Reward-Free Exploration for RL

A. The ZERORMAX algorithm

RMAX is a well-known PAC exploration algorithm (Brafman & Tennenholtz, 2002). Here, we show that a modified
version of RMAX, which we call ZERORMAX[ﬂ addresses the reward-free exploration setting. The difference between
ZERORMAX and RMAX is that we set the reward in “known” states to 0 instead of the true reward, which explains the
name. We briefly describe the algorithm and derive the PAC bound relying heavily on prior arguments. Details about
RMAX and its analysis can be found in prior work (Brafman & Tennenholtz, 2002; Kakade, [2003)).

Following the reward-free exploration framework proposed in Section [2} the ZERORMAX algorithm first collects sam-
ples without knowledge about reward (exploration) and then computes a policy for each configuration of reward function
(planning). We define set of known states K to be

K :={(s,h) :Ya € A Ny (s,a) > m}

where N}, (s, a) counts how many times s has been visited and a was taken in the h-th step and m is a parameter to be
specified later. The set /C contains states that we have visited enough times to estimate the corresponding transition kernel,
and is typically referred to as the “known set” in the literature. For (s, h) not in KC, we call them “unknown.”

Now ZERORMAX explores as follows. In each episode ¢ € [N], the agent has a known set K; and

1. builds an empirical MDP /\;ll i, With parameters

B ([s.0) = Py (-|s,a) if (s,h) € K;
U1 {s = s} otherwise

(7

ry (s,a) =

{Oif (s,h) € K;

1 otherwise
where [P}, ; is the empirical estimation of PP, in the ¢-th episode.

2. computes 7; = 7 on M; k, by value iteration.

L, K

3. samples a trajectory from the environment following ;.

4. constructs &C; 11 for the next episode

For the planning phase, we first sample an index ¢ € [N] uniformly and construct the MDP ./\;ll k;- Then given reward
function, we can just perform value iteration on M; x,, which gives us a near optimal policy.

A.1. Analysis

A central concept for analyzing the sample complexity of ZERORMAX is the escape probability, which is the probability
of visiting the unknown states. Formally,

P =Paro {3 (sn,h) s.t.(sn,h) ¢ K}

The above definition also depends on the corresponding MDP M. Since we only care about the escape probability w.r.t
the true MDP M, we will omit this dependence. The key observation is that there cannot be too many episodes where the
escape probability is large. The inuition is that, if the escape probability is big, then the agent will soon visit an unknown
states. However, the agent can visit unknown states at most m.S A times in total.

Lemma A.1 (Lemma 8.5.2 in (Kakade, [2003)). Let m; be the policy followed in the i"episode and K; be corresponding

. e SA SANH ;
set of known states. Then with probability 1 — p, there can be at most O (mT log T) episodes where pzi > €.

As aresult, we have the following corollary.

Corollary A.2. Ifwe sample i uniformly from 1 to K, then with probability 1 —p—QO (L}QVA log

€

SANH

i
T)’ we havep)ci <e.

In what follows, we focus on a single “good” episode 7 where pg < ¢. Since we focus on a single episode, let us denote
K; by K and 7; by ﬂ'j\;l . There are three MDPs of interest, with important details presented in Table E}
K

47ZERORMAX is basically the exploration part of E? algorithm (Kearns & Singh|2002)
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M | Mg My
Known () | =M | =M ~ M
Unknown =M | selfloop | self loop

Table 1: A comparison between the three MDPs involved taken from (Jiang, 2019).

M is the true MDP of interest, that we will use to measure the performance of the policy we find in the planning phase. M
is the MDP we use for computing policies in both exploration and planning phases. The final MDP, M is an intermediate
MDP which agrees with M on the known set but follows self-loops in the unknown states. Our plan is to prove with high
probability, the value of any policyw on M and My are close, which implies the desired sample complexity result using
the same argument as in Theorem 3.5]

The first step is to prove that for any policy 7, the values on My and M are similar.

Lemma A.3. With probability 1 — p, for any policy w and reward function r,

S SANH
™ . ™ . 2
’Eswﬂ”l V) o, (5157) = Vl,M;c(SlaT)]’ <0 (H - log ) > -

Proof. We apply Lemmato M and M, since the reward function is the same and the transition kernel is the same
for unknown states,

H
Eoynp [V, (5157) — VlT,rM;C(SUT)]‘ < Enge {Z 1{(sn, h) € K} (]P’h - Ph) V,ZT+17MK(Shaah)|}
h=1

<O <H2 Elog SANH) .
m p

The second step is to prove that for any policy 7, the values on M and M are similar, which is less straightforward.

