C assumes certainty of payoffs of each strategy, but the empirical payoffs have
uncertainty corresponding to Z− and Z+, i.e., for s = (i, (j, k)), u−p (s) = Z−i,j,k, u+

p (s) = Z+
i,j,k, u−q (s) = −Z+

i,j,k,
u+
q (s) = −Z−i, j, k. As a result, when the payoff confidence intervals overlap for two strategies s and s′ this creates

uncertainty in C. We define C−, C+ ∈ [0, 1]|S|×|S| as the lower and upper confidence intervals on C with entries

C−s,s′ , C
+
s,s′ :=


(η, η) if u−l (s′) > u+

l (s)

(0, 0) if u−l (s) > u+
l (s′)

(ηn ,
η
n) if u+/−

l (s) = u
+/−
l (s′)

(0, η) otherwise

∀s′ ∈ S \ {s}

C−s,s, C
+
s,s :=

1−
∑
s′ 6=s

C+
s,s′ , 1−

∑
s′ 6=s

C−s,s′


(7)

To get the bounds on the aggregate performance over all possible C in these intervals the uncertainty of the stationary
distribution on C̃ = γC+ (1−γ)(1/|S|) has to be consider. This can be accomplished by first computing the minimum and
maximum values of the stationary distribution for each strategy (Rowland et al., 2019) and then finding the minimum and
maximum aggregate performances for all possible stationary distributions in this limits. However, individually computing
these two quantities leads to looser bounds than directly estimating the minimum and maximum aggregate performance over
all possible C because it ignores the correlations in the confidence intervals of the stationary distribution. To compute the
minimum and maximum aggregate performance over all possible C, we need to make a connection between the average
performance using the stationary distribution of C̃ and the average performance before termination on C.

Let d be a stationary distribution over strategy profiles S induce by the Markov matrix C̃ = γC + (1− γ)(1/|S|). Let q be
the distribution of strategies for player q contained in d.
Lemma 3. The following are equivalent

yi =
∑

(j,k)∈S2

qj,kzi,j,k

yi =
1− γ
|S|

∑
s∈S

v(s),

where v = (I − γC)−1Ri, Ri ∈ R|S| such that Ri(s) = zi,j,k for s = (·, (j, k)).

Proof. We know that qj,k =
∑
i∈S1

d(i, (j, k)). This implies yi =
∑

(j,k)∈S2
qj,kzi,j,k =

∑
s∈S d(s)Ri(s). Applying

8.2.12 of Puterman (1994), we have the relation

v + yi = Ri + C̃v

v + yi = Ri + γCv +
(1− γ)

|S|
1>v,

where here 1 ∈ R|S| is a vector of all ones. Then for v = (I − γC)−1Ri, yi = (1−γ)
|S| 1>v.

Finally, using techniques developed by Fercoq et al. (2013), the lower and upper bounds of the aggregate performance yi
can be bound by solving the following optimization problem:

min
v

∑
s∈S

v(s)

s.t. v(s) ≥ Ri(s) + γ
∑
s′∈S

Cs,s′v(s′)

C− ≤ C ≤ C+∑
s′∈S

Cs,s′ = 1 ∀s ∈ S,

(8)

Evaluating the Performance of RL Algorithms

where C is a free variable, Ri(s) = −Z−i,j,k, and Ri(s) = Z+
i,j,k are used to obtain the lower and upper bounds on yi,

respectively. Both bounds are computed as Y +/−
i = (1 − γ)(1/|S|)

∑
s∈S |v(s)| using the respective solutions v. The

absolution value of v is taken to account for the negativity of Ri = −Z−. We compute the solution v in polynomial time
using policy iteration based approach similar to Fercoq et al. (2013), but modify their algorithm to fit our matrix C. We
detail our exact method in Appendix D.

Now to prove the main result we will use the previous lemmas in connection with PBP.

Theorem 1. If (Y −, Y +) = PBP(D, δ), then

Pr
(
∀i ∈ 1, 2, . . . , |A|, yi ∈ [Y −i , Y

+
i]
)
≥ 1− δ.

