
Reward-Free Exploration for RL

A. The ZERORMAX algorithm
RMAX is a well-known PAC exploration algorithm (Brafman & Tennenholtz, 2002). Here, we show that a modified
version of RMAX, which we call ZERORMAX4, addresses the reward-free exploration setting. The difference between
ZERORMAX and RMAX is that we set the reward in ”known” states to 0 instead of the true reward, which explains the
name. We briefly describe the algorithm and derive the PAC bound relying heavily on prior arguments. Details about
RMAX and its analysis can be found in prior work (Brafman & Tennenholtz, 2002; Kakade, 2003).

Following the reward-free exploration framework proposed in Section 2, the ZERORMAX algorithm first collects sam-
ples without knowledge about reward (exploration) and then computes a policy for each configuration of reward function
(planning). We define set of known states K to be

K := {(s, h) : ∀a ∈ A, Nh (s, a) ≥ m}

where Nh (s, a) counts how many times s has been visited and a was taken in the h-th step and m is a parameter to be
specified later. The set K contains states that we have visited enough times to estimate the corresponding transition kernel,
and is typically referred to as the “known set” in the literature. For (s, h) not in K, we call them “unknown.”

Now ZERORMAX explores as follows. In each episode i ∈ [N], the agent has a known set Ki and

1. builds an empirical MDP M̂i,Ki with parameters

Ph (·|s, a) =

{
P̂h,i (·|s, a) if (s, h) ∈ Ki
1 {s′ = s} otherwise

rh (s, a) =

{
0 if (s, h) ∈ Ki
1 otherwise

(7)

where Ph,i is the empirical estimation of Ph in the i-th episode.

2. computes πi = π?M̂i,Ki
on M̂i,Ki by value iteration.

3. samples a trajectory from the environment following πi.

4. constructs Ki+1 for the next episode

For the planning phase, we first sample an index i ∈ [N] uniformly and construct the MDP M̂i,Ki . Then given reward
function, we can just perform value iteration on M̂i,Ki , which gives us a near optimal policy.

A.1. Analysis

A central concept for analyzing the sample complexity of ZERORMAX is the escape probability, which is the probability
of visiting the unknown states. Formally,

pπK = PM,π {∃ (sh, h) s.t. (sh, h) /∈ K}

The above definition also depends on the corresponding MDPM. Since we only care about the escape probability w.r.t
the true MDPM, we will omit this dependence. The key observation is that there cannot be too many episodes where the
escape probability is large. The inuition is that, if the escape probability is big, then the agent will soon visit an unknown
states. However, the agent can visit unknown states at most mSA times in total.

Lemma A.1 (Lemma 8.5.2 in (Kakade, 2003)). Let πi be the policy followed in the ithepisode and Ki be corresponding
set of known states. Then with probability 1− p, there can be at most O

(
mSA
ε log SANH

p

)
episodes where pπiKi > ε.

As a result, we have the following corollary.

Corollary A.2. If we sample i uniformly from 1 toK, then with probability 1−p−O
(
mSA
εN log SANH

p

)
, we have pπiKi ≤ ε.

In what follows, we focus on a single “good” episode i where pπiKi ≤ ε. Since we focus on a single episode, let us denote
Ki by K and πi by π?M̂K . There are three MDPs of interest, with important details presented in Table 1.

4ZERORMAX is basically the exploration part of E3 algorithm (Kearns & Singh, 2002)

Reward-Free Exploration for RL

M MK M̂K
Known (K) =M =M ≈M
Unknown =M self loop self loop

Table 1: A comparison between the three MDPs involved taken from (Jiang, 2019).

M is the true MDP of interest, that we will use to measure the performance of the policy we find in the planning phase. M̂K
is the MDP we use for computing policies in both exploration and planning phases. The final MDP,MK is an intermediate
MDP which agrees withM on the known set but follows self-loops in the unknown states. Our plan is to prove with high
probability, the value of any policyπ onM and M̂K are close, which implies the desired sample complexity result using
the same argument as in Theorem 3.5.

The first step is to prove that for any policy π, the values onMK and M̂K are similar.

Lemma A.3. With probability 1− p, for any policy π and reward function r,

∣∣∣Es1∼P1 [V π
1,M̂K

(s1; r)− V π1,MK(s1; r)]
∣∣∣ ≤ O(H2

√
S

m
log

SANH

p

)
.

Proof. We apply Lemma C.1 toMK and M̂K, since the reward function is the same and the transition kernel is the same
for unknown states,∣∣∣Es1∼P1

[V π
1,M̂K

(s1; r)− V π1,MK(s1; r)]
∣∣∣ ≤ EMK,π

{
H∑
h=1

1 {(sh, h) ∈ K} |
(
Ph − P̂h

)
V π
h+1,M̂K

(sh, ah)|

}

≤ O

(
H2

√
S

m
log

SANH

p

)
.

The second step is to prove that for any policy π, the values onMK andM are similar, which is less straightforward.

Lemma A.4. With probability 1− p and i is a ”good” episode, for any policy π,

∣∣∣Es1∼P1
[V π

1,M̂K
(s1; r)− V π1,MK(s1; r)]

∣∣∣ ≤ H3ε+O

(
H4

√
S

m
log

SANH

p

)
.

Proof. Notice that for any policy π, if we can upper bound the escape probability, then MK and M must be similar
for this policy. Fortunately, this is actually the case, due to our setting of the reward function in the exploration phase,
following (7). Then by definition for any s,

Es1∼P1V
π
MK(s1) ≥ pπK, and HpπK ≥ Es1∼P1V

π
MK(s1).

and using Lemma A.3,

Es1∼P1V
π
M̂K

(s1) ≥ pπK −O

(
H2

√
S

m
log

SANH

p

)

However, since we are considering a good episode, we know that for the optimal policy on M̂K, π∗M̂K , we have p
π∗M̂K
K ≤ ε.

Therefore,

Hε+O

(
H2

√
S

m
log

SANH

p

)
≥ Hp

π∗M̂K
K +O

(
H2

√
S

m
log

SANH

p

)

≥Es1∼P1V
π∗M̂K
MK (s1) +O

(
H2

√
S

m
log

SANH

p

)
≥ Es1∼P1V

π∗
M̂K
M̂K

(s1) ≥ Es1∼P1V
π
M̂K

(s1)

Reward-Free Exploration for RL

≥pπK −O

(
H2

√
S

m
log

SANH

p

)

and as a result

pπK ≤ Hε+O

(
H2

√
S

m
log

SANH

p

)
.

Now noticeMK andM are only different on unknown states, which will not influence the agent unless the agent escapes
from K. Using Lemma C.1 onMK andM we have

∣∣∣Es1∼P1 [V π
1,M̂K

(s1; r)− V π1,MK(s1; r)]
∣∣∣ ≤ H3ε+O

(
H4

√
S

m
log

SANH

p

)
.

Finally we can put everything together. Again following the argument in Theorem 3.5, we have

Theorem A.5. With probability 1 − 2p − O
(
mSA
εK log SANH

p

)
, given any reward function, the ZERORMAX algorithm

can output a policy π such that

Es1∼P1
[V ∗1,M(s1)− V π1,M(s1)] ≤ H3ε+O

(
H4

√
S

m
log

SANH

p

)
.

Now we can set the parameters m and ε. To make Es1∼P1
[V ∗1,M(s1)−V π1,M(s1)] ≤ ε, we need m ≥ Ω

(
SH8

ε2 log SAKH
p

)
and ε ≤ O

(
ε/H3

)
. This means we must set

N ≥ Ω

(
H11S2A

ε3p

(
log

SANH

p

)2
)

or equivalently,

N ≥ Ω

(
H11S2A

ε3p

(
log

SAH

pε

)2
)

This sample complexity is quite poor because it scales with ε−3 and polynomially, rather than logarithmically, with 1/p.