Lemma A.4. With probability 1 — p and i is a ”good” episode, for any policy m,

W B S SANH
Esynpy [V (5157) = Vg, (s157)]] < H3:+0 <H4 —log ) )

Proof. Notice that for any policy 7, if we can upper bound the escape probability, then M and M must be similar
for this policy. Fortunately, this is actually the case, due to our setting of the reward function in the exploration phase,
following (7). Then by definition for any s,

EslN]P’lV./\Til;c (51) > p%’ and Hp% > E81NP1V/7\T/I)C (51)

and using Lemma[A.3]

- . S . SANH
Es,np, Vi (s1) 2 Pk — O <H2 Elog ’ >

*

T\t
we have pi . * < e.

*

However, since we are considering a good episode, we know that for the optimal policy on My, o
K

Therefore,

H5+(’)<H2 SlogSANH>ZHpZM’C+O<H2 SlogSANH>
m p m b

Ly S SANH ™
ZE51~]P’1 VM/:/ICK (81) +0 <H2 E log D ) > ES1~]P’1 VMN;}C (81) > IES1~IF’1 V/\ﬂ;(,c (51)
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ANH
Zp;z—0<H2 Slog 2 )

and as a result

px < He+ O <H2 %log SANH) .

Now notice M and M are only different on unknown states, which will not influence the agent unless the agent escapes
from K. Using Lemma [C.Ton Mk and M we have

1,

- - S SANH
Eg,~p, [V, M}C(Sl;r) - Vl,M;c(sl?T)]’ < H3+0 <H4 Elog » ) .

Finally we can put everything together. Again following the argument in Theorem [3.5] we have

Theorem A.5. With probability 1 — 2p — O ("g—f{‘ log SA%), given any reward function, the ZERORMAX algorithm

can output a policy m such that

ANH
B, [V aa(51) — Wina(s1)] < H' 4+ 0 (H 2 1og 7 ) .

p

8
Now we can set the parameters m and €. To make E,, wp, [Vi*14(51) — V" p4(51)] < €, we need m > 2 (SE—I;I log SA#)

and e < O (¢/H?®). This means we must set

11 @2 2
N0 <H 35 A (log SANH) )
€°p p

11 @2 2
N0 (H 35 A (log SAH) )
€°p j23

This sample complexity is quite poor because it scales with =3 and polynomially, rather than logarithmically, with 1/p.

or equivalently,

B. MaxEnt Exploration

Another approach for reward-free exploration was studied in (Hazan et al., [2019). They consider the infinite horizon

discounted setting with discount factor +y, and they show that with O (=2 los 5 ), they

53(1277’47)2) trajectories of length O(W
can find a policy 7 such that

% Z log(dz(s)) > max % Z log(dx(s)) —¢

where dr(s) = (1 — ) > poqv'di,x(s) and d; »(s) = P[s; = s | «]. This claim is their Corollary 4.6, which uses a
smoothing argument to address the fact that the objective function as stated is not defined everywhere.

For reward free exploration, we want to use this guarantee to establish a condition similar to the conclusion of Theorem[3.3]
For the sake of contradiction, suppose there exists some policy 7 and some state s such that

dz(3)

:(3) > 458.
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We want to show that the non-Markovian mixture policy (1 — a)@ + a7 for some o > 0 demonstrates that 7 violates
its near-optimality guarantee for the optimization problem. To do this, we lower bound the difference in objective values
between the mixture policy and 7:

1 ds #(s) — dx ( )
g ZSIIOg((l — a)dz(x) + adz(s)) — log(d Zlog (1 —a————= ) )

L log(1 —a) + %bg(l +a(4S - 1))

>S—1 —a 1 a(4S-1)
- S 1-a Sl+4+a4S-1)

S —
>

o« 48 1 (S—1)
_S<1+a(45—1)_1+a(45—1)_ 11—« )

Here we are using that log(1 — x; + x2) is monotonically increasing in x2 so we use the lower bound of 4.5 on § and the
trivial lower bound of 0 on all of the other states. We also use that log(1 + x) > which holds for any z > —1. The
expression inside the parenthesis can be simplified to

T
1+x>

35S + Sa — 45%«
(1—a)(1+a(4dS—-1))

At this point we can see that if & > 1/S then this expression is negative, so the mixture policy with large o does not
yield any improvement in objective. On the other hand, for any o < 1/S then this inner expression is ©(S). So if we
set a = ©(1/5) the overall improvement in objective is {2(1/.5). This means that if we want establish the guarantee in
Theorem we must set € = 1/5, at which point the overall sample complexity scales with S, which is quite poor.