Proof. From Lemma 1 we know that Z− and Z+ are valid 1− δ confidence intervals on z. Thus, applying Lemma 2 we
know that a valid 1− δ confidence intervals can be computed by a weighted sum of lower and upper bounds Z− and Z+,
for any joint probability distribution q over environments and algorithms. Through Lemma 3 this is equivalent to assuming
fixed Markov matrix C. The true matrix C is unknown, so the minimum and maximum intervals need to be found over a set
C that contains all transition matrices that are compatible with Z− and Z+. Let C =

∏
s∈S Cs, where Cs is the polytope of

transition probabilities starting from strategy profile s ∈ S, i.e.,

Cs = {Cs,· : ∀s′ ∈ S, Cs,s′ ∈ [C−s,s′ , C
+
s,s′],

∑
s′∈S

Cs,s′ = 1}.

The minimum and maximum aggregate values Y − and Y + computed over C can be found in polynomial time using linear
programming, value iteration, or policy iteration (Fercoq et al., 2013). PBP finds the minimum and maximum confidence
intervals over all C ∈ C, thus, they represent valid 1− δ confidence intervals for each algorithm.

D. Policy Iteration for Bounding the Aggregate Performance
This section we detail our approach for optimizing the aggregate performance over the uncertainty of the Markov matrix C
to compute confidence intervals. Recall that the upper and lower high-confidence bounds on the aggregate performance for
algorithm i can be found by solving the optimization problem in 8. Alternatively one can use a Dynamic Programming
approach either using value iteration or policy iteration for more efficient optimization (Fercoq et al., 2013). Using value
iteration has better scaling to the size of the state space in the optimization problem than policy iteration. However, we
found that in small and moderate sized problems policy iteration was sufficient and used it in our experiments.

Our method is similar to that of Fercoq et al. (2013, Algorithm 1), except that we use policy iteration instead of value iteration
and a modification to the dynamic programming operator since the transition probabilities in our problem do not depend on
the number of out going edges. Algorithm 2 shows pseudocode of the policy iteration to find the the optimal value function
v∗ through the modification of the matrix C ∈ C. The algorithm takes as input lower and upper bounds C−, C+ ∈ R|S|×|S|
on C, a reward function R ∈ R|S|, a discount factor γ ∈ (0, 1), a tolerance on the distance to optimal, tol ∈ R, and the
maximum number of iterations max itrs ∈ N+. We set γ = (1 − |S|)/|S| and tol = 1 × 10−7, max itrs = 400 as
default parameters. When finding the upper confidence interval, y+

i , for algorithm i, R is a vector such that R(s) = Z+
i,j,k

for all s = (·, (j, k)) ∈ S. Similarly, when finding y−i , R is such that R(s) = −Z−i,j,k.

Algorithm 2 has two main steps. First, greedily optimize C with respect to the current value function v, i.e., for all s ∈ S

Cs = arg max
Cs∈Cs

R(s) + γCsv.

We provide pseudocode for this step in Algorithm 3. The second step is a value function update, which we compute exactly
by solving the system of linear equations v = R + γCv, by setting v = (I − γC)−1R. These steps repeat until C stops
changing or a bound on the maximum absolute error in aggregate performance is below some threshold. The confidence
interval on the aggregate performance is then returned as (1− γ)/|S|

∑
s∈S |v(s)|. Since C is sparse optimization to the

code can be made to drastically speed up computation when S is large. We make some of these modifications in our
implementation.

Due to small numerical errors this version of policy iteration may not keep the same policy, C, between successive iterations
when at the optimal solution. To ensure that the procedure stops in a reasonable time and closely approximates the true

Evaluating the Performance of RL Algorithms

Algorithm 2 Policy Iteration for aggregate performance optimization

Input: C−, C+ ∈ R|S|×|S|, R ∈ R|S|, γ ∈ (0, 1) = (1− |S|)/|S|, tol ∈ R = 1× 10−7, max itrs ∈ N+ = 400
Initialize: C ← C−, v ← 0 ∈ R|S|
changed← True
iteration← 0
while changed do
changed← False
iteration← iteration+ 1
if iteration ≥ max itrs then
break

end if
for s ∈ S do
C ′s ← update transition row(C−s , C

+
s , R(s), v, γ)

if ||Cs − C ′s||∞ ≥ 1× 10−8 then
changed← True
Cs ← C ′s

end if
end for
v′ ← (I − γC)−1R
ε← ||v − v′||∞ // max change in value function
εv∗ ← (2εγ)/(1− γ) // error bound on distance to v∗

εaggregate ← (1− γ)εv∗ // bound on the maximum error to the aggregate performance
if εaggregate < tol then
changed← False

end if
v ← v′

end while
Return: (1− γ)mean(|v|)

solution we employ three techniques: an iteration limit, halting computation when C is ε-close to between iterations, and
stopping when a bound on the distance to true solution is below a tolerance, tol. The first two approaches are straight
forward an in the pseudocode. To bound the distance to the true solution we leverage prior work on bounding the distance of
the current value function to the optimal value function. Consider the value function v and the subsequent value function v′

obtained after one application of the Bellman operator. In our problem the Bellman operator is

v(s) = max
Cs∈Cs

R(s) + γ
∑
s′∈S

Cs,s′v(s′).

