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A. Proofs
In the proofs, we use abbreviated notation by dropping x and y and making θ a subscript, e.g., we write fθ for f(θ;x).

A.1. Proof of Proposition 2.1

Proposition 2.1 When h(p) = Ly(p) that returns loss given prediction p, Algorithm 1 with α = γ is equivalent to
Algorithm 3 with α = 1− (1− γ)m.

Proof From Algorithm 1 with α = γ, we have

f∗
[

= arg min D (q, f∗ ∗ ]
i h i−1) + γ∇Ly(fi−1)>q . (15)

q

From h(·) = Ly(·) and (15), we obtain

∇L (f∗ ∗
y i ) = ∇Ly(fi−1)− γ∇Ly(f∗ ∗

i−1) = (1− γ)∇Ly(fi−1) for i = 1, · · · ,m.

Since f∗0 = fθt , we have

∇Ly(f∗m) = (1− γ)m∇Ly(f∗0 ) = (1− γ)m∇Ly(fθt),

which implies

∇fθ [Dh(fθ, f
∗ ∗ m
m)] = ∇Ly(fθ)−∇Ly(fm) = ∇Ly(f[ θ)− (1− γ) ∇Ly(fθt)]

= ∇ m >
fθ DLy (fθ, fθt) + (1− (1− γ) )∇Ly(fθt) fθ[ ]

and therefore,∇θ [Dh(fθ, f
∗
m)] = ∇ m >

θ DLy (fθ, fθt) + (1− (1− γ) )∇Ly(fθt) fθ . The rest is trivial.

A.2. Proof of Proposition 2.2

Proposition 2.2 Let y be a vector representation such as a K-dim vector representing K classes. Assume that the gradient
of the loss function can be expressed as

∇L(f, y) = ∇Ly(f) = p(f)− y

with p(f) not depending on y. Let 〈 〉
Jt(θ) = DLy (fθ, fθt) + α∇Ly(f >

θt) fθ (x,y)∈S

J ′
〈 〉

t(θ) = (1− α)L(fθ, p(fθt)) + αLy(fθ) (x,y)∈S

Then we have
Jt(θ) = J ′t(θ) + ct,

where ct is independent of θ. This implies that

arg min [Jt(θ) +R(θ)] = arg min [J ′t(θ) +R(θ)] .
θ θ

Proof [
∇ D (f , f ) + α∇L (f )>

]
fθ Ly θ θt y θt fθ = ∇Ly(fθ)− (1− α)∇Ly(fθt)

= (p(fθ)− y)− (1− α)(p(fθt)− y)

= (1− α)(p(fθ)− p(fθt)) + α(p(fθ)− y)

= ∇fθ [(1− α)L(fθ, p(fθt)) + αLy(fθ)] .

This implies that∇Jt(θ) = ∇J ′ ′
t(θ). Therefore Jt(θ)− Jt(θ) is independent of θ.
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A.3. Proof of Theorem 2.1

Theorem 2.1 In the setting of Algorithm 1 withm = 1, assume that there exists β > 0 such thatDh(f, f ′) ≥ βDLy (f, f ′)
for any f and f ′, and assume that α ∈ (0, β]. Assume also that Qt(θ) defined in Algorithm 1 is 1/η smooth in θ:

‖∇Qt(θ)−∇Qt(θ′)‖ ≤ (1/η)‖θ − θ′‖.

Assume that θt+1 is an improvement of θt with respect to minimizing Qt so that

Qt(θt+1) ≤ ˜Qt(θ),

where

θ̃ = θt − η∇Qt(θt).

Then we have
αη

` 2
α(θt+1) ≤ `α(θt)− ‖∇`α(θt)‖ .

2

Proof

We first define Q̃t(θ) as follows: 〈 〉
Q̃t(θ) := Dh(fθ, fθt) + α∇Ly(fθt)

>fθ +R(θ).
(x,y)∈S

We can check thatQt(θ)−Q̃t(θ) is independent of θ. Therefore optimizing θ with respect toQt(θ) is the same as optimizing
with respect to ˜ ˜θ Qt(θ), and∇Qt(θ) = ∇Qt(θ).