B. MaxEnt Exploration
Another approach for reward-free exploration was studied in (Hazan et al., 2019). They consider the infinite horizon
discounted setting with discount factor γ, and they show that with Õ(S2A

ε3(1−γ)2) trajectories of length Õ(logS
ε−1 log(1/γ)), they

can find a policy π̂ such that

1

S

∑
s

log(dπ̂(s)) ≥ max
π

1

S

∑
s

log(dπ(s))− ε

where dπ(s) = (1 − γ)
∑∞
t=1 γ

tdt,π(s) and dt,π(s) = P[st = s | π]. This claim is their Corollary 4.6, which uses a
smoothing argument to address the fact that the objective function as stated is not defined everywhere.

For reward free exploration, we want to use this guarantee to establish a condition similar to the conclusion of Theorem 3.3.
For the sake of contradiction, suppose there exists some policy π̃ and some state s̃ such that

dπ̃(s̃)

dπ̂(s̃)
> 4S.

Reward-Free Exploration for RL

We want to show that the non-Markovian mixture policy (1 − α)π̂ + απ̃ for some α > 0 demonstrates that π̂ violates
its near-optimality guarantee for the optimization problem. To do this, we lower bound the difference in objective values
between the mixture policy and π̂:

1

S

∑
s

log((1− α)dπ̂(x) + αdπ̃(s))− log(dπ̂(s)) =
1

S

∑
s

log

(
1− α

dπ̂(s) − dπ̃(s)

dπ̂(s)

)
≥ S − 1

S
log(1− α) +

1

S
log(1 + α(4S − 1))

≥ S − 1

S

−α
1− α

+
1

S

α(4S − 1)

1 + α(4S − 1)

=
α

S

(
4S

1 + α(4S − 1)
− 1

1 + α(4S − 1)
− (S − 1)

1− α

)
.

Here we are using that log(1− x1 + x2) is monotonically increasing in x2 so we use the lower bound of 4S on s̃ and the
trivial lower bound of 0 on all of the other states. We also use that log(1 + x) ≥ x

1+x , which holds for any x > −1. The
expression inside the parenthesis can be simplified to

3S + Sα− 4S2α

(1− α)(1 + α(4S − 1))
.

At this point we can see that if α ≥ 1/S then this expression is negative, so the mixture policy with large α does not
yield any improvement in objective. On the other hand, for any α < 1/S then this inner expression is Θ(S). So if we
set α = Θ(1/S) the overall improvement in objective is Ω(1/S). This means that if we want establish the guarantee in
Theorem 3.3, we must set ε = 1/S, at which point the overall sample complexity scales with S5, which is quite poor.

Note that this calculation shows that O(S5) samples is sufficient for the maximum entropy approach to find a suitable
exploratory policy, but we do not claim that it is necessary for this method. A sharper analysis may be possible, but we are
not aware of any such results.

C. Proof for Main Results
In this section, we present proofs for results in Section 3.

C.1. Exploration Phase

We begin with the proof of Lemma 3.4, which is a simple modification of the Theorem 1 in (Zanette & Brunskill, 2019).

Proof of Lemma 3.4. WLOG, we can assume s1 is fixed. This is because for s1 stochastic from P1, we can simply add
an artificial step before the first step of MDP, which always starts from the same state s0, has only one action, and the
transition to s1 satisfies P1. This creates a new MDP with fixed initial state with length H + 1, which is equivalent to the
original MDP.

We use an alternative upper-bound for equation (156) in (Zanette & Brunskill, 2019), which gives:

1

N0H

N0∑
k=1

Eπk

[
(

H∑
h=1

r(sh, ah)− V πk1 (s1))2

∣∣∣∣∣ s1

]

≤ 2

N0H

N0∑
k=1

Eπk

[
(

H∑
h=1

r(sh, ah))2 + (V πk1 (s1))2

∣∣∣∣∣ s1

]
(i)

≤ 2

N0H

N0∑
k=1

Eπk

[
H∑
h=1

r(sh, ah) + V πk1 (s1)

∣∣∣∣∣ s1

]

≤ 4

N0H

N0∑
k=1

V πk1 (s1) ≤ 4

H
V ?1 (s1)

Reward-Free Exploration for RL

where πk is the policy used in EULER in the k-th episode. Step (i) is because using the reward function designed in
Line 4 in Algorithm 2, we have all reward equal to zero except one state. Therefore, we have

∑H
h=1 r(sh, ah) ≤ 1 and

V π1 (s1) ≤ 1. Therefore, we have replace the upper bound G2 in (156) of (Zanette & Brunskill, 2019) by 4V ?1 (s1).

This allows us also replace the G2 in Theorem 1 of (Zanette & Brunskill, 2019) by 4V ?1 (s1), which gives the regret of
algorithm (note (Zanette & Brunskill, 2019) is for stationary MDP, while our paper is for non-stationary MDP, thus S in
(Zanette & Brunskill, 2019) need to be replaced by SH in our paper due to state augmentation, which creates new states
as (s, h)):

N0∑
k=1

[V ?1 (s1)− V πk(s1)] ≤ Õ(
√
V ?1 (s1)SAT + S2AH4)

Finally, plug in T = N0H , we finish the proof.

Now we can prove the main result in this section.

Proof of Theorem 3.3. In the following we can fix a state (s, h) and consider the corresponding policy given by EULER.
Remember in our setting (Line 4 in Algorithm 2),

Es1∼P1V
?
1 (s1) = max

π
Pπh (s)

Therefore the regret guarantee Lemma 3.4 implies

max
π
Pπh (s)− 1

N0

∑
π∈Φ(s,h)

Pπh (s) ≤ c0

√
SAHι0 ·maxπ Pπh (s)

N0
+
S2AH4ι30

N0

for some absolute constant c0. Therefore, in order to make the following true

max
π
Pπh (s)− 1

N0

∑
π∈Φ(s,h)

Pπh (s) ≤ 1

2
max
π
Pπh (s)

We simply need to choose N0 large enough so that:√
SAHι0 ·maxπ Pπh (s)

N0
≤ c1 ·max

π
Pπh (s)

S2AH4ι30
N0

≤ c1 ·max
π

Pπh (s)

for a sufficient small absolute constant c1. Combining with the fact that for δ-significant (s, h), maxπ P
π
h (s) ≥ δ, we

know choosing N0 = O(S2AH4ι30/δ) is sufficient. As a result, we have

max
π

Pπh (s)
1
N0

∑
π∈Φ(s,h) Pπh (s)

≤ 2

Since Algorithm 2 sets all policy in Φ(s,h) to choose action uniformly randomly at (s, h), this implies

max
π,a

Pπh (s, a)
1
N0

∑
π∈Φ(s,h) Pπh (s, a)

≤ 2A

Finally, we can apply the same argument for all δ-significant (s, h), and let Ψ = ∪{Φ(s,h)}(s,h) which gives:

∀ δ-significant (s, h), max
π,a

Pπh (s, a)
1

N0SH

∑
π∈Ψ P

π
h (s, a)

≤ 2SAH.

This finishes the proof.

Reward-Free Exploration for RL

C.2. Planning Phase

The following lemma (E.15 in (Dann et al., 2017)) will be useful to characterize the difference between V πh (s; r) and
V̂ πh (s; r) .

Lemma C.1 (Lemma E.15 in (Dann et al., 2017)). For any two MDPsM′ andM′′ with rewards r′ and r′′ and transition
probabilities P′ and P′′, the difference in values V ′, V ′′ with respect to the same policy π can be written as

V ′h(s)− V ′′h (s) = EM′′,π

[
H∑
i=h

[r′i(si, ai)− r′′i (si, ai) + (P′i − P′′i)V ′i+1(si, ai)]

∣∣∣∣∣ sh = s

]

With this decomposition in mind, we can prove Lemma 3.6.