Note that this calculation shows that O(S®) samples is sufficient for the maximum entropy approach to find a suitable
exploratory policy, but we do not claim that it is necessary for this method. A sharper analysis may be possible, but we are
not aware of any such results.

C. Proof for Main Results

In this section, we present proofs for results in Section

C.1. Exploration Phase

We begin with the proof of Lemma([3.4] which is a simple modification of the Theorem 1 in (Zanette & Brunskill, [2019).
Proof of Lemma WLOG, we can assume s; is fixed. This is because for s; stochastic from P;, we can simply add
an artificial step before the first step of MDP, which always starts from the same state sg, has only one action, and the

transition to s; satisfies P. This creates a new MDP with fixed initial state with length H + 1, which is equivalent to the
original MDP.

We use an alternative upper-bound for equation (156) in (Zanette & Brunskill, 2019), which gives:

4

1 No H
E _ Tk 2
o 2 | (o) <V

2 < ) )
ot 2o B | (o rloman))? + (F7(50)

4

h=
No H
= NoH D Er | D r(snean) + Vi (s1)
k=1
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where 7}, is the policy used in EULER in the k-th episode. Step (i) is because using the reward function designed in
Line {4|in Algorithm , we have all reward equal to zero except one state. Therefore, we have Zle r(sp,ap) < 1 and
V[ (s1) < 1. Therefore, we have replace the upper bound G2 in (156) of (Zanette & Brunskill, 2019) by 4V;*(s1).

This allows us also replace the G2 in Theorem 1 of (Zanette & Brunskill, [2019) by 4Vi*(s1), which gives the regret of
algorithm (note (Zanette & Brunskill, 2019) is for stationary MDP, while our paper is for non-stationary MDP, thus .S in
(Zanette & Brunskill, |2019) need to be replaced by SH in our paper due to state augmentation, which creates new states
as (s, h)):

No
D Vi (s1) = V™ (s1)] < O(y/Vi(s1)SAT + S* AH*)
k=1
Finally, plug in T' = Ny H, we finish the proof. O

Now we can prove the main result in this section.

Proof of Theorem[3.3] In the following we can fix a state (s, k) and consider the corresponding policy given by EULER.
Remember in our setting (Line d]in Algorithm 2)),

ESlNPl Vl*(sl) = m;}xP,f(s)

Therefore the regret guarantee Lemma [3.4]implies

1 SAH - = Pr SZAHY3
maxP(s) - — 3 P,f(s)<co\/ L ?:X h(5)+ - %

Ted(s,h)
for some absolute constant cy. Therefore, in order to make the following true

0 1 i
mEXPh (S) - F Z Ph (S) <

max P/ (s)
0 ™
TED(s:h)

N | =

We simply need to choose Ny large enough so that:

SAHu - max, P[(s)
No

SQAH4 3
TLO < ¢1 - maxPy(s)
0 T

< ¢ - max Py (s)
™

for a sufficient small absolute constant ¢;. Combining with the fact that for d-significant (s, k), max, P7(s) > d, we
know choosing No = O(S2AH*.}/4) is sufficient. As a result, we have

max — Pr(s) <2
T Ne Dmeam Pr(S)

Since Algorithm sets all policy in ®(*") to choose action uniformly randomly at (s, 1), this implies

P7T
max — i (5,0) — <24
™ Ny Y omeaen Pf (s a)

Finally, we can apply the same argument for all §-significant (s, &), and let ¥ = U{@(Svh)}(sﬁ) which gives:

<2SAH.

P7T
V §-significant (s, h), max — i (5 a)ﬁ
T,a NoSH Z?TG‘I/ Ph (S,a)

This finishes the proof. O
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C.2. Planning Phase

The following lemma (E.15 in (Dann et al. |2017)) will be useful to characterize the difference between V" (s;r) and
Vir(s;r) .

