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Abstract
Minimax optimization has found extensive appli-
cations in modern machine learning, in settings
such as generative adversarial networks (GANs),
adversarial training and multi-agent reinforce-
ment learning. As most of these applications
involve continuous nonconvex-nonconcave for-
mulations, a very basic question arises—“what is
a proper definition of local optima?”

Most previous work answers this question using
classical notions of equilibria from simultaneous
games, where the min-player and the max-player
act simultaneously. In contrast, most applications
in machine learning, including GANs and adver-
sarial training, correspond to sequential games,
where the order of which player acts first is cru-
cial (since minimax is in general not equal to
maximin due to the nonconvex-nonconcave na-
ture of the problems). The main contribution of
this paper is to propose a proper mathematical
definition of local optimality for this sequential
setting—local minimax, as well as to present its
properties and existence results. Finally, we es-
tablish a strong connection to a basic local search
algorithm—gradient descent ascent (GDA): under
mild conditions, all stable limit points of GDA are
exactly local minimax points up to some degener-
ate points.

1. Introduction
Minimax optimization refers to problems of two agents—
one agent tries to minimize the payoff function f : X×Y →
R while the other agent tries to maximize it. Such prob-
lems arise in a number of fields, including mathematics,
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biology, social science, and particularly economics (Myer-
son, 2013). Due to the wide range of applications of these
problems and their rich mathematical structure, they have
been studied for several decades in the setting of zero-sum
games (Morgenstern and Von Neumann, 1953). In the last
few years, minimax optimization has also found significant
applications in machine learning, in settings such as genera-
tive adversarial networks (GAN) (Goodfellow et al., 2014),
adversarial training (Madry et al., 2017) and multi-agent re-
inforcement learning (Omidshafiei et al., 2017). In practice,
these minimax problems are often solved using gradient-
based algorithms, especially gradient descent ascent (GDA),
an algorithm that alternates between a gradient descent step
for x and some number of gradient ascent steps for y.

A well-known notion of optimality in this setting is that
of a Nash equilibrium—no player can benefit by chang-
ing strategy while the other player keeps hers unchanged.
That is, a Nash equilibrium is a point (x?,y?) where x?

is a global minimum of f(·,y?) and y? is a global max-
imum of f(x?, ·). In the convex-concave setting, it can
be shown that an approximate Nash equilibrium can be
found efficiently by variants of GDA (Bubeck, 2015; Hazan,
2016). However, most of the minimax problems arising
in modern machine learning applications do not have this
simple convex-concave structure. Meanwhile, in the general
nonconvex-nonconcave setting, one cannot expect to find
Nash equilibria efficiently as the special case of noncon-
vex optimization is already NP-hard. This motivates the
quest to find a local surrogate instead of a global optimal
point. Most previous work (e.g., Daskalakis and Panageas,
2018; Mazumdar and Ratliff, 2018; Adolphs et al., 2018)
studied a notion of local Nash equilibrium which replaces
all the global minima or maxima in the definition of Nash
equilibrium by their local counterparts.

The starting point of this paper is the observation that the
notion of local Nash equilibrium is not suitable for most
machine learning applications of minimax optimization. In
fact, the notion of Nash equilibrium (on which local Nash
equilibrium is based), was developed in the context of simul-
taneous games, and so it does not reflect the order between
the min-player and the max-player. In contrast, most applica-
tions in machine learning, including GANs and adversarial
training, correspond to sequential games, where one player
acts first and the other acts second. When f is nonconvex-
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nonconcave, minx maxy f(x,y) is in general not equal to
maxy minx f(x,y); the order of which player acts first is
crucial for the problem. This motivates the question:

What is a good notion of local optimality in
nonconvex-nonconcave minimax optimization?

To answer this question, we start from the opti-
mal solution (x?,y?) for two-player sequential games
minx maxy f(x,y), where y? is again the global maxi-
mum of f(x?, ·), but x? is now the global minimum of φ(·),
where φ(x) := maxy∈Y f(x,y). We call these optimal
solutions global minimax points. The main contribution of
this paper is to propose a proper mathematical definition of
local optimality for this sequential setting—local minimax—
a local surrogate for the global minimax points. This paper
also presents existence results for this notion of optimality,
and establishes several important properties of local mini-
max points. These properties naturally reflect the order of
which player acts first, and alleviate many of the problem-
atic issues of local Nash equilibria. Finally, the notion of
local minimax provides a much stronger characterization of
the asymptotic behavior of GDA—under certain idealized
parameter settings, all stable limit points of GDA are exactly
local minimax points up to some degenerate points. This
provides, for the first time, a game-theoretic meaning for all
of the stable limit points of GDA.