Proof of Lemma 3.6. In this section, we always use E to denote the expectation under the true MDPM. Using Lemma C.1
onM (the true MDP) and M̂ (the empirical version), we have

|Es1∼P1
{V̂ π1 (s1; r)− V π1 (s1; r)}| ≤ |Eπ

H∑
h=1

(P̂h − Ph)V̂ πh+1(sh, ah)| ≤ Eπ
H∑
h=1

|(P̂h − Ph)V̂ πh+1(sh, ah)|

Let Sδh := {s : max
π
Pπh (s) ≥ δ} be the set of δ-significant states in the h-th step. We further have:

Eπ|(P̂h − Ph)V̂ πh+1(sh, ah)| ≤
∑

a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|Pπh (s, a)

︸ ︷︷ ︸
ξh

+
∑

a,s/∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|Pπh (s, a)

︸ ︷︷ ︸
ζh

By definition of insignificant state, we have:

ζh ≤ H
∑

a,s/∈Sδh

Pπh (s, a) = H
∑
s/∈Sδh

Pπh (s) ≤ H
∑
s/∈Sδh

δ ≤ HSδ. (8)

On the other hand, by Cauchy-Shwartz inequality, we have:

ξh ≤

 ∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s, a)

 1
2

=

 ∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s)πh(a|s)

 1
2

We note since V̂ πh+1 only depends on π at h+ 1, · · · , H steps, it does not depends on πh. Therefore, we have:∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s)πh(a|s) ≤max
π′h

∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s)π′h(a|s)

= max
ν:S→A

∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s)1{a = ν(s)}

where the last step is because the maximization over π′h achieves at deterministic polices.

Recall that by preconditions, we have 4 holds for δ = ε/(2SH2). That is, for any s ∈ Sδh we always have

max
π̃

P π̃h (s, a)

µh(s, a)
≤ 2SAH

Therefore, for any (s, a) pair, we can design a policy π′ so that π′h′ = πh′ for all h′ < h, and π′h(s) = a. This will give
that

Pπh (s) = Pπ
′

h (s) = Pπ
′

h (s, a) ≤ 2SAHµh(s, a)

Reward-Free Exploration for RL

which gives: ∑
a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2Pπh (s)1{a = ν(s)}

≤2SAH
∑

a,s∈Sδh

|(P̂h − Ph)V̂ πh+1(s, a)|2µh(s)1{a = ν(s)}

≤2SAH
∑
s,a

|(P̂h − Ph)V̂ πh+1(s, a)|2µh(s)1{a = ν(s)}

=2SAHEµh |(P̂h − Ph)V̂ πh+1(s, a)|21{a = ν(s)}

By Lemma C.2, we have:

Eµh |(P̂h − Ph)V̂ πh+1(s, a)|21{a = ν(s)} ≤ O
(
H2S

N
log(

AHN

p
)

)
Therefore, combine all equations above, we have

|Es1∼P1
{V̂ π1 (s1; r)− V π1 (s1; r)}| ≤ O(

√
H5S2A

N
log(

AHN

p
)) +H2Sδ

Recall our choice δ = ε/(2SH2) and N ≥ cH
5S2A
ε2 log(SAHpε) for sufficiently large absolute constant c, which finishes the

proof.

Lemma C.2. Suppose P̂ is the empirical transition matrix formed by sampling according to µ distribution for N samples,
then with probability at least 1− p, we have for any h ∈ [H]:

max
G:S→[0,H]

max
ν:S→A

Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)} ≤ O
(
H2S

N
log(

AHN

p
)

)
Proof. Define random variable

Xi = (P̂hG(si, ai)−G(s′i))
2 − (PhG(si, ai)−G(s′i))

2

where (si, ai, s
′
i) ∼ µh × Ph(·|si, ai) is the i-th sample in level h we collect.

Also we define
Yi = Xi1{ai = ν(si)}.

To simplify the notation, when some property of Yi holds for any i, we just use the notation Y to describe a generic Yi.

We first state some properties of the random variables Yi, which are justified at the end of the proof.

• (Expection) EY = Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}

• (Empirical risk minimization)
∑N
i=1 Yi ≤ 0

• (Self-bounded) Var{Y } ≤ 4H2EY

Given these three properties, now we are ready to apply Berstein’s inequality to (
∑N
i=1 Yi)/N . Since we are taking

maximum over ν and G(s) and P̂ is random, we need to cover all the possible values of P̂G(s, a)1{a = ν(s)} and
PG(s, a)1{a = ν(s)} to ε accuracy to make Bernstein’s inequality hold. For ν, there are AS deterministic policies in
total. Given a fixed ν, P̂G(s, a)1{a = ν(s)} and PG(s, a)1{a = ν(s)} can be covered by (H/ε)2S values by boundedness
condition because for a 6= ν(s) they are always 0. The overall approximation error will be at most 12Hε by boundedness
condition.

As a result, with probability at least 1− p/H , for any ν, G(s) and P̂,

Reward-Free Exploration for RL

Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)} = EY ≤ EY − 1

N

N∑
i=1

Yi

≤

√
2Var{Y } log((Hε)2S ·AS · Hp)

N
+
H2 log((Hε)2S ·AS · Hp)

3N
+ 12Hε

≤

√
2Var{Y }[2S log(HAε) + log H

p]

N
+
H2[2S log(HAε) + log H

p]

3N
+ 12Hε

We can simply choose ε = HS/36N and thus

Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}

≤

√
8H2Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}

2S log(36AN
S) + log H

p

N
+
H2[2S log(36AN

S) + log H
p + S]

3N

Solving this quadratic formula we get

Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)} ≤ O(
H2S

N
log(

ANH

p
))

Since the above upper bound holds for arbitrary ν, G(s) and Ph,

max
G:S→[0,H]

max
ν:S→A

Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)} ≤ O
(
H2S

N
log(

AHN

p
)

)
Taking union bound w.r.t. h, the claim holds for any h with probability 1− p.

Finally we give the proofs for the claimed three properties of Yi. We begin with the expectation property:

EY =Es,a∼µhEs′∼Ph(·|s,a){1{a = ν(s)}[(P̂hG(s, a)−G(s′))2 − (PhG(s, a)−G(s′))2]}
(i)
=2Es,a∼µhEs′∼Ph(·|s,a){1{a = ν(s)}(P̂h − Ph)G(s, a)(PhG(s, a)−G(s′))}

+ Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}
(ii)
= Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}

where (i) is by b2−d2 = (b−d+d)2−d2 = (b−d)2 +2b(d−b) with b = P̂hG(s, a)−G(s′) and d = PhG(s, a)−G(s′)
and (ii) is because Es′∼Ph(·|s,a){G(s′)} = PhG(s, a).

The emipirical risk minimization property is true because the evaluation rule is essentially minimizing the empirical Bell-
man error for each (s, a) pair separately. Mathematically,

P̂hG(s, a) = arg max
g

N∑
i=1

1{si = s, ai = a}(g −G(s′))2

The self-bounded property is because

Var{Y } ≤ E(Y)2

(i)
=E{1{a = ν(s)}[(P̂h − Ph)G(s, a)]2[(P̂h + Ph)G(s, a)− 2G(s′)]2}

≤4H2Eµh |(P̂h − Ph)G(s, a)|21{a = ν(s)}
=4H2EY

where (i) by b2 − d2 = (b+ d)(b− d) with b = P̂hG(s, a)−G(s′) and d = PhG(s, a)−G(s′).

Reward-Free Exploration for RL

C.3. Proof of Theorem 3.1

Putting everything together we can prove the main theorem.