Lemma C.1 (Lemma E.15 in (Dann et al.,[2017)). For any two MDPs M’ and M" with rewards v' and r"" and transition
probabilities P’ and P, the difference in values V', V"' with respect to the same policy w can be written as

Sh:S‘|

Proof of Lemma[3.6] In this section, we always use [ to denote the expectation under the true MDP M. Using Lemma
on M (the true MDP) and M (the empirical version), we have

H

Vi(s) = Vil (s) = B e | D _[ri(siy ai) = 1) (siy ai) + (P = PY)Viy o (si, a0)]
i=h

With this decomposition in mind, we can prove Lemma [3.6]

H H
By, (V7 (5157) = Vi (515 7)} < [Br Y (B = P) Vil (sny an)| < Exe Y |(B = PR) Vil (sn, an)]
h=1 =1

Let S := {s: maxP[ (s) > &} be the set of J-significant states in the h-th step. We further have:

Er|(Br = Bu) Vi (shoan)l < D |(By = Pu)Vilia(s,0)| P (s,a) + > |(Br = Pu) Vi (s, 0)| P (s, a)
a,s€S a,s¢S?

fh Ch

By definition of insignificant state, we have:

(W< H Y Pi(s,a)=HY Pi(s)<HY §<HSS (8)
a,s¢S) s¢S) s¢S)

On the other hand, by Cauchy-Shwartz inequality, we have:

2 2
&< | D 1Py =P Vi (s,a) PPl (s,a) | = | D0 [(Br = Pu)Vilka(s,0) PPyl (s)mn(als)
a,SESi a,sGS}‘z

We note since V}f ", only depends on 7 at h +1,-- -, H steps, it does not depends on 7j,. Therefore, we have:

D B =P Vi (s,0) P (s)mn(als) < max D 1B =P Vil (s, a)* P (s)mh (al )

a,s€S) ha ,SESY
_ ED _P O 2P7r 1 _
max, ZS (B~ BV (5, ) 2P (5) 1 = ()}
a,s€S)

where the last step is because the maximization over 7}, achieves at deterministic polices.

Recall that by preconditions, we haveholds for 6 = ¢/(2SH?). That is, for any s € S} we always have

max M <2SAH
T HrlS, a)

Therefore, for any (s, a) pair, we can design a policy 7’ so that 7}, = 7y for all A’ < h, and 7}, (s) = a. This will give
that
Pii(s) = Py (s) = P{ (s,a) < 2SAH (s, a)
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which gives:

Y 1@h =BV (s, a) PP (s)1{a = v(s)}

a,sGS,‘i

<2SAH Y |(By —Pu) Vi (s, @) Pun(s)1{a = v(s)}

ou,sES,‘fL

<2SAH Y |(Bh — Pu) Vil (s, 0)Ppn(s)L{a = v(s)}

s,a

—2SAHE,, |(By — By)Vi, 1 (s,a)*1{a = v(s))

By Lemma|[C.2] we have:

Ep|(Br = Pr) Vil (s,0)P1{a = v(s)} < O (H g )

N log(T)

Therefore, combine all equations above, we have

. H552A AHN
I]E51~P1{V1”(81;7’)—Vf’(slsr)}l<(9(\/ N el )) + H?S5

Recall our choice § = ¢/(2SH?) and N > ¢ 55522A log(S;‘—EH) for sufficiently large absolute constant ¢, which finishes the
proof. O

Lemma C.2. Suppose P is the empirical transition matrix formed by sampling according to p distribution for N samples,
then with probability at least 1 — p, we have for any h € [H):

max max E

H?S AHN)
G:85—[0,H|v:S—A

(]f”h —Py)G(s,a)*1{a=v(s)} <O ( I log( )

Hh

Proof. Define random variable

Xi = (BaG(si, @) — G(s7))* — (PG (si, a;) — G(5)))?

where (s, a;, ;) ~ pn X Pr(+]8;, a;) is the i-th sample in level h we collect.

Also we define
Y;‘ = Xz]l{az = I/(Si)}.

To simplify the notation, when some property of Y; holds for any ¢, we just use the notation Y to describe a generic Y;.

We first state some properties of the random variables Y;, which are justified at the end of the proof.

e (Expection) EY =E,,, (B, — P;,)G(s,a)|*1{a = v(s)}
e (Empirical risk minimization) Zf\il Y, <0

e (Self-bounded) Var{Y'} < 4H?EY

Given these three properties, now we are ready to apply Berstein’s inequality to (Zf\il Y;)/N. Since we are taking
maximum over v and G(s) and P is random, we need to cover all the possible values of PG(s,a)1{a = v(s)} and
PG(s,a)1{a = v(s)} to ¢ accuracy to make Bernstein’s inequality hold. For v, there are A deterministic policies in
total. Given a fixed v, PG(s,a)1{a = v(s)} and PG(s,a)1{a = v(s)} can be covered by (H /<)25 values by boundedness
condition because for a # v(s) they are always 0. The overall approximation error will be at most 12He by boundedness
condition.