1.1. Our contributions

To summarize, this paper makes the following contributions.

• We clarify the difference between several notions of
global and local optimality in the minimax optimiza-
tion literature, in terms of definitions, settings, and
properties (see Section 2 and Appendix A).

• We propose a new notion of local optimality—local
minimax—a proper mathematical definition of local
optimality for the two-player sequential setting. We
also present properties of local minimax points and
establish existence results (see Section 3.1 and 3.2).

• We establish a strong connection between local mini-
max points and the asymptotic behavior of GDA, and
provide the first game-theoretic explanation of all sta-
ble limit points of GDA, up to some degenerate points
(see Section 3.3).

• We provide a general framework and an efficiency
guarantee for a special case where the maximization
maxy f(x,y) can be solved efficiently for any fixed
x, or in general when an approximate max-oracle is
present (see Appendix 4).

1.2. Related work

Minimax optimization: Since the seminal paper of (von
Neumann, 1928), notions of equilibria in games and their
algorithmic computation have received wide attention. In
terms of algorithmic computation, the vast majority of re-
sults focus on the convex-concave setting (Korpelevich,
1976; Nemirovski and Yudin, 1978; Nemirovski, 2004). In
the context of optimization, these problems have generally
been studied in the setting of constrained convex optimiza-
tion (Bertsekas, 2014). Results beyond convex-concave
setting are much more recent. Rafique et al. (2018) and
Nouiehed et al. (2019) consider nonconvex-but-concave
minimax problems where for any x, f(x, ·) is a concave
function. In this case, they propose algorithms combining
approximate maximization over y and a proximal gradient
method for x to show convergence to stationary points. Lin
et al. (2018) consider a special case of the nonconvex-
nonconcave minimax problem, where the function f(·, ·)
satisfies a variational inequality. In this setting, they con-
sider a proximal algorithm that requires the solving of cer-
tain strong variational inequality problems in each step and
show its convergence to stationary points. Hsieh et al. (2018)
propose proximal methods that asymptotically converge to
a mixed Nash equilibrium; i.e., a distribution rather than a
point.

The most closely related prior work is that of Evtushenko
(1974), who proposed a concept of “local” solution that is
similar to the local minimax points proposed in this paper.
Note, however, that Evtushenko’s “local” notion is not a
truly local property (i.e., cannot be determined just based
on the function values in a small neighborhood of the given
point). As a consequence, Evtushenko’s definition does not
satisfy the first-order and second-order necessary conditions
of local minimax points (Proposition 18 and Proposition 19).
We defer detailed comparison to Appendix B. Concurrent
to our work, Fiez et al. (2019) also recognizes the impor-
tant difference between simultaneous games and sequential
games in the machine learning context, and proposes a local
notion referred to as Differential Stackelberg Equilibrium,
which implicitly assumes the Hessian for the second player
to be nondegenerate,1 in which case it is equivalent to a
strict local minimax point (defined in Proposition 20). In
contrast, we define a notion of local minimax point in a gen-
eral setting, including the case in which Hessian matrices
are degenerate. Finally, we consider GDA dynamics, which
differ from the Stackelberg dynamics considered in Fiez
et al. (2019).

1The definition in Fiez et al. (2019) implicitly assumes that the
best response r : X → Y is well-defined by implicit equation
∇yf(x, r(x)) = 0, and g(x) := f(x, r(x)) is differentiable with
respect to x, conditions which do not always hold even if f is
infinitely differentiable. These conditions are typically ensured by
assuming∇2

yyf ≺ 0.
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GDA dynamics: There have been several lines of
work studying GDA dynamics for minimax optimization.
Cherukuri et al. (2017) investigate GDA dynamics under
some strong conditions and show that the algorithm con-
verges locally to Nash equilibria. Heusel et al. (2017) and
Nagarajan and Kolter (2017) similarly impose strong as-
sumptions in the setting of the training of GANs and show
that under these conditions Nash equilibria are stable fixed
points of GDA. Gidel et al. (2018) investigate the effect of si-
multaneous versus alternating gradient updates as well as the
effect of momentum on the convergence in bilinear games.
The analyses most closely related to ours are Mazumdar
and Ratliff (2018) and Daskalakis and Panageas (2018).
While Daskalakis and Panageas (2018) study minimax opti-
mization (or zero-sum games), Mazumdar and Ratliff (2018)
study a much more general setting of non-zero-sum games
and multi-player games. Both of these papers show that the
stable limit points of GDA are not necessarily Nash equi-
libria. Adolphs et al. (2018) and Mazumdar et al. (2019)
propose Hessian-based algorithms whose stable fixed points
are exactly Nash equilibria. We note that all the papers in
this setting use Nash equilibrium as the notion of goodness.