Proof of Theorem 3.1. We only need to choose the parameter δ and N0. From the proof of Lemma 3.6 we can see, we
need δ = ε/(2SH2) and thus N0 ≥ cS3AH6ι3/ε. Since we need N0 episodes for each (s, h), the total number episodes
required for finding Ψ is O(cS4AH7ι3/ε), which gives the second term in (3). The proof is completed by combining
Theorem 3.5, which gives the first term in (3).

C.4. Approximate MDP Solvers

The convergence of NPG is well studied in (Agarwal et al., 2019) (tabluar & infinite horizon) and (Cai et al., 2019) (linear
approximation). For completeness we give a full proof of convergence rate of NPG algorithm in episodic setting.

Since we only need to prove the guarantee on the true MDP, we will not distinguish true MDPM and estimated MDP M̂
here. Remember the NPG is defined by

π
(0)
h (a|s) = 1/A

and
π

(t+1)
h (a|s) = π

(t)
h (a|s) exp{η(Q

(t)
h (s, a)− V (t)

h (s))}/Z(t)
h (s)

where Q(t)
h (s, a) := Qπ

(t)

h (s, a) is computed following the value iteration procedure. Similarly we define V (t)
h (s) :=

V π
(t)

h (s). The normalization constant can be written explicitly as

Z
(t)
h (s) :=

∑
a∈A

π
(t)
h (a|s) exp{η[Q

(t)
h (s, a)− V (t)

h (s)]}

Notice the definition of the normalization constant is not unique. Here we choose the form that makes the following proof
simpler but different choice will essentially gives exactly the same algorithm.

We begin with a lemma showing that the value function monotonically increases.

Lemma C.3 (Lemma 5.8 in (Agarwal et al., 2019)). Following the NPG iterations,

V
(t+1)
h (s; r)− V (t)

h (s; r) ≥ 1

η

H∑
h′=h

Esh′∼M,π(t+1){logZ
(t)
h′ (sh′)|sh = s} ≥ 0

In particular,
logZ

(t)
h (sh) ≤ η[V

(t+1)
h (sh; r)− V (t)

h (sh; r)]

Proof. By performance difference lemma (Kakade & Langford, 2002),

V
(t+1)
h (s; r)− V (t)

h (s; r)

=

H∑
h′=h

Eπ(t+1){
∑
a∈A

π
(t+1)
h′ (a|sh′)[Q(t)

h′ (sh′ , a)− V (t)
h′ (sh′)]|sh = s}

=
1

η

H∑
h′=h

Eπ(t+1){
∑
a∈A

π
(t+1)
h′ (a|sh′) log

π
(t+1)
h′ (a|sh′)Z(t)

h′ (sh′)

π
(t)
h′ (a|sh′)

|sh = s}

=
1

η

H∑
h′=h

Eπ(t+1){KL(π
(t+1)
h′ (sh′)||π(t)

h′ (sh′)) + logZ
(t)
h′ (sh′)|sh = s}

≥1

η

H∑
h′=h

Eπ(t+1){logZ
(t)
h′ (sh′)|sh = s}

(i)

≥0

Reward-Free Exploration for RL

where (i) is by for any h and s,

logZ
(t)
h (s) = log{

∑
a∈A

π
(t)
h (a|s) exp{η[Q

(t)
h (s, a)− V (t)

h (s)]}}

≥η
∑
a∈A

π
(t)
h (a|s)[Q(t)

h (s, a)− V (t)
h (s)]

=0

because V (t)
h (s) =

∑
a∈A π

(t)
h (a|s)Q(t)

h (s, a) by definition.

Equipped with the monotone property, we can simply prove an upper bound for the cumulative regret, which immediately
implies the convergence rate for the last iteration.

Proof of Proposition 3.7. Again by performance difference lemma,

Es1∼P1
{V ?1 (s1; r)− V (t)

1 (s1; r)}

=

H∑
h=1

Eπ?{
∑
a∈A

π?h(a|s)[Q(t)
h (s, a)− V (t)

h (s)]}

=
1

η

H∑
h=1

Eπ?{
∑
a∈A

π?h(a|sh) log
π

(t+1)
h (a|sh)Z

(t)
h (sh)

π
(t)
h (a|sh)

}

=
1

η

H∑
h=1

Eπ?{KL(π?h(sh)||π(t)
h (sh))− KL(π?h(sh)||π(t+1)

h (sh)) + logZ
(t)
h (sh)}

Now we can upper bound the regret of π(T−1) by upper bound the cumulative regret using Lemma C.3

Es1∼P1{V ?1 (s1; r)− V (T−1)
1 (s1; r)}

≤ 1

T

T−1∑
t=0

Es1∼P1{V ?1 (s1; r)− V (t)
1 (s1; r)}

≤ 1

ηT

T−1∑
t=0

H∑
h=1

Eπ?{KL(π?h(sh)||π(t)
h (sh))− KL(π?h(sh)||π(t+1)

h (sh)) + logZ
(t)
h (sh)}

≤ 1

ηT

H∑
h=1

Eπ?{KL(π?h(sh)||π(0)
h (sh))}+

1

ηT

T−1∑
t=0

H∑
h=1

Eπ?{logZ
(t)
h (sh)}

(i)

≤H logA

ηT
+

1

T

H∑
h=1

T−1∑
t=0

[V
(t+1)
h (sh; r)− V (t)

h (sh; r)]

≤H logA

ηT
+

1

T

H∑
h=1

V
(T)
h (sh; r)

≤H logA

ηT
+
H2

T

where (i) is by using Lemma C.3.

D. Proof of Lower Bound
In this section, we prove our lower bound, Theorem 4.1. First, we develop further notation in Section D.1 which will
aid in distinguishing between multiple possible instances. Next, Section D.2 states Lemma D.2, the formal analogue
of Lemma 4.2, which describes a lower bound for learning transitions at a single state. Then, Section D.3 embeds the
construction to obtain an instance where the learner to learn transitions at n states, yielding the lower bound Theorem 4.1.
Finally, Section D.4 details the proof of the 1-state lower bound, Lemma 4.2.

Reward-Free Exploration for RL

s = 0

s = 1

s = 2

s = 3

s = 4

Figure 3: The agent begins in stage s = 0, and moves to states s ∈ [2n], n = 2. Different actions correspond to different
probability distributions over next states s ∈ [2n]. States s ∈ [2n] are absording, and rewards are action-independent.
Lemma 4.2 shows that this construction requires the learner to learn Ω(n) bits about the transition probabilities p(· | 0, a).

D.1. Preliminaries

Environments, Transition Classes, Reward Classes To formalize our embedding a one-state instance into a larger
MDP, the following formalities are helpful: we define an environment E = (X , A,H) as a triple specifying a finite state
space X , number of actions A, and horizon H . For a fixed environment, a transition class P is a class of transition and
initital state distributions, denoted by P; a reward class R is a family of reward functions r : (X , A) → [0, 1]. Given a
reward vector r and transition vector P, we let mdp(P, r) denote the with-reward MDP induced by P and r. We denote
value of a policy π on mdp(P, r) by V π(P, r).

Reward-Free MDP Algorithm A reward-free MDP algorithm Alg is algorithm which collects a random number K
trajectories from a given reward-free MDP, and then, when given a sequence of reward vectors r(1), r(2), . . . , r(N), returns
a sequence of policies π(1), π(2), . . . , π(N). We let EP,Alg[·] denote the expectation under the joint law prescribed by the
explortion phase of algorithm Alg and transition operator P.