Let ε = maxs∈S |v(s)− v′(s)|. Then the distance εv∗ = maxs∈S |v′(s)− v∗(s)| of v′ to the optimal value function v∗, is
bounded above by ε (Williams & Baird, 1993), i.e,

εv∗ ≤ (2εγ)/(1− γ).

We translate this this bound into a bound on the error to the confidence interval of yi. Let yi be the confidence interval
computed using v′ and y∗i be the confidence interval computed using v∗. Then an upper bound on the error εaggregate =
|y∗i − yi| is

Evaluating the Performance of RL Algorithms

Algorithm 3 update transition row procedure for updating Cs
Input: C−s , C+

s ∈ R|S|, r ∈ R, v ∈ R|S|, γ ∈ (0, 1)
Initialize: Cs ← C−s , c← sum(C−s)
w ← r + γv
idxs← argsort(w,direction = decreasing)
for i = 1 to |S| do
idx← idxs[i]
∆c← min(C+

s − C−s , 1− c)
Cs[idx]← Cs[idx] + ∆c
c← c+ ∆c

end for
Return: Cs

εaggregate = |y∗i − yi|

=

∣∣∣∣∣1− γ|S| ∑
s∈S
|v∗(s)| − 1− γ

|S|
∑
s∈S
|v′(s)|

∣∣∣∣∣
=

∣∣∣∣1− γ|S| (||v∗||1 − ||v′||1)

∣∣∣∣
≤ 1− γ
|S|
||v∗ − v′||1

=
1− γ
|S|
|S|||v∗ − v′||∞

= (1− γ)||v∗ − v′||∞
≤ (1− γ) max

s∈S
|v∗(s)− v′(s)|

= (1− γ)εv∗ = 2εγ.

E. Algorithm Definitions
This section provides the complete definition for each algorithm used in the experiments. Each algorithm is made complete
by defining a distribution from, which hyperparameters are sampled. Table 4 shows distributions or values for any
hyperparameter used in this work. For the continue state space environments, all of the algorithms use Fourier basis and
linear function approximation (Konidaris et al., 2011). Note that U(a, b) indicates a uniform random variable on [a, b), and
U({. . .}) indicates that a variable is sampled uniformly at random from a set of finite values.

Note that these ranges should not be considered optimal and could easily be improved for the environments in this experiment.
The ranges were chosen to reflect a lack of knowledge about what optimal settings on an environment are and to be reflective
of ranges one might expect optimal hyperparameters to fall in. The manual setting of these ranges leaks information based
on our own experience with the algorithms and environments. However, since the definition is completely specified on these
environments any favor to one algorithm could be easily identified and test for. Furthermore, any adaptive algorithm that can
adjust these parameters during learning is likely to be superior than specifying better ranges through experience in this exact
setup. Still, one should not tune ranges to fit any given set of environments.

F. Environments
This section describes the environments used in the experiments. All environments are listed in Table 5. Environments were
recreated in the Julia language and many implementations follow closely to the that in the RLPy repository (Geramifard
et al., 2015). Most environments are best described by either the paper publishing the environment or by examining the
source code we provide. We also describe the discrete environments below.

There are eight discrete domains used in the work four Gridworld environments and four chain environments. The Gridworld

Evaluating the Performance of RL Algorithms

Algorithm Hyperparameter Discrete Continuous
All λ U(0, 1)

All γ Γ− eU(ln 10−4,ln 0.05)

All Value function Tabular Linear with Fourier basis
All Sarsa(λ) and Q(λ) ε U(0, 1)

Sarsa(λ) and Q(λ) αq eU(ln 10−3,ln 10−1) eU(ln 10−6,ln 10−3)

Sarsa(λ)-s and Q(λ)-s αq eU(ln 10−3,ln 10−1) eU(ln 10−3,ln 100)/|φ|

All AC, PPO, and NACTD Policy Tabular Softmax Linear Softmax with Fourier basis
AC, NACTD αv eU(ln 10−3,ln 10−1) eU(ln 10−6,ln 10−3)