Variational inequalities: Variational inequalities are gen-
eralizations of minimax optimization problems. The appro-
priate generalization of convex-concave minimax problems
are known as monotone variational inequalities which have
applications in the study of differential equations (Kinder-
lehrer and Stampacchia, 1980). There is a large literature
on the design of efficient algorithms for finding solutions to
monotone variational inequalities (Bruck, 1977; Nemirovski,
1981; 2004).

2. Preliminaries
In this section, we will first introduce our notation, and then
present definitions and basic results for simultaneous games,
sequential games, and general game-theoretic dynamics that
are relevant to our work. This paper will focus on two-
player zero-sum games. For clarity, we restrict our attention
to pure strategy games in the main paper, that is, each player
is restricted to play a single action as her strategy. We will
present the discussion on their relations to mixed strategy
games in Appendix A.

Notation. We use bold upper-case letters A,B to denote
matrices and bold lower-case letters x,y to denote vec-
tors. For vectors we use ‖·‖ to denote the `2-norm, and
for matrices we use ‖·‖ and ρ(·) to denote spectral (or
operator) norm and spectral radius (largest absolute value
of eigenvalues) respectively. Note that these two are in
general different for asymmetric matrices. For a function
f : Rd → R, we use ∇f and ∇2f to denote its gradi-
ent and Hessian. For functions of two vector arguments,
f : Rd1 ×Rd2 → R , we use∇xf ,∇yf and∇2

xxf ,∇2
xyf ,

∇2
yyf to denote its partial gradient and partial Hessian. We

also use O(·) and o(·) notation as follows: f(δ) = O(δ)
means lim supδ→0 |f(δ)/δ| ≤ C for some large absolute
constant C, and g(δ) = o(δ) means limδ→0 |g(δ)/δ| = 0.
For complex numbers, we use Re(·) to denote its real part,
and | · | to denote its modulus. We also use P(·), operat-
ing over a set, to denote the collection of all probability
measures over the set.

2.1. Simultaneous games

A two-player zero-sum game is a game of two players with
a common payoff function f : X ×Y → R. The function f
maps the actions taken by both players (x,y) ∈ X ×Y to a
real value, which represents the gain of y-player as well as
the loss of x-player. We also call y player the max-player
who tries to maximize the payoff function f , and x-player
the min-player. In this paper, we focus on continuous payoff
functions f , and assume X ⊂ Rd1 and Y ⊂ Rd2 .

In simultaneous games, both players act simultaneously.
That is, each player chooses her action without knowledge
of the action chosen by other player. A well-known notion
of optimality in game theory is Nash equilibrium, where
no player can benefit by changing strategy while the other
player keep hers unchanged. If we specialize this concept
into this setting, we have:
Definition 1. Point (x?,y?) is a Nash equilibrium of func-
tion f , if for any (x,y) in X × Y:

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?).

That is, x? is a global minimum of f(·,y?) which keeps the
action of y-player unchanged, and y? is a global maximum
of f(x?, ·) which keeps the action of x-player unchanged.

Classical works typically focus on finding the Nash equi-
lirbria in the setting where the payoff function f is convex-
concave (i.e. f(·,y) is convex for all y ∈ Y , and f(x, ·)
is concave for all x ∈ X ) (Bubeck, 2015). However, most
modern applications in machine learning formulate payoff
f as nonconvex-nonconcave functions, where the problem
of finding global Nash equilibrium is NP hard in general.
Therefore, recent work has considered the following local al-
ternative (see, e.g., Mazumdar and Ratliff, 2018; Daskalakis
and Panageas, 2018):
Definition 2. Point (x?,y?) is a local Nash equilirium of
f , if there exists δ > 0 such that for any (x,y) satisfying
‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ we have:

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?).

This essentially changes the requirements of global opti-
mality in Nash equilibria to local optimality. Local Nash
equilibria can be characterized in terms of first-order and
second-order conditions.
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Proposition 3 (First-order Necessary Condition). Assum-
ing f is differentiable, any local Nash equilibrium satisfies
∇xf(x,y) = 0 and∇yf(x,y) = 0.