The smoothness assumption implies that

1
Q̃t θ − ˜( ∆θ) ≤ Qt(θ)−∇Qt(θ)>∆θ + ‖∆θ‖2.

2η

Therefore

˜ ˜ ˜ ˜Qt(θt+1) ≤Qt(θ) = Qt(θt − η∇Qt(θt))
1≤Q̃t(θt)− η‖∇Qt(θ )‖2t + ‖η∇Qt(θt)‖2
2η

η˜=Qt(θt)− ‖∇Qt(θt)‖2.
2

Note also that 〈 〉
˜ ˜Qt(θ

>
t+1)−Qt(θt) ≥ βDLy (fθt+1 , fθ〈 t) + α∇Ly(fθt) (fθt+1 − fθt) + [R(θt+1)−R(θt)](x,y〉)∈S

= (β − α)DLy (fθt+1 , fθt) + αLy(fθt+1)− αLy(fθt) + [R(θt+1)−R(θt)]〈 〉 (x,y)∈S

≥ αLy(fθt+1)− αLy(fθt) + [R(θt+1)−R(θt)](x,y)∈S

=α`α(θt+1)− α`α(θt).

The second inequality is due to the non-negativity of the Bregman divergence.

By combining the two inequalities, we obtain

η
α`α(θt+1) ≤ α` 2

α(θt)− ‖∇Qt(θt)‖ .
2

Now, observe that∇Qt(θt) = ∇Q̃t(θt) = α∇`α(θt), and we obtain the desired bound.
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B. On the Empirical Study
In this section, we first provide experimental details and additional figures regarding the experiments reported in the
main paper, and then we report additional experiments using text data. Our code is provided at a repository under
github.com/riejohnson.

B.1. Details of the experiments in the main paper

B.1.1. CIFAR10, CIFAR100, AND SVHN

This section describes the experimental details of all but the ImageNet experiments.

The mini-batch size was set to 128. We used momentum 0.9. The following learning rate scheduling was used: 200K steps
with η, 40K steps with 0.1η, and 40K steps with 0.01η. The initial learning rate η was set to 0.1 on CIFAR10/100 and
0.01 on SVHN, following (Zagoruyko & Komodakis, 2016). The weight decay λ was 0.0001 except that it was 0.0005 for
(CIFAR100, WRN-28-10) and SVHN.

We used the standard mean/std normalization on all and the standard shift and horizontal flip image augmentation on
CIFAR10/100.

We report the median of three runs with three random seeds. The meta-parameters were chosen based on the performance
on the development set. All the results were obtained by using only the ‘train’ portion (shown in Table 1 of the main paper)
of the official training set as training data.

For label smoothing, the amount of probability taken away from the true class was chosen from {0.1, 0.2, 0.3, 0.4}.

To obtain the results reported in Table 2 (with smaller networks), T was fixed to 25 for CIFAR10/100, and 15 for SVHN. α
for ini:random was fixed to 0.3. For ini:base, we chose α from {0.3, 0.01}. We excluded α = 0.01 for ini:random, as it
takes too long. When dropout was applied in the SVHN experiments, the dropout rate was set to 0.4, following (Zagoruyko
& Komodakis, 2016). To obtain the results reported in Table 3 (with larger networks), T was fixed to 1. For GULF2, α
was chosen from {0.3, 0.01}. For GULF1, α was fixed to 0.3, and m (the number of functional gradient steps) was chosen
from {1, 2, 5}. On CIFAR datasets, the choice of α or m did not make much difference, and the chosen values tended to
vary among the random seeds. On SVHN, α=0.01 tended to be better when no dropout was used, and 0.3 was better when
dropout was used.

To perform random initialization of the parameter for ini:random and the baseline methods, we used Kaiming normal
initialization (He et al., 2015), following the previous work.

B.1.2. IMAGENET

Each stage of the training for ImageNet followed the code used for training the pre-trained models provided as part of
TorchVision: https://github.com/pytorch/examples/blob/master/imagenet/main.py. That is, for
both ResNet-50 and WRN-50-2, the learning rate was set to η, 0.1η, and 0.01η for 30 epochs each, i.e., 90 epochs in total,
and the initial rate η was set to 0.1. The mini-batch size was set to 256, and the weight decay was set to 0.0001. The
momentum was 0.9. α was fixed to 0.5. We used two GPUs for ResNet-50 and four GPUs for WRN-50-2.

We used the standard mean/std normalization and the standard image augmentation for ImageNet – random resizing,
cropping and horizontal flip, which is the same data augmentation scheme as used for training the pre-trained models
provided as part of TorchVision.
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B.2. Additional figures

Figure 5 shows test error (%) in relation to training loss with a small ResNet on CIFAR100. Additional examples of test-loss
curves are shown in Figure 6. Figure 7 shows the parameter size ‖θt‖2 in relation to training loss, in the settings of Figure 2
in the main paper.
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Figure 5. Test error (%) in relation to training loss. The arrows indicate the direction of time flow. GULF2. CIFAR100. ResNet-28.
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(b) SVHN, WRN-16-4.
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(c) CIFAR10,DenseNetBC-40-12.
Figure 6. Additional examples of test loss curves of GULF2. The arrows indicate the direction of time flow.
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Figure 7. Parameter size ‖θt‖2 of ini:base(‘4’) and ini:random(‘◦’). with five values of α (becoming smaller from left to right), in
relation to training loss. GULF2. T=25. CIFAR100. ResNet-28. Matching figures with Figure 2. As α becomes smaller, the (potential)
meeting point shifts further away from the base model. The left-most figure is base-loop, which is equivalent to α=1. The arrows indicate
the direction of time flow.