AC, NACTD αp eU(ln 10−3,ln 10−1) eU(ln 10−6,ln 10−3)

AC-S αv eU(ln 10−3,ln 10−1) eU(ln 10−3,ln 100)/|φ|

AC-S, AC-Parl2 αp eU(ln 10−3,ln 10−1) eU(ln 10−3,ln 100)/(|φ|×num actions)

NAC-TD αw eU(ln 10−3,ln 10−1) eU(ln 10−6,ln 10−3)

NAC-TD normalize gradient True
PPO clip U(0.1, 0.3)

PPO entropy coef eU(ln 10−8,ln 10−2)

PPO steps per batch 2U(log2 64,log2 256)

PPO epochs U({1, . . . , 10})
PPO batch size 2U(log2 16,log2 min(64,steps per batch))

PPO Adam-ε 10−5

PPO Adam-α eU(ln 10−3,ln 10−1) eU(ln 10−6,ln 10−3)

PPO Adam-β1 0.9
PPO Adam-β2 0.999

Fourier basis dorder N/A U({0, . . . , 9})
Fourier basis iorder N/A U({1, . . . , 9})
Fourier basis trig N/A cos

Table 4. This table show the distributions from which each hyperparameter is sampled. The All algorithm means the hyperparameter and
distribution were used for all algorithms. Steps sizes are labeled with various αs. The discount factor γ an algorithm uses is scaled down
from Γ that is specified by the environment. For all environments used in this work Γ = 1.0. PPO uses the same learning rate for both the
policy and value function. The max dependent order on the Fourier basis is limited such that no more than 10,000 features are generated
as a result of dorder.

Evaluating the Performance of RL Algorithms

Environment Num Episodes State Space
Gridworld 5 Deterministic 100 Discrete
Gridworld 5 Stochastic 100 Discrete
Gridworld 10 Deterministic 100 Discrete
Gridworld 10 Stochastic 100 Discrete
Chain 10 Deterministic 100 Discrete
Chain 10 Stochastic 100 Discrete
Chain 50 Deterministic 100 Discrete
Chain 50 Stochastic 100 Discrete
Acrobot 500 Continuous
Cart-Pole 100 Continuous
MountainCar 100 Continuous
PinBall Empty 100 Continuous
PinBall Box 100 Continuous
Pinball Medium 100 Continuous
PinBall Single 200 Continuous

Table 5. This table list every used in this paper along with the number of episodes each algorithm was allowed to interact with the
environment and its type of state space.

environments are an N ×N grid with the agent starting every episode in the top left corner and goal state in the bottom
right. The reward is −1 at every step until the goal state is reached, then the episode is then terminated. In every state there
are four actions: up, down, left, and right. The transition dynamics are either deterministic, meaning an up action sends the
agent up one state unless it is outside the map, or the dynamics are stochastic, meaning the agent might randomly move to
one of the states perpendicular to the intended direction or stays in the current state. The chain environments are N chains
where there are N states each with a connection only to the state directly to the left or right of it and end points only connect
to the one state they are next to. The agent starts in state one (far left of the chain) and the goal state is state N (far right of
the chain). The reward is −1 every step until the goal state is reached and then the episode terminates. Both gridworld and
chain MDPs terminate episodes in a finite time based on the size of the problem. Gridworld problems terminate after 20N2

steps have been taken and chain environments terminate after 20N steps are taken.

G. Alternative Bounding Techniques
As pointed out in our description of PBP, we use the nonparametric concentration inequalities DKW and Anderson’s
inequalities. These inequalities are often conservative and lead to conservative confidence intervals. So we investigate two
alternatives PBP-t a method that replaces DKW and Anderson’s inequality with the one based on Students t-distribution and
the percentile bootstrap.

In PBP-t everything is the same as PBP except we compute confidence intervals on the mean normalized performance as
follows

Z−i,j,k = µi,j,k −
σ̂√
Ti,j

t1−δ′,Ti,j−1

Z+
i,j,k = µi,j,k +

σ̂√
Ti,j

t1−δ′,Ti,j−1

where zi,j,k,t = F̂Xk,j
(xi,j,t), µi,j,k = 1

Ti,j

∑Ti,j

t=1 zi,j,k,t, σ̂ =

√∑Ti,j

t=1(µi,j,k − zi,j,k,t)2/(Ti,j − 1), t1−δ′,ν is the
100(1 − δ′) percentile of Student’s t-distribution with ν degrees of freedom, and we set δ′ = δ/(|A||M|). Notice
that there are |A|2|M| comparisons being made, so δ′ = δ/(|A|2|M|) should be used to account for more the multiple
comparisons. However, it is likely that if one comparison with an algorithm i fails then that there will be failures with the
other |A| − 1 algorithms so we use the smaller δ′ as a heuristic for tighter confidence intervals.