Correctness Given ε, p ∈ (0, 1), say that a reward-free MDP algorithm (ε, p,)-learns a a problem class M := (E ,R,P)
if, for any transition operator P ∈P , for any finite sequence of reward vectors r(1), . . . , r(N) ∈ R, Alg returns a sequence
policies π(1), . . . , π(N), such that, with probability 1− p, the following holds

V π
(i)

(P, r(i)) ≥ max
π

V π(P, r(i))− ε, ∀i ∈ [N].

For the lower bound, we allow the policies π prescribed by Alg to be arbitrary randomized mappings form observed
histories, that is, Alg selects a random seed ξ from some distribution; that is the policy at stage h is a map

πh : (s1, . . . , sh, a1, . . . , ah−1, ξ)→ [A].

D.2. Learning A Single Instance

In this section, we define a triple (E ,R,P) on O (n)-states which forces the learner to spend Ω(nA/ε2) trajectories to
learn the transition probabilities at a given state.

As described in Figure 3, the hard instances consist of reward-free MDPs that begin in a fixed initial state, and transition
to one of 2n terminal states according to an unknown transition distribution. The transitions are all taken to be ε/2n-close
to uniform in the `∞ norm, which helps with the embedding later on. For simplicitiy, the rewards are taken to depend only
on states but not on actions. We formalize these instances in the following definition:

Definition D.1 (Hard Transitions and Rewards at Single State). For parameters n,A ≥ 1 and A, we define the problem
class Msingle(ε;n,A) : (Esingle(n),Psingle(ε;n,A),Rsingle(n,A)) as the triple with the following consitutents:

Reward-Free Exploration for RL

1. The environment Esingle(n) is

Esingle(n,A) = (Xsingle(n), A, 2), where Xsingle(n) := {0, 1, . . . , 2n}

2. For a given ε ∈ (0, 1), we define the transition class Psingle(ε;n,A) as the set of transition operator on Esingle(n,A)
, parameterized by vectors q, which begin at state x1 = 0, and always transition to a state x2 ∈ {1, . . . , 2n} with
near-uniform probability, and remain at that state for the remainder of the episode. Formally,

Psingle(ε;n,A) :=
{
P[x1 = 0] = 1, |P[x′ = s | x = 0, a]− 1

2n | ≤
1

2n
ε

P[x′ = s | x = s, a] = 1 ∀a ∈ [A], s ∈ [2n],
}
.

3. We define the hard reward class Rsingle(n,A) as the set of rewards which as the set of rewards which assign 0
reward to state 0, and an action-independent reward to each state s ∈ [2n]. Formally, we define Rsingle(n,A) :={
rν : rν(0, ·) = 0, rν(x, ·) = ν[x], ν ∈ [0, 1]2n

}
.

Lemma D.2 (Formal Statement of Lemma 4.2). Fix ε ≤ 1, p ≤ 1/2, A ≥ 2, and suppose that n ≥ c0 log2A for universal
constants c0. Then, there exists a distributionD over transition vectors P ∈Psingle(ε;n,A) such that any algorithm which
(ε/12, p)-learns the class Msingle(ε;n,A) satisfies

EP∼D EP,Alg[K] &
nA

ε2
.

Due to its level of technical, the proof of Lemma D.2 is given in Section D.4.

D.3. Learning Transitions at n states: Proof of Theorem 4.1

Let n ≥ 2 be a power of two, which we ultimately will choose to be Ω(S). This means that `0 := log2 n ∈ N is integral,
and define the layered state space:

X :=
{

(x, `) : x ∈ [2`], ` ∈ {0, 1, . . . , `0 + 1}
}

The cardinality of the state space is bounded as |X | ≤ 1 + 2 + · · ·+ n/2 + n+ 2n ≤ 4n. Hence, we shall chose n to be
the largest power of two such that 4n ≤ S. Note then that n = Ω(S) as long as S ≥ C for a universal constant C. We will
establish our lower bound for the environment Eembed = (X , A,H), that is, with state space X ; the lower bound extends
to an MDP wiht desired state space of size S by augmenting the MDP with isolated, univistable states.

Description of Transition Class Let us define the class Pembd. First, we require that the states (x, `) for ` ∈ [`0] form
a dyadic tree, whose transitions are all known to the learner. That is, for P ∈Pembd,

P[s1 = (0, 1)] = 1

P[s′ = (x, `+ 1) | s = (x, `), a = 1] = 1, ` ∈ {0, 1 . . . , `0 − 1}
P[x′ = (2` + x, `− 1) | s = (x, `), a] = 1, ` ∈ {0, 1, . . . , `0 − 1}, a > 1.

In words, P starts at (1, 1), moves leftward with action a = 1, and rightward with actions a > 1. At each state s = (x, `0),
the learn learner faces transitions described by some P(x)

single ∈ Psingle(ε0) for ε0 = 1/8H: specifically, we stipulate that
states (x, `0) always transition to states (x′, `0 + 1), which are absorbing:

∀P ∈Pembd, x ∈ [n], there exists a P(x)
single ∈Psingle(ε0) such that :

P[s′ = (x′, `0 + 1) | s = (x, `0), a] = P(x)
single[s′ = x′ | s = 0, a], ∀a ∈ [A], x′ ∈ [2n].

P[s′ = (x′, `0 + 1) | s = (x′, `0 + 1), a] = 1, ∀a ∈ [A]

Thus, there is a bijection between instances P ∈Pembd and tuples (P(1)
single, . . . ,P

(n)
single) ∈Pn

single.

Reward-Free Exploration for RL

Description of Reward Class Define the reward class Rembed = {rx,ν} considering for action-independent rewards

rx,ν(s, a) =


0 s = (x′, `), ` < `0,

0 s = (x′, `0) and x′ 6= x

1 s = (x, `0)

rν [x′] s = (x′, `0 + 1).

In other words, the learner recieves reward 1 at state (x, `0), rewards rν at terminal states (x′, `0 + 1), and 0 elsewhere. We
now establish that any policy which is ε-optimal under reward rx,ν must visit (y, `max) with sufficiently high probability:

Lemma D.3. Suppose that a (possibly randomized, non-Markovian) policy π satisfies, for ε ≤ 1/4 and ε0 ≤ 1/8H ,

V π(P, rx,ν) ≥ max
π′

V π
′
(P, rx,ν)− ε, ∀i ∈ [N].

Then, Pπ[s`0+1 = (x, `max)] ≥ 1
2 .

Proof. Due to the structure of the transitions and rewards, the value of any policy π is

V π(P, rx,ν) = Pπ[s`0+1 = (x, `0)] + (H − `0 − 1)

2n∑
x′=1

ν(x′)Pπ[s`0+2 = (x, `0)]

Since the transitions from (x′, `0) to (x′′, `0 + 1) is ε0/2n-away from uniform in `∞, we can also see that Pπ[s`0+2 =

(x, `0)] ∈ (1
2n − ε,

1
2n + ε). Thus, letting ν := 1

2n

∑2n
x′=1 ν[x′], we have∣∣∣∣∣(H − `0 − 1)

2n∑
x′=1

ν(x′)Pπ[s`0+2 = (x, `0)]− (H − `0 − 1)ν

∣∣∣∣∣ ≤ (H − `0 − 1)ε0 ≤
1

8
.

This entails that

|V π(P, rx,ν)− (H − `0 − 1)ν − Pπ[s`0+1 = (x, `0)]| ≤ 1

8
.

Consequently, by considering a policy π′ which always visits state s`0+1 = (x, `0) (this can be achieved due to the
deterministic behavior of the actions),

max
π′

V π
′
(P, rx,ν)− V π(P, rx,ν) ≥ 1− Pπ[s`0+1 = (x, `0)]− 2 · 1

8
=

3

4
− Pπ[s`0+1 = (x, `0)].

In order for the above to be at most 1/4, we must have that Pπ[s`0+1 = (x, `0)] ≥ 1/2.