B.3. Additional experiments on text data

We tested GULF on sentiment classification to predict whether reviews are positive or negative, using the polarized Yelp
dataset (#train: 560K, #test: 38K) (Zhang et al., 2015). The best-performing models on this task are transformers pre-trained
with language modeling on large and general text data such as Bert (Devlin et al., 2019) and XLnet (Yang et al., 2019b).
However, these models are generally large and time-consuming to train using a GPU (i.e., without TPUs used in the original
work). Therefore, instead, we used the deep pyramid convolutional neural network (DPCNN) (Johnson & Zhang, 2017) as
our base model. In these experiments, we used GULF2.

Table 5 shows the test error results in five settings. The last three use relatively small training sets of 45K data points and
validation sets of 5K data points, randomly chosen from the original training set, while the first two use the entire training
set (560K data points) except for 5K data points held out for validation (meta-parameter tuning). DPCNNs optionally
take additional features produced by embeddings of text regions that are trained with unlabeled data, similar to language
modeling. Cases 1 and 3 exploited this option, training embeddings using the entire training set as unlabeled data; B.3.1
below provides the details. As in the image experiments, we used the cross entropy loss with softmax except for Case 5,
where the quadratic hinge loss Ly(f) = max(0, 1−yf)2 for y ∈ {−1, 1} was used. This serves as an example of extending
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Case# 1 2 3 4 5
Data large-Yelp small-Yelp

Embedding learning? Yes No Yes No
Loss function cross-entropy †

base model 2.81 2.98 3.80 5.43 5.32
baselines base-loop 2.63 2.88 3.90 5.43 5.34

w/ dropout 2.70 2.95 3.90 5.34 5.35
ini:random 2.34 2.72 3.70 5.06 5.00

GULF ini:base 2.38 2.70 3.77 5.15 4.98
ini:base/2 2.43 2.74 3.73 4.99 4.96

Table 5. Test error (%) on sentiment classification. Median of 3 runs. 7-block 250-dim DPCNN (10M parameters). † Squared hinge loss.

self-distillation (formulated specifically with the cross-entropy loss) to general loss functions.

In all the five settings, GULF achieves better test errors than the baseline methods, which shows the effectiveness of our
approach in these settings. On this task, dropout turned out to be not very effective, which is, however, a reminder that the
effectiveness of regularization methods can be data-dependent in general.

Case# 1 2
LM-like prep? Runtime

(sec/K)
Text for

prep (GB)Yes No
(J & Z, 2017) DPCNN 2.64 3.30 0.1 0.4

This work Table 5 best
Ensemble

2.34
2.18

2.70
2.46

0.1
0.9

0.4
0.4

(Devlin et al., 2019) Bert base
Bert large

2.25
1.89

6.19
–

5.7
17.9

13
13

(Yang et al., 2019b) XLnet base
XLnet large

1.92
1.55

4.51
–

17.2
40.5

13
126

Table 6. GULF ensemble results on Yelp in comparison with previous models. Test error (%) with or without embedding learning
(DPCNN) or language modeling-based pre-training (Bert and XLnet), respectively, corresponding to Cases 1 & 2 of Table 5. Runtime:
real time in seconds for labeling 1K instances using a single GPU with 11GB device memory, measured in the setting of Case 1; the
average of 3 runs. The last column shows amounts of text data in giga bytes used for pre-training or embedding learning in Case 1.
The test errors in italics were copied from the respective publications except that the Bert-large test error is from (Xie et al., 2019); other
test errors and runtime were obtained by our experiments. Our ensemble test error results are in bold.

It is known that performance can be improved by making an ensemble of models from different stages of self-distillation,
e.g., (Furlanello et al., 2018). In Table 6, we report ensemble performances of DPCNNs trained with GULF, in comparison
with the previous best models. Test errors with and without embedding learning (or language modeling-based pre-training
for Bert and XLnet) are shown, corresponding to Cases 1 and 2 in Table 5. The ensemble results were obtained by adding
after applying softmax the output values of 20 DPCNNs (or 10 in Case 2) of last 5 stages of GULF training with different
training options; details are provided in B.3.1.