In the bootstrap procedure, we use the percentile bootstrap with a confidence level of δ′ = δ/(|A||M|) and 10,000 bootstrap
samples of the aggregate performance. Each bootstrap is formed by re-sampling the performance of each algorithm on each
environment for the collected data. Then the aggregate performance for each bootstrap is computed. The lower and upper

Evaluating the Performance of RL Algorithms

confidence intervals are given by the 100(δ′/2) and 100(1− δ′/2) percentile from the bootstrap aggregate performance.
Since δ′/2 is often really small, 10,000 bootstrap samples are needed to get confidence intervals that more accurately reflect
the true confidence intervals. This requires a substantial amount of compute time and can take over four hours for an original
sample size of 10,000.

H. Confidence interval test experiment
To test the different bounding techniques, we estimate the failure rate of each confidence interval technique at different
sample sizes. For this experiment we execute 1,000 trials of the evaluation procedure using samples sizes (trials per
algorithm per environment) of 10, 30, 100, 1,000, and 10,000. There are a total of 11.14 million samples per algorithm per
environment. To reduce computation costs, we limit this experiment to only include the Sarsa-Parl2, Q-Parl2, AC-Parl2, and
Sarsa(λ)-s. Additionally, we reduce the environment set to be the discrete environments and mountain car. Then we compute
the proportion of violations for any confidence interval. All methods use the same data, so the results are not independent.
We choose not to run independent samples of the bounds to limit our environmental impact. The method to compute of the
proportion of violations and number of significant pairwise comparison can be found in the source code.

It it important to note that when this experiment was run, there was a bug in the code that made the step-size for the Parl2
methods smaller by a factor of 0.1. This does not invalidate the results, only that the algorithms run are not equivalent those
used in the other experiments in this paper. The main impact of this difference was that Sarsa-Parl2 and Q-Parl2 did were
not as effective on the discrete MDPs (though they diverged even less) and their scores were nearly the same. Since both of
these algorithms had near identical scores on most of the environments, it became almost impossible to differentiate them,
so detecting five out of six (83%) statistically significant comparisons is considered optimal for this experiment.

I. Performances
This section illustrates the distribution of performance of each algorithm. Tables of the average performance (rounded to
the tenths place) along with the algorithm rank on that environment. In the Figures showing the performance distributions
the shaded regions represent 100(1 − 0.05/|A||M|)% ≈ 99.9697% confidence intervals computed via DKW. In the
performance tables 100(1− 0.05/|A||M|)% confidence intervals are shown in parentheses.

Evaluating the Performance of RL Algorithms

Evaluating the Performance of RL Algorithms

Evaluating the Performance of RL Algorithms

Acrobot

Algorithm Mean Rank

Sarsa-Parl2 -20.6 (-24.6, -18.1) 1 (2, 1)
Q-Parl2 -25.7 (-29.8, -22.8) 2 (6, 1)
Sarsa(λ)-s -28.3 (-32.3, -26.3) 3 (6, 2)
Q(λ)-s -30.3 (-34.3, -27.9) 4 (9, 2)
PPO -30.5 (-34.5, -26.7) 5 (9, 2)
AC-parl2 -30.6 (-34.6, -28.8) 6 (9, 2)
Sarsa(λ) -34.7 (-38.7, -32.4) 7 (10, 4)
Q(λ) -35.7 (-39.7, -33.3) 8 (10, 4)
AC-s -36.0 (-40.0, -33.5) 9 (10, 4)
AC -41.4 (-45.4, -37.3) 10 (11, 7)
NAC-TD -47.1 (-51.1, -43.0) 11 (11, 10)

Cart-Pole

Algorithm Mean Rank

Sarsa-Parl2 469.2 (448.3, 490.0) 1 (2, 1)
Q-Parl2 450.3 (429.6, 471.1) 2 (2, 1)
AC-parl2 390.4 (369.7, 411.2) 3 (3, 3)
Sarsa(λ)-s 347.5 (326.5, 368.4) 4 (7, 4)
Q(λ)-s 345.5 (324.5, 366.3) 5 (7, 4)
AC 338.7 (317.8, 359.6) 6 (7, 4)
AC-s 320.6 (300.0, 341.5) 7 (9, 4)
Q(λ) 291.0 (270.1, 311.9) 8 (10, 7)
Sarsa(λ) 287.2 (265.9, 308.6) 9 (10, 7)
PPO 276.3 (256.1, 297.1) 10 (11, 8)
NAC-TD 244.7 (224.0, 265.5) 11 (11, 10)