Concluding the Proof of Theorem 4.1 To prove Theorem 4.1, we use the following lemma:

Lemma D.4 (Embedding Correspondence). Suppose that H ≥ (2`0 + 2). Then there exists a correspondence Ψ, which
does not dependent on P ∈ Pembd or ry,ν ∈ Rembed (but possibly on ε, n,A,H) which operates as follows: Given a
policy π for Eembed, Ψ[π] = (π(1), . . . , π(n)) returns an n-tuple of policies for Esingle(n,A) with the following property:
For any P ≡ (P(1)

single, . . . ,P
(n)
single) ∈Pembd and rx,ν ∈ Rembed,

If V π(P, rx,ν) ≥ max
π′

V π
′
(P, rx,ν)− ε, ∀x ∈ [n], V π

(x)

(P(x)
single, rν) ≥ max

π′
V π
′
(P(x)

single, rν).

Proof of Lemma D.4. We directly construct the map Ψ. Observe that policies π(x) on the single state environment can be
discred by a distribution over which actions a ∈ [A] they select at the initial state x. Thus identifying policies as elements
of ∆(A), we set

π(x)[a] :=

{
Pπ[a`0+1 = a | s`0+1 = (x, `0)] Pπ[s`0+1 = (x, `0)] > 0

arbitrary otherwise

Reward-Free Exploration for RL

as the marginal distribution of actions selected when s`0+1 = (x, `0 + 1). Observe that the above conditional probabilites
do not depend on P ∈ Pembd since the dynamics up to h = `0 + 1 are identical for all instances. By considing a policy
which coincides with π until s`0+1 = (x, `0) and swtiches to playing optimally, we can lower bound the subopitmality of
π by

max
π′

V π
′
(P, rx,ν)− V π(P, rx,ν) ≥

Pπ[s`0+1 = (x, `0)] · (H − `0 − 1)
(

max
π′

V π(P(x)
single, rν)− V π

(x)

(P(x)
single, rν)

)
In particular, if π is ε ≤ 1/4-suboptimal, then Lemma D.3 ensures Pπ[s`0+1 = (x, `0)] ≥ 1/2. Since H ≥ 2(`0 + 1) by
assumption, we have

ε ≥ max
π′

VM,π′ − VM,π ≥ H

4

(
max
π′

V π(P(x)
single, rν)− V π

(x)

(P(x)
single, rν)

)
,

Therefore, maxπ′ V
π(P(x)

single, rν)− V π(x)

(P(x)
single, rν) ≤ 4ε

H , as needed.

We now conclude with the proof of our main theorem:

Proof of Theorem 4.1. Let Alg be (ε, p)-correct on the class (Eembed,Pembd,Rembed). Then, for any x ∈ [2n], we
simulate obtain a (4ε/H, p)-correct algorithm for Msingle(4ε/H;n,A) as follows:

1. Exploration: Let D be the distribution over Psingle ∈ Psingle from Lemma D.2. Draw a tuple P6=x = (P(x′)
single)x′ 6=x

of n − 1 distributions i.i.d from D, and let Alg(x,P6=x)
single denote the algorithm induced by embeding the instance in

Msingle(4ε/H;n,A) at stage x of the embedding construction, running Alg on this embedded instance

2. Planning: When queried given a reward vector rν ∈ Rsingle, use Alg to compute a policy π for reward vector
rx,ν ∈ Rembed, and return the policy π(x) dicated by the corresponding ψ.

Since Alg is (ε, p)-correct and ε ≤ 1/4, the correspondence Ψ ensures that for any draw of P6=x, Alg(x,P 6=x)
single is (4ε/H, p)-

correct. Let K(x,P 6=x) denote the random number of episodes collected by Alg
(x,P 6=x)
single in the exploration phase, Thus, if

ε ≤ min{ 1
4 ,

H
48}, and n ≥ c0 log2A for the appropriate c0 specified in Lemma D.2, the Lemma D.2 entails

EPsingle∼DEPsingle,Alg
(x,P 6=x)
single

[K(x,P 6=x)] &
nAH2

ε2
.

By taking an expectation over P6=x, we have

EP 6=x∼Dn−1,Psingle∼DEPsingle,Alg
(x,P6=x)
single

[K(x,P 6=x)] &
nAH2

ε2
.

Note then that, if NK(x) denotes the number of times that the original Alg visits state (x, `0), then, by Fubini’s theorem

and the contruction of Alg(x,P 6=x)
single , the expectation of NK(x) under probabilities drawn uniform from Dn is euqal to the

expectation of K(x,P6=x) where P6=x is drawm uniformly from Dn−1, and then the transition Psingle is selected. Formally,

EP6=x∼Dn−1,Psingle∼DEPsingle,Alg
(x,P6=x)
single

[K(x,P 6=x)] = EP≡(P(1)
single,...,P

(n)
single)∼DnEP,Alg[Kx]

This implies that

EP=(P(1)
single,...,P

(n)
single)∼DnEP,Alg[Kx] &

nAH2

ε2
.

Reward-Free Exploration for RL

Since the number of episodes K encounted by Alg is equal to
∑n
x=1Kx (the agent visits exactly one state of the form

(x, `0) per episode), we have

EP=(P(1)
single,...,P

(n)
single)∼DnEP,Alg[K] &

n∑
x=1

nAH2

ε2
=
n2AH2

ε2
.

Since S/8 ≤ n ≤ S, for the above conditions to hold, it suffices that, for a sufficiently large constant C, S ≥ C log2A,
ε ≤ min{ 1

4 ,
H
48}, and H ≥ C log2 S. Moreover, n

2AH2

ε2 = Ω(S
2AH2

ε2), as needed.

D.4. Proof of Lemma D.2

A packing of reward-free MDPs The first step is to construct a family of transition probabilities PJ ∈ P(ε;n,A)
which witness the lower bound. Let 1 denote the all ones vector on [2n]. To construct the packing, we define the set of
binary vectors

K :=
{
v ∈ {−1, 1}2n : 1>v = 0

}
.

For a cardinality parameter M to be chosen shortly, we consider a packing of vectors

VA,M := {va,j ∈ K : a ∈ [A], j ∈ [M]}

Throughout, we shall consider packings VA,M which are uncorrelated in the following sense:
Definition D.5 (Uncorrelated). For γ ∈ (0, 1), we say that VA,M is γ-uncorrelated if, for any pair (a, j), (a′, j′) with either
a 6= a′ or j 6= j′, it holds that |〈va,j , va′,j′〉| < 2nγ..

The following lemma shows that the exist γ-uncorrelated packings of size eΩ(nγ2):
Lemma D.6. Fix γ ∈ (0, 1), and suppose that 2 log(M) ≤ nγ2− log(4n)− 2 log(A). Then, there exists a γ-uncorrelated
packing VA,M .

Proof Sketch. We use the probabilistic method. Specifically, we draw va,j
unif∼ K, and can bound 〈va,j , va′,j′〉 with high-

probability Chernoff bounds. Taking a union bound shows that an uncorrelated packings arise from this construction with
non-zero probability. A full proof is given in in Section D.4.1.

Given a γ-uncorrelated packing VA,M , define transition vectors

qa,j := q0 +
ε

2n
va,j , where q0 =

1

2n
1.