With embedding learning, the ensemble of DPCNNs trained with GULF achieved test error 2.18%, which slightly beats
2.25% of pre-trained Bert-base, while testing (i.e., making predictions) of this ensemble is more than 6 times faster than Bert-
base, as shown in the ‘Runtime’ column. (Note, however, that runtime depends on implementation and hardware/software
configurations.) That is, using GULF, we were able to obtain a classifier that is as accurate as and much faster than a
pre-trained transformer.

(Yang et al., 2019b) and (Xie et al., 2019) report 1.55% and 1.89% using a pre-trained large transformer, XLnet-large and
Bert-large, respectively. We observe that the runtime and the amounts of text used for pre-training (the last two columns)
indicate that their high accuracies come with steep cost at every step: pre-training, fine-tuning, and testing. Compared with
them, an ensemble of GULF-trained DPCNNs is a much lighter-weight solution with an appreciable accuracy. Also, our
ensemble without embedding learning outperforms Bert-base and XLnet-base without pre-training, with relatively large
differences (Case 2). A few attempts of training Bert-large and XLnet-large from scratch also resulted in underperforming
DPCNNs, but we omit the results as we found it infeasible to complete meta-parameter tuning in reasonable time.

On the other hand, it is plausible that the accuracy of the high-performance pre-trained transformers can be further improved
by applying GULF to their fine-tuning, which would further push the state of the art. Though currently precluded by our
computational constraints, this may be worth investigating in the future.



Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

B.3.1. DETAILS OF THE TEXT EXPERIMENTS

Embedding learning It was shown in (Johnson & Zhang, 2017) that classification accuracy can be improved by training
an embedding of small text regions (e.g., 3 consecutive words) for predicting neighboring text regions (‘target regions’) on
unlabeled data (similar to language modeling) and then using the learned embedding function to produce additional features
for the classifier. In this work, we trained the following two types of models with respect to use of embedding learning.

• Type-0 did not use any additional features from embedding learning.

• Type-1 used additional features from the following two types of embedding simultaneously:

– the embedding of 3-word regions as a function of a bag of words to a 250-dim vector, and
– the embedding of 5-word regions as a function of a bag of word {1,2,3}-grams to a 250-dim vector.

Embedding training was done using the entire training set (560K reviews, 391MB) as unlabeled data disregarding the labels.

It is worth mentioning that our implementation of embedding learning differs from the original DPCNN work (Johnson &
Zhang, 2017), as a result of pursuing an efficient implementation in pyTorch (the original implementation was in C++). The
original work used the bag-of-word representation for target regions (to be predicted) and minimized squared error with
negative sampling. In this work we minimized the log loss without sampling where the target probability was set by equally
distributing the probability mass among the words in the target regions.

Table 5 Optimization was done by SGD. The learning rate scheduling of the base model and each stage of base-loop and
GULF was fixed to 9 epochs with the initial learning rate η followed by 1 epoch with 0.1η. The mini-batch size was 32 for
small training data and 128 for large training data. We chose the weight decay parameter from {1e-4, 2e-4, 5e-4, 1e-3} and
the initial learning rate from {0.25, 0.1, 0.05}, using the validation data, except that for GULF on the large training data, we
simply used the values chosen for the base model, which were weight decay 1e-4 and learning rate 0.1 (with embedding
learning) and 0.25 (without embedding learning).

For GULF, we chose the number of stages T from {1,2,. . . ,25} and α from {0.3, 0.5}, using the validation data. α = 0.5
was chosen in most cases.

Table 6 The ensemble performances were obtained by combining

• 20 DPCNNs ( T ∈ {21, 22, . . . , 25} × {ini:random, ini:base} × {Type-0, Type-1} ) in Case 1, and

• 10 DPCNNs ( T ∈ {21, 22, . . . , 25} × {ini:random, ini:base} × {Type-0}) in Case 2.

To make an ensemble, the model output values were added after softmax.

Transformers The Bert and XLnet experiments were done using HuggingFace’s Transformers2 in pyTorch. Following
the original work, optimization was done by Adam with linear decay of learning rate. For enabling and speeding up
training using a GPU, we combined the techniques of gradient accumulation and variable-sized mini-batches (for improving
parallelization) so that weights were updated after obtaining the gradients from approximately 128 data points. 128 was
chosen, following the original work. To measure runtime of transformer testing, we used variable-sized mini-batches for
speed-up by improving the parallelism on a GPU.

2https://huggingface.co/transformers/