Proposition 4 (Second-order Necessary Condition). As-
suming f is twice-differentiable, any local Nash equilibrium
satisfies∇2

yyf(x,y) � 0, and ∇2
xxf(x,y) � 0.

Proposition 5 (Second-order Sufficient Condition). As-
suming f is twice-differentiable, any stationary point (i.e.,
∇f = 0) satisfying the following condition is a local Nash
equilibrium:

∇2
yyf(x,y) ≺ 0, and ∇2

xxf(x,y) � 0. (1)

We also call a stationary point satisfying (1) a strict local
Nash equilibrium.

One significant drawback of considering local or global
Nash equilibria in nonconvex-nonconcave setting is that
they may not exist even for simple well-behaved functions.

Proposition 6. There exists a twice-differentiable function
f , where pure strategy Nash equilibria (either local or
global) do not exist.

Proof. Consider a two-dimensional function f(x, y) =
sin(x+ y). We have∇f(x, y) = (cos(x+ y), cos(x+ y)).
Assuming (x, y) is a local pure strategy Nash equilibrium,
by Proposition 3 it must also be a stationary point; that is,
x + y = (k + 1/2)π for k ∈ Z. It is easy to verify, for
odd k, ∇2

xxf(x, y) = ∇2
yyf(x, y) = 1 > 0; for even k,

∇2
xxf(x, y) = ∇2

yyf(x, y) = −1 < 0. By Proposition 4,
none of the stationary points is a local pure strategy Nash
equilibrium.

2.2. Sequential games

In sequential games, there is an intrinsic order that one
player chooses her action before the other one chooses hers.
Importantly, the second player can observe the action taken
by the first player, and adjust her action accordingly. We
would like to emphasize that although many recent works
have focused on the simultaneous setting, GAN and adver-
sarial training are in fact sequential games in their standard
formulations.

Example 7 (Adversarial Training). The target is to train
a robust classifier that is robust to adversarial noise. The
first player picks a classifier, and the second player then
chooses adversarial noise to undermine the performance of
the chosen classifier.

Example 8 (Generative Adversarial Network (GAN)). The
target is to train a generator which can generate samples
that are similar to real samples in the world. The first player
picks a generator, and the second player then picks a discrim-
inator that is capable of telling the difference between real
samples and the samples generated by the chosen generator.

Without loss of generality, we assume in this paper that
min-player is the first player, and max-player is second. The
objective of this game corresponds to following minimax
optimization problem

min
x∈X

max
y∈Y

f(x,y). (2)

where minx maxy already reflects the intrinsic order of
the sequential game. While this order does not matter
for convex-concave f(·, ·) as the minimax theorem (Sion
et al., 1958) guarantees that minx∈X maxy∈Y f(x,y) =
maxy∈Y minx∈X f(x,y), for a general nonconvex-
nonconcave f(·, ·),

min
x∈X

max
y∈Y

f(x,y) 6= max
y∈Y

min
x∈X

f(x,y).

This means that the order of which player goes first plays
an important role in the solution.

The global solution for Eq.(2), or subgame perfect equilib-
rium as known in the game theory literature, is for second
player to always play the maximizer of f(x, ·) given the
action x taken by the first player, and achieve the maximum
value φ(x) := maxy∈Y f(x,y). Then, the optimal strat-
egy for the first player is to minimize φ(x), which gives
following definition of global optimality.

Definition 9. (x?,y?) is a global minimax point, if for
any (x,y) in X × Y we have:

f(x?,y) ≤ f(x?,y?) ≤ max
y′∈Y

f(x,y′).

Remark 10. Equivalently, (x?,y?) is a global minimax
point if and only if y? is a global maximum of f(x?, ·),
and x? is a global minimum of φ(·) where φ(x) :=
maxy∈Y f(x,y).

Unlike Nash equilibria, global minimax points always exist
even if f is nonconvex-nonconcave, due to the extreme-
value theorem.

Proposition 11. Assume that function f : X × Y → R
is continuous, and assume that X ⊂ Rd1 , Y ⊂ Rd2 are
compact. Then the global minimax point of f always exists.

Finding global minimax points of nonconvex-nonconcave
function is also NP-hard in general. A practical solution is
to find a local surrogate. Unfortunately, to the best of our
knowledge, there is no formal definition of a local notion of
global minimax points in the literature.