Mountain Car

Algorithm Mean Rank

AC-parl2 -791.6 (-894.0, -688.7) 1 (3, 1)
Sarsa-Parl2 -843.2 (-945.0, -740.5) 2 (4, 1)
AC-s -966.0 (-1068.0, -863.1) 3 (4, 1)
Sarsa(λ)-s -1024.2 (-1125.8, -923.5) 4 (5, 2)
Q(λ)-s -1197.3 (-1298.9, -1094.9) 5 (6, 4)
Q-Parl2 -1269.3 (-1371.2, -1166.4) 6 (6, 5)
AC -2477.1 (-2576.0, -2374.3) 7 (8, 7)
NAC-TD -2489.3 (-2589.1, -2386.4) 8 (8, 7)
Sarsa(λ) -2769.1 (-2867.8, -2666.2) 9 (10, 9)
Q(λ) -2779.3 (-2877.9, -2676.4) 10 (10, 9)
PPO -3026.3 (-3124.9, -2923.5) 11 (11, 11)

Chain 10 Deterministic

Algorithm Mean Rank

Q-Parl2 -9.2 (-13.2, -9.1) 1 (2, 1)
Sarsa-Parl2 -9.3 (-13.3, -9.2) 2 (2, 1)
AC-parl2 -19.0 (-23.0, -17.7) 3 (3, 3)
Sarsa(λ) -27.9 (-31.8, -26.9) 4 (9, 4)
Sarsa(λ)-s -27.9 (-31.8, -26.9) 4 (9, 4)
Q(λ) -27.9 (-31.9, -26.9) 6 (9, 4)
Q(λ)-s -27.9 (-31.9, -26.9) 6 (9, 4)
AC -32.2 (-36.2, -29.9) 8 (9, 4)
AC-s -32.2 (-36.2, -29.9) 8 (9, 4)
PPO -38.0 (-41.9, -36.5) 10 (10, 10)
NAC-TD -89.7 (-93.7, -85.7) 11 (11, 11)

Chain 10 Stochastic

Algorithm Mean Rank

Q-Parl2 -12.7 (-16.7, -12.2) 1 (2, 1)
Sarsa-Parl2 -12.8 (-16.8, -12.4) 2 (2, 1)
AC-parl2 -22.6 (-26.6, -21.2) 3 (3, 3)
Q(λ) -34.9 (-38.9, -33.6) 4 (9, 4)
Q(λ)-s -34.9 (-38.9, -33.6) 4 (9, 4)
Sarsa(λ) -35.1 (-39.0, -33.7) 6 (9, 4)
Sarsa(λ)-s -35.1 (-39.0, -33.7) 6 (9, 4)
AC -36.9 (-40.8, -34.7) 8 (9, 4)
AC-s -36.9 (-40.8, -34.7) 8 (9, 4)
PPO -43.8 (-47.6, -42.1) 10 (10, 10)
NAC-TD -75.2 (-79.1, -71.2) 11 (11, 11)

Evaluating the Performance of RL Algorithms

Chain 50 Deterministic

Algorithm Mean Rank

Sarsa-Parl2 -78.3 (-97.9, -71.5) 1 (2, 1)
Q-Parl2 -92.7 (-112.3, -74.6) 2 (2, 1)
AC-parl2 -231.0 (-250.5, -211.3) 3 (3, 3)
AC -425.5 (-444.1, -405.8) 4 (6, 4)
AC-s -425.5 (-444.1, -405.8) 4 (6, 4)
PPO -462.2 (-480.4, -442.6) 6 (10, 4)
Sarsa(λ) -479.5 (-498.3, -462.4) 7 (10, 6)
Sarsa(λ)-s -479.5 (-498.3, -462.4) 7 (10, 6)
Q(λ) -481.6 (-500.4, -464.0) 9 (10, 6)
Q(λ)-s -481.6 (-500.4, -464.0) 9 (10, 6)
NAC-TD -928.4 (-946.8, -908.7) 11 (11, 11)