As a result, with probability at least 1 — p/H, for any v, G(s) and P,
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N
N 1
E,., | (P, —Py)G(s,a)]*1{a = v(s)} = EY <EY — ¥ ;Y

WVar{Y}log«?)?S ASH)Hlog(H)2S. A5 2
=< +

P
N SNV + 12He
2Var{Y}[2S log(Z4) + log Z]  H?[2Slog(HA) + log &
S\/ (V}2S1o8(") +log ] H?2Slog(") +log 8]
N 3N
We can simply choose ¢ = HS/36N and thus
Ep |(Pr = Pr)G(s, a)*1{a = v(s)}
. 2Slog(284N) 4+ log £ H?[2Slog(264N) 4 log £ + §
S\/SHQEMI(M e e

Solving this quadratic formula we get

H?S ANH

Ey, | (B — B1)G(s.0) 1 {a = v(s) < O(~5 log(= =)

Since the above upper bound holds for arbitrary v, G(s) and Py,

max  max E,, |[(Py, —P,)G(s,a)*1{a =v(s)} <O (

H%S AHN
G:S5—[0,H]|v:S—A

N log(T)

Taking union bound w.r.t. &, the claim holds for any & with probability 1 — p.

Finally we give the proofs for the claimed three properties of Y;. We begin with the expectation property:

EY =E; anpu Evnpy (1.0 {1{a = v(s)}[(BrG(s, a) — G(5))* = (BaG(s,a) — G(s"))]}
QQEs,aNM;LEs’~Ph(-\s,a){]l{a = l/(s)}(ﬁph — Ph)G(S, a)(PhG(s, a) — G(S/))}
+ By, (P = Br)G(s,0)*L{a = v(s)}

W, (B, - PL)G(s,a)*1{a = v(s)}

where (i) is by b2 —d? = (b—d+d)% —d? = (b—d)2 +2b(d—b) with b = P, G(s,a) — G(s') and d = P, G (s, a) — G(s')
and (i) is because Ey/.up, (.|s,0) {G(5")} = PuG(s,a).

The emipirical risk minimization property is true because the evaluation rule is essentially minimizing the empirical Bell-
man error for each (s, a) pair separately. Mathematically,

N
P,G(s,a) = arg maxz 1{s; = s,a; = a}(g — G(5'))?

9 i=1
The self-bounded property is because
Var{Y'} <E(Y)?

DE{1{a = v(s)} (B — Pr)G(s, a)2[(B + Pr)G(s,a) — 2G(s)]*}
<4H’E,,, |(By, — Pr)G(s,a)|*1{a = v(s)}
=4H*EY

where (i) by b2 — d2 = (b+ d)(b — d) with b = P,G(s,a) — G(s') and d = P, G(s,a) — G(s'). O
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C.3. Proof of Theorem 3.1]

Putting everything together we can prove the main theorem.

Proof of Theorem[3.1] We only need to choose the parameter § and Ny. From the proof of Lemma we can see, we
need § = ¢/(25H?) and thus Ny > ¢S3AH®:3 /e. Since we need Ny episodes for each (s, h), the total number episodes
required for finding ¥ is O(cS*AHT13 /¢), which gives the second term in (3). The proof is completed by combining
Theorem [3.3] which gives the first term in (). O

C.4. Approximate MDP Solvers

The convergence of NPG is well studied in (Agarwal et al., 2019) (tabluar & infinite horizon) and (Cai et al., 2019) (linear
approximation). For completeness we give a full proof of convergence rate of NPG algorithm in episodic setting.

Since we only need to prove the guarantee on the true MDP, we will not distinguish true MDP M and estimated MDP M
here. Remember the NPG is defined by
71_,(10) (als) = 1/A

and
t+1 t t t
my T (als) = 7 (als) exp{n(Q}) (s.0) = Vi ())}/2,7 (s)
where Qg)(&a) = Q;{(t) (s,a) is computed following the value iteration procedure. Similarly we define Vh(t)(s) =

Vh”(t) (s). The normalization constant can be written explicitly as
t t t t
() = 3wy (als) exp{nlQ}) (s.0) = V" ()]}
acA

Notice the definition of the normalization constant is not unique. Here we choose the form that makes the following proof
simpler but different choice will essentially gives exactly the same algorithm.