Finally, we would like to point out that, there is one easier
case where the approximate maximization maxy∈Y f(x,y)
can be solved efficiently for any x ∈ X . Then, Eq.(2) re-
duces to optimizing φ(·)—a nonsmooth nonconvex function,
where efficient guarantees can be obtained (see Section 4).
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2.3. Dynamical systems

One of the most popular algorithms for solving minimax
problems is Gradient Descent Ascent (GDA). We outline the
algorithm in Algorithm 1, with updates written in a general
form zt+1 = w(zt), where w : Rd → Rd is a vector
function. One notable distinction from standard gradient
descent is that w(·) may not be a gradient field (i.e., the
gradient of a scalar function φ(·)), and so the Jacobian
matrix J := ∂w/∂z may be asymmetric. This results in the
possibility of the dynamics zt+1 = w(zt) converging to a
limit cycle instead of a single point. Nevertheless, we can
still define fixed points and stability for general dynamics.

Definition 12. Point z? is a fixed point for dynamical sys-
tem w if z? = w(z?).

Definition 13 (Linear Stability). For a differentiable dynam-
ical system w, a fixed point z? is a linearly stable point of
w if its Jacobian matrix J(z?) := (∂w/∂z)(z?) has spec-
tral radius ρ(J(z?)) ≤ 1. We also say that a fixed point
z? is a strict linearly stable point if ρ(J(z?)) < 1 and a
strict linearly unstable point if ρ(J(z?)) > 1.

Intuitively, linear stability captures whether under the dy-
namics zt+1 = w(zt) a flow that starts at point that is
infinitesimally close to z? will remain in a small neighbor-
hood around z?.

3. Main Results
In the previous section, we pointed out that while many
modern applications are in fact sequential games, the prob-
lem of finding their optima—global minimax points—is
NP-hard in general. We now turn to our main results, which
provide ways to circumvent this NP-hardness challenge. In
Section 3.1, we develop a formal notion of local surrogacy
for global minimax points which we refer to as local min-
imax points. In Section 3.2 we study their properties and
existence. Finally, in Section 3.3, we establish a close re-
lationship between stable fixed points of GDA and local
minimax points.

3.1. Local minimax points

While most previous work (Daskalakis and Panageas, 2018;
Mazumdar and Ratliff, 2018) has focused on local Nash
equilibria (Definition 2), which are local surrogates for
pure strategy Nash equilibria for simultaneous games, we
propose a new notion—local minimax—as a natural local
surrogate for global minimaxity (Definition 9) for sequen-
tial games. To the best of our knowledge, this is the first
proper mathematical definition of local optimality for the
two-player sequential setting.

Definition 14. A point (x?,y?) is said to be a local min-
imax point of f , if there exists δ0 > 0 and a function h

Figure 1. Left: f(x, y) = x2−y2 where (0, 0) is both local Nash
and local minimax. Right: f(x, y) = −x2 + 5xy − y2 where
(0, 0) is not local Nash but local minimax with h(δ) = δ.

satisfying h(δ)→ 0 as δ → 0, such that for any δ ∈ (0, δ0],
and any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ,
we have

f(x?,y) ≤ f(x?,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f(x,y′). (3)

Remark 15. Definition 14 remains equivalent even if we
further restrict function h in Definition 14 to be monotonic
or continuous. See Appendix C for more details.

Intuitively, local minimaxity captures the optimal strategies
in a two-player sequential game if both players are only
allowed to change their strategies locally.

Definition 14 localize the notion of global minimax points
(Definition 9) by replacing all global optimality over x and
y by local optimality. However, since this is a sequential
setting, the radius of the local neighborhoods where the
maximization or minimization takes over can be different.
Definition 14 allows one radius to be δ while the other is
h(δ). The introduction of an arbitrary function h allows the
ratio of these two radii to also be arbitrary. The limiting be-
havior h(δ)→ 0 as δ → 0 makes this definition a truly local
notion. That is, it only depends on the property of function
f in an infinitesimal neighborhood around (x?,y?).
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Definition 14 is a natural local surrogate for global minimax
points. We can alternatively define local minimax points
as localized versions of the equivalent characterization of
global minimax points as in Remark 10. It turns out that
two definitions are equivalent.

Lemma 16. For a continuous function f , a point (x?,y?)
is a local minimax point of f if and only if y? is a lo-
cal maximum of function f(·,x?), and there exists an
ε0 > 0 such that x? is a local minimum of function
gε for all ε ∈ (0, ε0] where function gε is defined as
gε(x) := maxy:‖y−y?‖≤ε f(x,y).