Chain 50 Stochastic

Algorithm Mean Rank

Sarsa-Parl2 -101.6 (-121.1, -96.4) 1 (2, 1)
Q-Parl2 -111.1 (-130.6, -97.5) 2 (2, 1)
AC-parl2 -239.3 (-258.7, -219.7) 3 (3, 3)
AC -463.2 (-481.5, -443.6) 4 (6, 4)
AC-s -463.2 (-481.5, -443.6) 4 (6, 4)
PPO -474.4 (-492.2, -455.3) 6 (6, 4)
Sarsa(λ) -546.9 (-565.2, -529.2) 7 (10, 7)
Sarsa(λ)-s -546.9 (-565.2, -529.2) 7 (10, 7)
Q(λ) -550.3 (-568.7, -532.5) 9 (10, 7)
Q(λ)-s -550.3 (-568.7, -532.5) 9 (10, 7)
NAC-TD -897.4 (-915.3, -877.8) 11 (11, 11)

Gridworld 10 Deterministic

Algorithm Mean Rank

Sarsa-Parl2 -49.5 (-90.7, -48.9) 1 (2, 1)
Q-Parl2 -60.8 (-102.0, -48.5) 2 (2, 1)
AC-parl2 -130.6 (-171.6, -115.1) 3 (3, 3)
PPO -199.6 (-240.4, -188.8) 4 (4, 4)
Q(λ) -290.6 (-331.0, -278.9) 5 (10, 5)
Q(λ)-s -290.6 (-331.0, -278.9) 5 (10, 5)
Sarsa(λ) -291.8 (-332.3, -281.3) 7 (10, 5)
Sarsa(λ)-s -291.8 (-332.3, -281.3) 7 (10, 5)
AC -324.7 (-365.2, -295.3) 9 (10, 5)
AC-s -324.7 (-365.2, -295.3) 9 (10, 5)
NAC-TD -1141.3 (-1181.6, -1099.9) 11 (11, 11)

Gridworld 10 Stochastic

Algorithm Mean Rank

Sarsa-Parl2 -67.5 (-108.6, -66.1) 1 (2, 1)
Q-Parl2 -75.4 (-116.4, -64.8) 2 (2, 1)
AC-parl2 -146.4 (-187.3, -135.8) 3 (3, 3)
PPO -229.5 (-270.1, -217.6) 4 (4, 4)
Q(λ) -339.2 (-379.2, -326.9) 5 (10, 5)
Q(λ)-s -339.2 (-379.2, -326.9) 5 (10, 5)
Sarsa(λ) -342.3 (-382.4, -330.0) 7 (10, 5)
Sarsa(λ)-s -342.3 (-382.4, -330.0) 7 (10, 5)
AC -347.2 (-387.4, -329.7) 9 (10, 5)
AC-s -347.2 (-387.4, -329.7) 9 (10, 5)
NAC-TD -864.1 (-904.2, -823.3) 11 (11, 11)

Gridworld 5 Deterministic

Algorithm Mean Rank

Sarsa-Parl2 -12.2 (-22.5, -12.1) 1 (2, 1)
Q-Parl2 -12.5 (-22.7, -12.0) 2 (2, 1)
AC-parl2 -32.2 (-42.4, -30.1) 3 (3, 3)
PPO -51.1 (-61.2, -49.0) 4 (10, 4)
Q(λ) -51.4 (-61.5, -49.6) 5 (10, 4)
Q(λ)-s -51.4 (-61.5, -49.6) 5 (10, 4)
Sarsa(λ) -51.9 (-62.0, -50.1) 7 (10, 4)
Sarsa(λ)-s -51.9 (-62.0, -50.1) 7 (10, 4)
AC -62.0 (-72.1, -58.2) 9 (10, 4)
AC-s -62.0 (-72.1, -58.2) 9 (10, 4)
NAC-TD -168.1 (-178.3, -157.9) 11 (11, 11)

Gridworld 5 Stochastic

Algorithm Mean Rank

Sarsa-Parl2 -17.0 (-27.2, -16.6) 1 (2, 1)
Q-Parl2 -17.1 (-27.4, -16.3) 2 (2, 1)
AC-parl2 -37.2 (-47.3, -35.4) 3 (3, 3)
PPO -57.2 (-67.3, -54.9) 4 (10, 4)
Q(λ) -61.5 (-71.6, -59.4) 5 (10, 4)
Q(λ)-s -61.5 (-71.6, -59.4) 5 (10, 4)
Sarsa(λ) -61.5 (-71.6, -59.4) 7 (10, 4)
Sarsa(λ)-s -61.5 (-71.6, -59.4) 7 (10, 4)
AC -67.6 (-77.6, -64.8) 9 (10, 4)
AC-s -67.6 (-77.6, -64.8) 9 (10, 4)
NAC-TD -125.4 (-135.5, -115.4) 11 (11, 11)

