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1. Additional experiments
In this section, we provide further experiments on real and stimulated dataset. The experimental setup is the same as the
other experiments, we adjust the constraint for required number of centers for each group. For stimulated data, we require
one group to have one group to have disproportionately more than the reset. We set one groups to have the number of center
to be 8 and set the rest to be 1. For real dataset, we set the number of center to be the same for each group. A-Gender and
A-Race have 100 and 50 required centers for each group respectively. S-Sex, S-School, and S-Adress have 50 required
centers for each group. Finally, each group in W-location has 20 required centers.

Table 4. Mean and standard deviation of objective value on stimulated data
Algorithm 50 Groups 100 Groups 200 Groups 400 Groups
Alg 2-Seq 6.4 (0.34) 6.17 (0.31) 6.35 (0.46) 6.41 (0.35)
Alg 2-Heu B 6.36 (0.32) 6.22 (0.38) 6.36 (0.47) 6.31 (0.37)
Kleindessner 6.61 (0.55) 6.66 (0.76) 7.09 (0.65) 7.19 (0.48)
Heuristic A 18.63 (2.18) 17.08 (1.34) 16.2 (1.52) 14.08 (1.41)
Heuristic B 6.72 (0.28) 7.36 (1.15) 7.79 (0.68) 7.82 (0.65)
Heuristic C 6.47 (0.4) 6.66 (0.45) 7.12 (0.52) 7.39 (0.55)

Figure 4. Mean runtime in seconds on stimulated data

Table 5. Mean and standard deviation of objective value on real data
Algorithms A-Gender A-Race S-Sex S-School S-Address W-location
Alg 2-Seq 0.27 (0.01) 0.36 (0.024) 0.98 (0.01) 1 (0.02) 1.03 (0.02) 0.17 (0.01)
Alg 2-Heu B 0.27 (0.01) 0.34 (0.03) 0.98 (0.01) 1 (0.02) 1.03 (0.02) 0.17 (0.01)
Kleindessner 0.31 (0.02) 0.3 (0.02) 1 (0.04) 1.04 (0.05) 1.06 (0.05) 0.15 (0.01)
Heuristic A 0.3 (0.01) 0.38 (0.02) 1.04 (0.01) 1.04 (0.01) 1.06 (0.02) 0.21 (0.03)
Heuristic B 0.28 (0.005) 0.37 (0.02) 0.98 (0.01) 1 (0.02) 1.04 (0.02) 0.19 (0.01)
Heuristic C 0.28 (0.005) 0.26 (0.002) 1.03 (0.01) 1.04 (0.01) 0.99 (0.01) 0.15 (0.004)
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(a) (b)

Figure 5. Mean runtime in seconds on real data

2. Full algorithm
Algorithm 4 gives the detailed algorithm for algorithm 2 in the paper. The algorithm starts by running the Gonzalez’s
algorithm to compute k centers sequentially. The algorithm proceeds by running binary search to find the largest integer h
such that the first h items in the sequence returned by Gonzalez’s algorithm satisfy the fair shift constraint. Then, another
binary search procedure is to find the smallest radius that allow a fair shift. The centers C corresponding to this radius
guarantees the 3-approximation according to Lemma 5.3. Finally, the algorithm arbitrarily adds any additional centers to C
for the fairness constraint.
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Algorithm 4 3-approximation algorithm for k-centers with fairness
Input: a set of points S = {s1, ..., sn} each with a demographic group value fi ∈ [m], a distance metric d, the values kf

where
∑

f kf = k, and a metric d
Output: A set C such that C ⊆ S and |{si|si ∈ C

∧
fi = f}| = kf for all demographic group values f

1 Run Algorithm 1 with the set of points S, the number of centers k, the metric d, and set (ai)ki=1 to be the returned centers as
a sequence. Record the values di.

2 hlo ← 0, hhi ← k
3 G0 ← {V = {s, t}t{vf | each dem. group value f}, E = {(vf , t), capacity = kf , re = 0 | each dem. group value f}}
4 G′ ← G0

5 while hlo 6= hhi do
6 G← G′, `← d(hlo + hhi)/2e
7 for j ← hlo + 1 to ` do
8 G← {V (G) t {vj}, E(G) t {(s, vj), capacity = 1, re = 0}}
9 Calculate the closest point to aj for each demographic group f by a single sweep of S

10 for each group f with d(aj , Sf ) ≤ d`/2 do
11 G← {V (G), E(G) t {(vj , vf ), capacity = 1, r(vj ,vf ) = d(aj , Sf )}
12 end
13 end
14 Obtain flow F by running Dinic’s algorithm on G from s to t
15 if |F | = ` then
16 G′ ← G, hlo ← `
17 end
18 else
19 hhi ← `− 1
20 end
21 end
22 G′ ← {V = V (G0) t {vj | j = 1 to hlo}, E(G) t {(s, vj), capacity = 1, re = 0 | j = 1 to hlo}}
23 R← ∅
24 for j = 1 to h do
25 Calculate the distance (denoted r(vj ,vf )) of the closest point (denoted by pj,f ) to aj for each demographic group f by a

single sweep on S
26 for each group f with r(vj ,vf ) ≤ dhlo

/2 do
27 R← R t {(r(vj ,vf ), pj,f )}
28 end
29 end
30 F ′ ← ∅
31 while |{r | (r, p) ∈ R}| > 1 do
32 G← G′, (r′, p′)← median r(v,f) in R
33 for (r(vj ,vf ), pj,f ) ∈ R | r(vj ,vf ) ≤ r′ do
34 G← {V (G), E(G) t {(vj , vf ), capacity = 1, re = r(vj ,f), label = pj,f}}
35 end
36 Obtain flow F by running Dinic’s algorithm on G from s to t
37 if |F | = h then
38 F ′ ← F,R← R \ {(r, p) ∈ R | r ≥ r′}
39 end
40 else
41 G′ ← G,R← R \ {(r, p) ∈ R | r ≤ r′}
42 end
43 end
44 Obtain C from the labels of edges used in the flow F ′

45 Arbitrarily add centers to C to satisfy the fairness constraint to equality
46 Return C