Lemma 16 states that local minimaxity can be viewed from
a game-theoretic perspective: the second player always
plays the action to achieve a local maximum value gε(x) :=
maxy:‖y−y?‖≤ε f(x,y), for infinitesimal ε, given the action
x taken the first player, and the first player minimizes gε(x)
locally.

Finally, it can be shown that local minimaxity is a weak-
ening of the notion of local Nash equilibrium defined as in
Definition 2. It alleviates the non-existence issues of the
latter.

Proposition 17. Any local Nash equilibrium (Definition 2)
is a local minimax point.

3.2. Properties and existence

Local minimax points also enjoy simple first-order and
second-order characterizations. Notably, the second-order
conditions naturally reflect the order of the sequential game
(who plays first).

Proposition 18 (First-order Necessary Condition). Assum-
ing that f is continuously differentiable, then any lo-
cal minimax point (x,y) satisfies ∇xf(x,y) = 0 and
∇yf(x,y) = 0.

Proposition 19 (Second-order Necessary Condition). As-
suming that f is twice differentiable, then (x,y) is a local
minimax point implies that∇2

yyf(x,y) � 0. Furthermore,
if ∇2

yyf(x,y) ≺ 0, then

[∇2
xxf −∇2

xyf(∇2
yyf)−1∇2

yxf ](x,y) � 0. (4)

Proposition 20 (Second-order Sufficient Condition). As-
sume that f is twice differentiable. Any stationary point
(x,y) satisfying∇2

yyf(x,y) ≺ 0 and

[∇2
xxf −∇2

xyf(∇2
yyf)−1∇2

yxf ](x,y) � 0 (5)

is a local minimax point. We call stationary points satisfy-
ing (5) strict local minimax points.

We note that if ∇2
yyf(x,y) is non-degenerate,

then the second-order necessary condition (Propo-
sition 19) becomes ∇2

yyf(x,y) ≺ 0 and

γ-GDA

Local
Minimax

(∞-GDA)

Local
Maximin

Local
Nash

Figure 2. Left: f(x, y) = 0.2xy − cos(y), the global minimax
points (0,−π) and (0, π) are not stationary. Right: The relations
among local Nash equilibria, local minimax points, local maximin
points and linearly stable points of γ-GDA, and∞-GDA (up to
degenerate points).

[∇2
xxf − ∇2

xyf(∇2
yyf)−1∇2

yxf ](x,y) � 0, which
is identical to the sufficient condition in Eq. (5) up to an
equals sign.

Comparing Eq. (5) to the second-order sufficient condition
for local Nash equilibrium in Eq. (1), we see that, instead
of requiring ∇2

xxf(x,y) to be positive definite, local mini-
maxity requires the Shur complement to be positive definite.
Contrary to local Nash equilibria, this characterization of
local minimaxity not only takes into account the interaction
term∇2

xyf between x and y, but also reflects the difference
between the first player and the second player.

For existence, we would like to first highlight an interesting
fact: in contrast to the well-known fact in nonconvex opti-
mization that global minima are always local minima (thus
local minima always exist), global minimax points can be
neither local minimax nor even stationary points.

Proposition 21. The global minimax point can be neither
local minimax nor a stationary point.
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Algorithm 1 Gradient Descent Ascent (γ-GDA)

Input: (x0,y0), step size η, ratio γ.
for t = 0, 1, . . . , do
xt+1 ← xt − (η/γ)∇xf(xt,yt).
yt+1 ← yt + η∇yf(xt,yt).

end for

See Figure 2 for an illustration and Appendix C for the proof.
The proposition is a natural consequence of the definitions
where global minimax points are obtained as a minimum
of a global maximum function while local minimax points
are the minimum of a local maximum function. This also
illustrates that minimax optimization is a challenging task,
and worthy of independent study, beyond nonconvex opti-
mization.

Therefore, although global minimax points always exist
as in Proposition 11, it is not necessary for local minimax
points to always exist. Unfortunately, similar to local Nash
equilibria, local minimax points may not exist in general.

Lemma 22. There exists a twice-differentiable function f
and a compact domain, where local minimax points do not
exist.

Nevertheless, global minimax points can be guaranteed to
be local minimax under some further regularity. For in-
stance, this is true when f is strongly-concave in y, or more
generally when f satisfies the following properties that have
been established in several machine learning problems (Ge
et al., 2017; Boumal et al., 2016). There, local minimax
points are guaranteed to exist.