We begin with a lemma showing that the value function monotonically increases.
Lemma C.3 (Lemma 5.8 in (Agarwal et al.| 2019)). Following the NPG iterations,

V,ftH)( r) — V(t) (s;7) >

z\r—‘

H
Z E.,, om0 ilog Z3 (sp)sn = s} > 0

In particular,
log 23 (s1) < nVi" ™ (sns7) = Vi (s )]

Proof. By performance difference lemma (Kakade & Langford, 2002,
V(t+1)( ) — V(t)(s. r)

= Z E (t+1){z 71'( +1) CL|S}L (¢t )(Sh’ ) — Vh(/t)(Sh/)HSh = S}

acA
(t+1) (t)
Ty, Sh’ Z 7 \Sh/
*ZEﬁ(tJrl){ZW(Jrl lOg h (t‘)h) h ( h)|sh:S}
—h aeA m,/ (alsn)
| A
= 2 Beeon (KL () Im) (sm)) 4 Jog 237 () s = )
h'=h
1A
>— Z E, ¢ {log Z( )(sh/)\sh = s}
=
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where (7) is by for any h and s,
log Z( )(s) = log{z 7rh a| exp{n[Qh s,a) — V,ft)(s)]}}

acA
>0 D~ m (als)[Q) (5, a) =V (s)]
acA
=0
because V}ft)(s) = acA 7rh ( s) ;f')(s, a) by definition. O

Equipped with the monotone property, we can simply prove an upper bound for the cumulative regret, which immediately
implies the convergence rate for the last iteration.

Proof of Proposition[3.7} Again by performance difference lemma,

Ew»l{vl*(sl; r) = Vi (s1;7)}

—ZE A mial)[RY (s,a) — VIV (s)]}

acA

Y (alsp) 287 (sn)

7721[5 {th alsp) logﬂ-h

= m! (alsn)

}

=1ZEw*{KL<wz<sh>||wS><sh>> KL (s (sn)llmi T (sn)) + log 4 (sn)}
h=1

Now we can upper bound the regret of 7(T=1) by upper bound the cumulative regret using Lemma
]Esl~ﬂ1>1{‘/1*(81§ )= VT (s15m)}
Z Euypy (Vi (s157) = Vi (s2:7)}
-1 H

S Er {KL(m (sn) |7 (1)) — KL (sn) ]y 7 (s0)) + log 23 (sn)}
h=1

IN
=l
ﬂl

M= 1l

77 t
T—-1 H

E {KL(r}, (sp,) |7} <sh>>}+—ZZE Alog ZV (sn)}

1 77 t=0 h=1

IN
3=

h

Ju

+

@ u
9 HlogA 1 Z
nT T

Vi (i) = Vi (sns )]
h=1 t=0
HlogA 1 u
= 1T
n =
HlogA H?
<
- T T
where (4) is by using Lemma O

Vi (s
1

D. Proof of Lower Bound

In this section, we prove our lower bound, Theorem @ First, we develop further notation in Section which will
aid in distinguishing between multiple possible instances. Next, Section [D.2] states Lemma [D.2] the formal analogue
of Lemma [.2] which describes a lower bound for learning transitions at a single state. Then, Section [D.3] embeds the
construction to obtain an instance where the learner to learn transitions at n states, yielding the lower bound Theorem 1]
Finally, Section[D.4]details the proof of the 1-state lower bound, Lemma [4.2]
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O%%O

Figure 3: The agent begins in stage s = 0, and moves to states s € [2n], n = 2. Different actions correspond to different
probability distributions over next states s € [2n]. States s € [2n] are absording, and rewards are action-independent.
Lemma4.2|shows that this construction requires the learner to learn 2(n) bits about the transition probabilities p(- | 0, a).

D.1. Preliminaries

Environments, Transition Classes, Reward Classes To formalize our embedding a one-state instance into a larger
MDP, the following formalities are helpful: we define an environment & = (X, A, H) as a triple specifying a finite state
space X', number of actions A, and horizon H. For a fixed environment, a transition class & is a class of transition and
initital state distributions, denoted by P; a reward class % is a family of reward functions r : (X, A) — [0, 1]. Given a
reward vector 7 and transition vector PP, we let mdp(P, r) denote the with-reward MDP induced by P and . We denote
value of a policy m on mdp(PP, ) by V™ (P, 7).