Evaluating the Performance of RL Algorithms

Pinball Box

Algorithm Mean Rank

Sarsa-Parl2 8823.2 (8513.4, 8998.4) 1 (1, 1)
AC-parl2 7875.4 (7565.9, 8170.2) 2 (2, 2)
Sarsa(λ)-s 6288.3 (5980.0, 6569.4) 3 (4, 3)
AC-s 5961.2 (5653.1, 6251.1) 4 (7, 3)
Sarsa(λ) 5603.0 (5295.1, 5889.7) 5 (8, 4)
AC 5602.5 (5295.1, 5886.8) 6 (8, 4)
NAC-TD 5546.8 (5243.2, 5838.0) 7 (8, 4)
PPO 5184.6 (4882.6, 5447.4) 8 (9, 5)
Q(λ)-s 4728.6 (4421.8, 5020.1) 9 (11, 8)
Q(λ) 4449.9 (4143.3, 4740.8) 10 (11, 9)
Q-Parl2 4246.5 (3937.2, 4539.9) 11 (11, 9)

Pinball Empty

Algorithm Mean Rank

Sarsa-Parl2 8942.1 (8631.8, 9115.3) 1 (1, 1)
AC-parl2 8041.0 (7730.8, 8333.4) 2 (2, 2)
Sarsa(λ)-s 6382.4 (6073.4, 6664.1) 3 (5, 3)
AC-s 6155.8 (5846.5, 6444.9) 4 (7, 3)
AC 5814.2 (5505.4, 6097.3) 5 (8, 3)
Sarsa(λ) 5778.6 (5469.8, 6063.7) 6 (8, 4)
NAC-TD 5710.1 (5405.2, 5998.0) 7 (8, 4)
PPO 5401.3 (5097.3, 5666.6) 8 (9, 5)
Q(λ)-s 4891.8 (4584.1, 5182.5) 9 (11, 8)
Q(λ) 4602.3 (4294.8, 4892.1) 10 (11, 9)
Q-Parl2 4487.9 (4178.3, 4781.5) 11 (11, 9)

Pinball Medium

Algorithm Mean Rank

Sarsa-Parl2 8402.1 (8094.2, 8625.5) 1 (1, 1)
AC-parl2 7128.1 (6820.6, 7429.2) 2 (2, 2)
Sarsa(λ)-s 5667.4 (5361.4, 5949.4) 3 (4, 3)
AC-s 5195.5 (4890.3, 5487.2) 4 (7, 3)
Sarsa(λ) 5050.5 (4745.1, 5336.5) 5 (7, 4)
AC 4835.7 (4531.8, 5123.8) 6 (7, 4)
NAC-TD 4652.5 (4353.9, 4940.2) 7 (9, 4)
PPO 4227.1 (3932.0, 4493.3) 8 (10, 7)
Q(λ)-s 4084.7 (3780.6, 4375.1) 9 (10, 7)
Q(λ) 3689.6 (3386.2, 3981.9) 10 (11, 8)
Q-Parl2 3404.5 (3097.9, 3699.2) 11 (11, 10)

Pinball Single

Algorithm Mean Rank

Sarsa-Parl2 3754.6 (3470.3, 4023.3) 1 (1, 1)
AC-parl2 1696.7 (1418.4, 1989.3) 2 (2, 2)
Sarsa(λ)-s 514.1 (240.8, 793.2) 3 (5, 3)
Sarsa(λ) 119.2 (-151.7, 408.1) 4 (7, 3)
AC-s 103.8 (-158.5, 389.6) 5 (7, 3)
Q-Parl2 -73.4 (-352.7, 214.7) 6 (7, 4)
AC -197.1 (-451.4, 95.1) 7 (7, 4)
Q(λ)-s -746.6 (-1005.9, -457.2) 8 (10, 8)
Q(λ) -986.1 (-1244.4, -693.8) 9 (10, 8)
NAC-TD -1229.4 (-1463.7, -934.7) 10 (11, 8)
PPO -1602.2 (-1789.1, -1327.7) 11 (11, 10)