Theorem 23. Assume that f is twice differentiable, and for
any fixed x, the function f(x, ·) is strongly concave in the
neighborhood of local maxima and satisfies the assumption
that all local maxima are global maxima. Then the global
minimax point of f(·, ·) is also a local minimax point.

3.3. Relation to the limit points of GDA

In this section, we consider the asymptotic behavior of Gra-
dient Descent Ascent (GDA), and its relation to local mini-
max points. As shown in the pseudo-code in Algorithm 1,
GDA simultaneously performs gradient descent on x and
gradient ascent on y. We consider the general form where
the step size for x can be different from the step size for y
by a ratio γ, and denoted this algorithm by γ-GDA. When
the step size η is small, this is essentially equivalent to the al-
gorithm that alternates between one step of gradient descent
and γ steps of gradient ascent.

To study the limiting behavior, we primarily focus on lin-
early stable points of γ-GDA, since with random initial-
ization, γ-GDA will almost surely escape strict linearly
unstable points.

Theorem 24 ((Daskalakis and Panageas, 2018)). For any
γ > 1, assuming the function f is `-gradient Lipschitz, and
the step size η ≤ 1/`, then the set of initial points x0 so
that γ-GDA converges to its strict linear unstable point is of
Lebesgue measure zero.

We further simplifiy the problem by considering the limiting
case where the step size η → 0, which corresponds to γ-
GDA flow. We note the asympototic behavior of γ-GDA
flow is essentially the same as γ-GDA with very small step
size η up to certain error tolerance.

dx

dt
= − 1

γ
∇xf(x,y)

dy

dt
= ∇yf(x,y).

The strict linearly stable points of the γ-GDA flow have a
very simple second-order characterization.
Proposition 25. Point (x,y) is a strict linearly stable point
of γ-GDA if and only if for all the eigenvalues {λi} of
following Jacobian matrix,

Jγ =

(
−(1/γ)∇2

xxf(x,y) −(1/γ)∇2
xyf(x,y)

∇2
yxf(x,y) ∇2

yyf(x,y),

)
their real part Re(λi) < 0 for any i.

In the remainder of this section, we assume that f is a twice-
differentiable function, and we use Local _Nash to represent
the set of strict local Nash equilibria, Local _Minimax for
the set of strict local minimax points, Local _Maximin for
the set of strict local maximin points, and γ−GDA for the
set of strict linearly stable points of the γ-GDA flow. Our
goal is to understand the relationship between these sets.
Daskalakis and Panageas (2018) and Mazumdar and Ratliff
(2018) provided a relation between Local _Nash and 1−GDA
which can be generalized to γ−GDA as follows.
Proposition 26 ((Daskalakis and Panageas, 2018)). For
any fixed γ, for any twice-differentiable f , Local _Nash ⊂
γ−GDA , but there exist twice-differentiable f such that
γ−GDA 6⊂ Local _Nash .

That is, if γ-GDA converges, it may converge to points not
in Local _Nash . This raises a basic question as to what those
additional stable limit points of γ-GDA are. Are they mean-
ingful? This paper answers this question through the lens of
Local _Minimax . Although for fixed γ, the set γ−GDA does
not have a simple relation with Local _Minimax , it turns out
that an important relationship arises when γ goes to∞. To
describe the limit behavior of the set γ−GDA when γ →∞
we define two set-theoretic limits:

∞−GDA := lim sup
γ→∞

γ−GDA = ∩γ0>0 ∪γ>γ0 γ−GDA

∞−GDA := lim inf
γ→∞

γ−GDA = ∪γ0>0 ∩γ>γ0 γ−GDA.

The relations between γ−GDA and Local _Minimax are
given as follows:
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Algorithm 2 Gradient Descent with Max-oracle

Input: x0, step size η.
for t = 0, 1, . . . , T do

find yt so that f(xt,yt) ≥ maxy f(xt,y)− ε.
xt+1 ← xt − η∇xf(xt,yt).

end for
Pick t uniformly at random from {0, · · · , T}.
return x̄← xt.

Proposition 27. For any fixed γ, there exists a twice-
differentiable f such that Local _Minimax 6⊂ γ−GDA; there
also exists a twice-differentiable f such that γ−GDA 6⊂
Local _Minimax ∪ Local _Maximin .