Reward-Free MDP Algorithm A reward-free MDP algorithm Alg is algorithm which collects a random number K
trajectories from a given reward-free MDP, and then, when given a sequence of reward vectors (1) 7). (V) returns
a sequence of policies 71, 7(2) . 7(N) We let Ep aig|-] denote the expectation under the joint law prescribed by the
explortion phase of algorithm Alg and transition operator IP.

Correctness Givene,p € (0, 1), say that a reward-free MDP algorithm (¢, p, )-learns a a problem class .# := (&, %, P)
if, for any transition operator P € 22, for any finite sequence of reward vectors (1), ... +(N) € %, Alg returns a sequence
policies 71, ... 7™ such that, with probability 1 — p, the following holds

v (P, r®) > max VT (P,rD) —¢, Vie [N].

For the lower bound, we allow the policies 7 prescribed by Alg to be arbitrary randomized mappings form observed
histories, that is, Alg selects a random seed ¢ from some distribution; that is the policy at stage h is a map

Th (815 vy Shy @1y .oy ap—1,§) = [4].

D.2. Learning A Single Instance

In this section, we define a triple (&, %, #2) on O (n)-states which forces the learner to spend Q(nA/e?) trajectories to
learn the transition probabilities at a given state.

As described in Figure [3] the hard instances consist of reward-free MDPs that begin in a fixed initial state, and transition
to one of 2n terminal states according to an unknown transition distribution. The transitions are all taken to be ¢/2n-close
to uniform in the /., norm, which helps with the embedding later on. For simplicitiy, the rewards are taken to depend only
on states but not on actions. We formalize these instances in the following definition:

Definition D.1 (Hard Transitions and Rewards at Single State). For parameters n, A > 1 and A, we define the problem
class Aingle(€;1, A) : (Esingle (1), Psingle(€; 11y A), Hsingle (1, A)) as the triple with the following consitutents:
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1. The environment &ingle (1) is

gginglc(nv A) = (Xsinglc(n)a Aa 2)» where Xsinglc(n) = {07 13 ceey 2”}

2. For a given € € (0,1), we define the transition class Pqingic(€; 1, A) as the set of transition operator on &gingie(n, A)
, parameterized by vectors ¢, which begin at state z; = 0, and always transition to a state 22 € {1,...,2n} with
near-uniform probability, and remain at that state for the remainder of the episode. Formally,

. ) ! 1 L
Pingle(€;1, A) := 1Pz =0] = 1,|P[z' =5 |z = 0,a] — 5| < o€

Plz' =s|x=s,al =1Va€ [A],s € [2n], }

3. We define the hard reward class %’Single(n,A) as the set of rewards which as the set of rewards which assign 0
reward to state 0, and an action-independent reward to each state s € [2n]. Formally, we define Zgingle(n, 4) =
{TV : TV(O7 ) = 07 T,,(I, ) = V[‘T]a Ve [Oa 1]271} .

Lemma D.2 (Formal Statement of Lemmad.2). Fixe <1, p < 1/2, A > 2, and suppose that n > ¢ log, A for universal
constants co. Then, there exists a distribution D over transition vectors P € @single(e; n, A) such that any algorithm which
(e/12, p)-learns the class Msingie(€; 1, A) satisfies

Epp Ep ag[K] 2 — .

€
Due to its level of technical, the proof of Lemma|D.2]is given in Section[D.4]

D.3. Learning Transitions at n states: Proof of Theorem[4.1]

Let n > 2 be a power of two, which we ultimately will choose to be €2(S). This means that ¢, := log, n € N is integral,
and define the layered state space:

X:={(z,0):x €2, 0€{0,1,....40+1}}

The cardinality of the state space is bounded as | X| <1+ 2+ -+ +n/2 4+ n+ 2n < 4n. Hence, we shall chose n to be
the largest power of two such that 4n < S. Note then that n = (S) as long as .S > C for a universal constant C. We will
establish our lower bound for the environment &, ,peq = (X, A, H), that is, with state space X'; the lower bound extends
to an MDP wiht desired state space of size S by augmenting the MDP with isolated, univistable states.

Description of Transition Class Let us define the class Popnq. First, we require that the states (x, ¢) for ¢ € [¢y] form
a dyadic tree, whose transitions are all known to the learner. That is, for P € P14,

P[s; = (0,1)] =1
Pls' = (x,0+1)|s=(z,0),a=1]=1, £€{0,1...,00—1}
Pla’ = (2° + 2,0 —1) | s = (z,0),a] =1, £€{0,1,...,0y—1},a> 1.