Since ε ≤ 1 and 1>va,ja = 0, qj,a ∈ ∆(2n). Wet indices J denote tuples J = (J1, . . . , JA) ∈ [M]A, let qJ(·, a) = qa,Ja ,
and define PJ as the instance PqJ , where Pq is as in Definition []. Formally,

PJ : PPJ [s1 = 0] = 1, PPJ [s2 = 0] = 0, ∀s ∈ [2n], PPJ [s2 = s | s1 = 0, a] = qJ(s, a) = qa,Ja(s)

Lower Bound for Estimating the Packing Instance: Let us suppose we have an exploration algorithm Algest which,
for any PJ , collects (a possibly random number) K trajectories, and returns estimates Ĵ1, . . . , ĴA of J1, . . . , JA. Our first
step is to establish a lower bound on K assuming that Algest satisfies a uniform correctness guarantee:
Lemma D.7. For any Algest satisfying the guarantee

∀J ∈ [A]M , PPJ ,Algest

[
Ĵa = Ja ∀a ∈ [A]

]
≥ 1− a. (9)

Then, we must have

E
J

unif∼ [A]M
EPJ ,Algest [K] ≥ A · (1− p) logM − log 2

ε2

The above bound essentially follows from an application of Fano’s inequality, and is proven in Section D.4.2. In particular,
if we take say p = 1/2, and require M = eΩ(S), then we have E

J
unif∼ [A]M

EPJ ,Algest [K] & SA
ε2 , as desired.

Reward-Free Exploration for RL

Estimation Reduces to Exploration Of course, the above bound applies only to an estimation algorithm Algest, but
our intent is to establish lower bounds for exploration algorithms. In the following lemma, we state that if the packing is
suffciently uncorrelated, then we can convert an (ε/24, p)-correct exploration algorithm into an Algorithm Algest satisfying
Eq. (9).

Lemma D.8. Suppose Alg is (ε/24, p)-correct on the class Msingle(ε, n,A), and that the packing VM,A is γ = 1/10-
uncorrelated. Then, there is an algorithm Algest which collects K trajectories according to Alg, and satisfies Eq. 9.

Proof Sketch. Consider reward vectors rν induced by νa,j,a2,j2 ∝ 2qa,j − qa2,j2 . These reward vectors can be used
to “pick out” qa,Ja as follows. For a given a, we show that on the good exploration event, Alg returns policies with
P[π̂ν1 (0) = a] > 1/2 for all ν = νa,Ja,a2,j2 ranging across a2, j2. However, for j 6= Ja, we show that on this good event
there exists some a2, j2 for which Alg returns policies with P[π̂ν1 (0) = a] < 1/2. Hence, we can estimate qa,Ja by finding
the (say, the first) index j for which P[π̂ν1 (0) = a] > 1/2 for all ν = νa,j,a2,j2 , ranging across a2, j2. A full proof is given
in Section D.4.3.

As a consequence, we find that if γ ≤ 1/10 and Alg is (ε/24, p)-correct,

E
J

unif∼ [A]M
EPJ ,Alg[K] ≥ A · (1− p) logM − log 2

ε2

In particular, if logM ≥ 4 log 2 and p ≤ 1/2, then,

E
J

unif∼ [A]M
EPJ ,Alg[K] ≥ A · logM

4ε2
(10)

Concluding the proof Take γ = 1/10. For constants c0, c1 sufficiently large, we can ensure that if n ≥ c0 log2A,
then M = e−n/c1 statisfies 2 log(M) ≤ nγ2 − log(4n) − 2 log(A) and logM ≥ 4 log 2. Thus, we can construct a
γ-uncorrelated packing of cardinality logM ≥ n/c1,

E
J

unif∼ [A]M
EPJ ,Alg[K] ≥ A · n

4c1ε2
,

as needed.

D.4.1. PROOF OF LEMMA D.6

We begin with the following concentration inequality:

Lemma D.9. For any fixed (a, j) and (a′, j′), we have

P[|〈va,j , va′,j′〉| ≥ 2nγ] ≤ elog(4n)−nγ2

.

Proof. By permuting coordinates, we may assume that

va′,j′ [s] =

{
1 s ∈ [n]

−1 s ∈ {n+ 1, . . . , 2n}
.

Then,

〈va,j , va′,j′〉 = 2|{s ∈ [n] : va,j [s] = 1}| − 2(n− |{s ∈ [n] : va,j [s] = 1}|)
= 2n− 4|{s ∈ [n] : va,j [s] = 1}| := 2n− 4Z,

where we set Z = |{s ∈ [n] : va,j [s] = 1}|. Hence, if |〈va,j , va′,j′〉| ≥ 2γn, we need∣∣∣∣Zn − 1

2

∣∣∣∣ ≥ γ

2
.

Reward-Free Exploration for RL

Now, we have that for i ∈ [n],

P[Z = i] <

(
n
i

)
·
(
n
n−i
)∑n

i=0

(
n
i

)
·
(
n
n−i
) =

(
n
i

)2∑n
i=0

(
n
i

)2 < n

(
n
i

)2(∑n
i=0

(
n
i

))2 = nPW∼Binom(n,1/2)[W = i]2.

Hence,

P
[∣∣∣∣Zn − 1

2

∣∣∣∣ ≥ γ

2

]
≤ n

∑
i:| in−

1
2 |≥

γ
2

PW∼Binom(n,1/2)[W = i]2

≤ n

 ∑
i:| in−

1
2 |≥

γ
2

PW∼Binom(n,1/2)[W = i]

2

= n

(
PW∼Binom(n,1/2)

[∣∣∣∣Wn − 1

2

∣∣∣∣ ≥ γ

2

])2

≤ n(2e−2(γ/2)2n)2 = elog(4n)−nγ2

We now finish the proof of our intended lemma:

Proof of Lemma D.6. By a union bound over at most A2M2− 1 pairs (a, j), (a′, j′), there exists a γ-uncorrelated packing
for any M satisfying

A2M2elog(4n)−nγ2

≤ 1

Taking logarithms, we require 2 log(M) ≤ nγ2 − log(4n)− 2 log(A).

D.4.2. PROOF OF LEMMA D.7

To begin, let us state a variant of Fano’s inequality, which replaces mutual-information with an arbitrary comparison
measure:

Lemma D.10 (Fano’s Inequality). Consider M probability measures P1, . . . ,PM on a space Ω. Then for any estimator
ĵ on Ω and any comparison law P0 on Ω,

1

M

M∑
j=1

Pj
[
ĵ 6= j

]
≥ 1−

log 2 + 1
M

∑M
j=1 KL(Pj ,P0)

logM

Proof. This follows from the standard statement of Fano’s inequality, where we use that

inf
P0

1

M

M∑
j=1

KL(Pj ,P0) =
1

M

M∑
j=1

KL

Pj ,
1

M

M∑
j′=1

Pj′


For reference, see e.g. Equation (11) in (Chen et al., 2016).

We will apply Fano’s inequality of each a ∈ [A]. To begin, for a fixed J ∈ [M]A and a ∈ [A], let us define the laws “Pj”.
We let PJ,a,j denote the reward-free MDP with starting at x = 0 deterministically, and with transitions

PPJ,a,j [s | x1 = 0, a1 = a′] =

{
qa,j [s] a′ = a

qa′,Ja′ [s] a′ 6= a.