Theorem 28 (Asymptotic Behavior of∞-GDA). For any
twice-differentiable f , Local _Minimax ⊂ ∞−GDA ⊂
∞−GDA ⊂ Local _Minimax ∪ {(x,y)|(x,y) is stationary
and ∇2

yyf(x,y) is degenerate}.

That is,∞−GDA = Local _Minimax up to some degenerate
points. Intuitively, when γ is large, γ-GDA can move a
long distance in y while only making very small changes
in x. As γ →∞, γ-GDA can find the “approximate local
maximum” of f(x + δx, ·), subject to any small change in
δx; therefore, stable limit points are indeed local minimax.

Algorithmically, one can view ∞−GDA as a set that de-
scribes the strict linear stable limit points for GDA with γ
very slowly increasing with respect to t, and eventually go-
ing to∞. To the best of our knowledge, this is the first result
showing that all stable limit points of GDA are meaningful
and locally optimal up to some degenerate points.

4. Gradient Descent with Max-Oracle
In this section, we consider solving the minimax problem
Eq.(2) when we have access to an oracle for approximate
inner maximization; i.e., for any x, we have access to an or-
acle that outputs a ŷ such that f(x, ŷ) ≥ maxy f(x,y)− ε.
A natural algorithm to consider in this setting is to alter-
nate between gradient descent on x and a (approximate)
maximization step on y. The pseudocode is presented in
Algorithm 2.

It can be shown that Algorithm 2 indeed converges (in
contrast with GDA which can converge to limit cycles).
Moreover, the limit points of Algorithm 2 satisfy a nice
property—they turn out to be approximately stationary
points of φ(x) := maxy f(x,y). For a smooth function,
“approximately stationary point” means that the norm of
gradient is small. However, even when f(·, ·) is smooth
(up to whatever order), φ(·) as defined above need not be
differentiable. The norm of subgradient can be a discontinu-
ous function which is an undesirable measure for closeness

to stationarity. Fortunately, however, we have following
structure.

Fact 29. If function f : X ×Y → R is `-gradient Lipschitz,
then function φ(·) := maxy∈Y f(·,y) is `-weakly convex ;
that is, φ(x) + (`/2)‖x‖2 is convex function over x.

The above fact has been also presented in Rafique et al.
(2018). In such settings, the approximate stationarity of
φ(·) can be measured by the norm of gradient of its Moreau
envelope φλ(·).

φλ(x) := min
x′

φ(x′) +
1

2λ
‖x− x′‖2. (6)

Here λ < 1/` is the parameter. The Moreau envelope
has the following important property that connects it to the
original function φ.

Lemma 30 ((Rockafellar, 2015)). Assume function φ
is `-weakly convex. Let λ < 1/`, and denote x̂ =
argminx′ φ(x′) + (1/2λ)‖x− x′‖2. Then ‖∇φλ(x)‖ ≤ ε
implies:

‖x̂− x‖ = λε, and min
g∈∂φ(x̂)

‖g‖ ≤ ε.

where ∂ denotes the subdifferential of a weakly convex func-
tion.

Lemma 30 says, ‖∇φλ(x)‖ being small means that x is
close to a point x̂ that is a approximately stationary point
of original function φ. We now present the convergence
guarantee for Algorithm 2.

Theorem 31. Suppose f is `-smooth and L-Lipschitz and
define φ(·) := maxy f(·,y). Then the output x̄ of GD with
Max-oracle (Algorithm 2) with step size η = γ/

√
T + 1

will satisfy

E
[
‖∇φ1/2`(x̄)‖2

]
≤ 2 ·

(
φ1/2`(x0)−minφ(x)

)
+ `L2γ2

γ
√
T + 1

+ 4`ε,

where φ1/2` is the Moreau envelope (6) of φ.

The proof of Theorem 31 is similar to the convergence
analysis for nonsmooth weakly-convex functions (Davis
and Drusvyatskiy, 2018), except here the max-oracle has
error ε. Theorem 31 claims, other than an additive error 4`ε
as a result of the oracle solving the maximum approximately,
that the remaining term decreases at a rate of 1/

√
T . We

present the full proof of Theorem in Appendix F.

5. Conclusion
In this paper, we consider general nonconvex-nonconcave
minimax optimization problems. Since most these problems
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arising in modern machine learning correspond to sequential
games, we propose a new notion of local optimality—local
minimax—the first proper mathematical definition of local
optimality for the two-player sequential setting. We present
favorable results on their properties and existence. We also
establish a strong connection to GDA: up to some degenerate
points, local minimax points are exactly equal to the stable
limit points of GDA.
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