Reward-Free Exploration for RL

For fixed J, a, we let Pj;J,a denote the joint law induced by Algest and PJ,a,j . For the comparison measure, let PJ,a,0
denote the analogous MDP to PJ,a,j , but where PPJ,a,j [s | x1 = 0, a1 = a] = q0 for the fixed action a. We let P0;J,a

denote the law induced by Algest and PJ,a,j . Then, Fano’s iqequality implies that

∀J, a, (1− p) logM − log 2 ≤ 1

M

M∑
j=1

KL(PJ,a,j ,P0;J,a). (11)

Now, observe that the laws PJ,a,j and P0;J,a only differ due to transitions selecting action a1 = a. Under the first
law, these have distribution Multinomial(qa,j), and under the second, Multinomial(q0). Let NK(a = a1) denote the
expected number of times algorithm Algest selects action a1 = a at time step 1. From a Wald’s identity argument (see e.g.
(Kaufmann et al., 2016)), we have

KL(PJ,a,j ,P0;J,a) = EPJ,a,j ,Algest [NK(a1 = a)] KL(Multinomial(qa,j),Multinomial(qa,0))

= EPJ,a,j ,Algest [NK(a1 = a)]

2n∑
s=1

1 + εvj,a[s]

2n
log(1 + εvj,a[s])

(i)

≤ EPJ,a,j ,Algest [NK(a1 = a)]

2n∑
s=1

εvj,a + ε2vj,a[s]2

2n

(ii)

≤ ε2 ·EPJ,a,j,Algest [NK(a1 = a)]

where (i) uses 1+εvj,a[s] ≥ 0 and the identity log(1+x) ≤ x, and (ii) uses the fact that vj,a[s]2 = 1 and
∑2n
s=1 vj,a[s] = 0

for vj,a ∈ K. Thus, by Eq 11,

∀J, a, (1− p) logM − log 2

ε2
≤ 1

M

M∑
j=1

EPJ,a,j ,Algest [NK(a1 = a)].

By taking an expectation over index tuples J drawn uniformly from [A]M , we have

∀a, (1− p) logM − log 2

ε2
≤ 1

M

M∑
j=1

E
J

unif∼ [A]M
EPJ,a,j ,Algest [NK(a1 = a)]

= E
J

unif∼ [A]M
EPJ ,Algest [NK(a1 = a)] ,

where the last line follows that PJ,a,j = PJ′ for some J ′ and that, by symmetry, each index J ′ has equal weight when
averaged over both J ∈ [A]M and j ∈ [M]. Summing over a ∈ [A], we have

A · (1− p) logM − log 2

ε2
≤ E

J
unif∼ [A]M

EPJ ,Algest

[
A∑
a=1

NK(a1 = a)

]
= E

J
unif∼ [A]M

EPJ ,Algest [K].

D.4.3. PROOF OF LEMMA D.8

Let us now show that (ε/12, p)-learning implies the existence of an algorithm Algest satisfying Eq. 9, provided the packing
is sufficiently uncorrelated. Introduce the vectors

νa1,a2,j1,j2 :=
1

3
va1,j1 +

1

6
va2,j2 +

1

2
1,

which can be checked to lie [0, 1]2n. We shall establish the following lemma, which says that for sufficciently uncorrelated
packings, the vectors ν(...) witness separations between qa1,j1 and qa2,j2 for different actions a1, a2:
Lemma D.11. Fix a1 ∈ [A] and j1 ∈ [M], and suppose the packing is γ = 1/10-uncorrelated: Then, for any a2 6= a1

and j2 ∈ [M], the following holds

min
a′2,j

′
2

〈qa1,j1 − qa2,j2 , νa1,a′2,j1,j′2〉 >
ε

12

∀j′1 6= j1, min
a′2,j

′
2

〈qa1,j1 − qa2,j2 , νa1,a′2,j′1,j′2〉 < −
ε

12

Reward-Free Exploration for RL

Proof of Lemma D.11.

〈qa1,j1 − qa2,j2 , νa′1,a′2,j′1,j′2〉 =
ε

2n
〈va1,j1 − va2,j2 , νa′1,a′2,j′1,j′2〉

=
ε

12n
〈va1,j1 − va2,j2 , 2va′1,j′1 − va′2,j′2〉,

where we use the fact that v>a,j1 = 1 for all a, j. If a′1 = a1 and j′1 = j1, and the packing is γ ≤ 1/6-uncorrelated

〈qa1,j1 − qa2,j2 , νa1,a′2,j1,j′2〉 =
ε

12n
〈va1,j1 − va2,j2 , 2va1,j1 − va′2,j′2〉

=
ε

12n

(
2〈va1,j1 , va1,j1〉 − 2〈va2,j2 , va1,j1〉+ 〈va1,j1 , va′2,j′2〉 − 〈va2,j2 , va′2,j′2〉

)
>

ε

12n
(4n− 4γn− 2n− 2nγ)

≥ ε

12n
(2n− 6nγ) =

ε

12
.

On the other hand, if j1 6= j′1, but (a2, j2) = (a′2, j
′
2) then a similar computation reveals that for γ ≤ 1/10,

〈qa1,j1 − qa2,j2 , νa1,a2,j′1,j2〉 <
ε

12n
(10γn− 2n〉) < −ε

12
.

We can now conclude the proof of our reduction:

Proof of Lemma D.8. Suppose that Alg is run on PJ for J ∈ [M]A. Further, recall the rewards rν which assign reward of
rν(s, a) = I(s ∈ [2n])ν(s). By (ε/24, p)-correctness of Alg, then with probability 1− p, Alg computes policies π̂ν which
satisfies the following bound simultaneously for all ν ∈ {νa1,a2,j1,j2}:

max
π

V π(PJ , rν)− V π̂ν (PJ , rν) ≤ ε/24. (12)

For a possibly randomized policy, we use the shorthand π[a] to denote the probability of selecting a at the initial state 0;
that is Pπ[a1 = a]. Now, Consider the following procedure: for each a ∈ [A], estimate Ja by returning the first j ∈ [M]
for which

∀a′2, j′2, π̂νa,a′2,j,j′2
[a] > 1/2. (13)

We conclude our proof by showing that, on the good event Eq. (12), the condition in Eq. (13) holds if and only if j = Ja.
To this end, define the short hand

qπ :=
∑
a′

π[a′]qa′,Ja′

Then, we have that

max
π

V π(PJ , rν)− V π̂ν (PJ , rν) = max
π
〈qπ − qπ̂ν , ν〉 ,

so that on the good event of Eq. 12, we have

max
π
〈qπ − qπ̂ν , ν〉 ≤

ε

24
.

True Positive for j = Ja: First let’s show that Equation 13 holds for j = Ja. Indeed, if it does not, then there exists
some a′2, j

′
2 for which P[π̂νa,j,a′2,j′2

[a]] ≤ 1/2, and (setting ν = νa,j,a′2,j′2 for shorthand in π̂ν)

ε/24 ≥ max
π
〈qπ − qπ̂ν , ν〉 ,

Reward-Free Exploration for RL

≥
〈
qa,Ja − qπ̂ν , νa,j,a′2,j′2

〉
(choose π[a] = 1)

=
∑
a′ 6=a

π̂ν [a′]
〈
qa,Ja − qa′,Ja′ , νa,j,a′2,j′2

〉
≥ (1− π̂ν [a])︸ ︷︷ ︸

≥1/2

·min
a′ 6=a

〈
qa,Ja − qa′,Ja′ , νa,j,a′2,j′2

〉
︸ ︷︷ ︸

>ε/12 by Lemma D.11

>
ε

24
,

yielding a contradiction.

True Negative for j 6= Ja: On the other hand, for j 6= Ja suppose that for all all a′2 6= a and all j′2 ∈ [M],
P[π̂

νa,j,a′2,j
′
2

1 (0) = a] > 1/2. Then, considering a′2 = a2 and j′2 = Ja2 , we have (setting ν = νa,j,a2,Ja2 for short-
hand in π̂ν)

ε/24 ≥ max
a′

〈
qa′,Ja′ − qπ̂ν , νa,j,a2,J2

〉
≥
〈
qa2,Ja2 − qπ̂ν , νa,j,a2,J2

〉
≥ π̂ν [a2]︸ ︷︷ ︸
≥π̂ν [a]>1/2

· min
a′ 6=a2

〈
qa2,Ja2 − qa′,Ja′ , νa,j,a′2,j′2

〉
︸ ︷︷ ︸

>ε/12 by Lemma D.11

>
ε

24
,

again drawing a contradiction.