In words, PP starts at (1, 1), moves leftward with action @ = 1, and rightward with actions a > 1. At each state s = (x, {y),
the learn learner faces transitions described by some Péfn)glc S «@single(Eo) for eg = 1/8H: specifically, we stipulate that

states (z, £o) always transition to states (z’, ¢y + 1), which are absorbing:
VP € Pombd, T € [n], there exists a ngn)gle € Psingle(€0) such that :

Pls' = (¢/,bo+ 1) | s = (2,40),a] =P [ =2 | s =0,d], Ya € [A], 2’ € [2n].

single

Pls' = (2’ bo+1) | s= (2, lg+1),a] =1, Va € [4]

Thus, there is a bijection between instances P € P14 and tuples (P(l) .. ,IP’(") ) e P

single’ single single*
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Description of Reward Class Define the reward class Zembed = {7, } considering for action-independent rewards

0 s=(a,0), £ < Ly,
_Jo s=(2',0p)and 2’ # x
rew(s,0) = 1 s = (z,4)
rola'] s= (2,4 +1)

In other words, the learner recieves reward 1 at state (x, {y), rewards 7, at terminal states (2', £o + 1), and 0 elsewhere. We
now establish that any policy which is e-optimal under reward r,, ,, must visit (y, {max) With sufficiently high probability:

Lemma D.3. Suppose that a (possibly randomized, non-Markovian) policy w satisfies, for e < 1/4 and ¢y < 1/8H,

V™ (P,7) > max V™ (B, 75,) —¢, Vi€ [N].
Then, P™[sgy4+1 = (2, bmax)] > %

Proof. Due to the structure of the transitions and rewards, the value of any policy 7 is

V(B 70) = Pstg41 = (2, 00)] + (H — o = 1) Y v(2')P[se42 = (, o))

z'=1

Since the transitions from (z’, £y) to (2, ¢y + 1) is €g/2n-away from uniform in ., we can also see that P™[s;, 12 =

(z,00)] € (5 — €, 5= +€). Thus, letting 7 := 5 3;1:1 v[z'], we have

2n

(H—to—1) Y v(@)P [sg42 = (2,00)] — (H — Lo — 1)7| < (H — Lo — 1)eg <

r—

0| =

x

This entails that

1
VP, r0) = (H = bo = 1)7 = PT[sgo41 = (2, bo)]| < 3
Consequently, by considering a policy 7’ which always visits state sg,+1 = (,%p) (this can be achieved due to the
deterministic behavior of the actions),
7T/ s us 1 3 T
H}Ta/XV (P, T%V) - V7(P, T%V) >21-P [5504-1 = (Ji,éo)] -2 8 = 4 P [850-"—1 = (x7€0)}
In order for the above to be at most 1/4, we must have that P™[sy, 11 = (x, )] > 1/2. O

Concluding the Proof of Theorem@d.1] To prove Theorem[4.1] we use the following lemma:

Lemma D.4 (Embedding Correspondence). Suppose that H > (2¢g + 2). Then there exists a correspondence ¥, which
does not dependent on P € Pepng or 1y € Fembed (but possibly on €,n, A, H) which operates as follows: Given a

policy T for Enmpea, ¥[r] = (mV) ... 7)) returns an n-tuple of policies for Exngle(n, A) with the following property:
Forany P = (Péilggle, . 7P_£,17:1)gle) € Pembd and 14, € Hembed,

=) (P(@

single’ single’ ' V

VT (P, ry,) > max V™ (P,re,) —€, Vzeln], VT 7,) > max Ve (e r).

Proof of Lemma([D.4] We directly construct the map W. Observe that policies 7(*) on the single state environment can be
discred by a distribution over which actions a € [A] they select at the initial state 2. Thus identifying policies as elements
of A(A), we set

2@)a] 1= Pragy 11 = a| sepr1 = (z,00)] P[se41 = (2,40)] > 0
’ arbitrary otherwise
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as the marginal distribution of actions selected when sg,+1 = (x, ¢y + 1). Observe that the above conditional probabilites
do not depend on P € F14 since the dynamics up to h = ¢y + 1 are identical for all instances. By considing a policy
which coincides with 7 until sy, 11 = (2, £o) and swtiches to playing optimally, we can lower bound the subopitmality of
m by

Hl%.X Vﬂ'l (]P)7 rw,y) - Vﬂ(Py rz,u) Z

s

B [sg1 = (2, 60)] - (H — o = 1) (max V" (@), m) = V7 (@, 007

single’ ' ¥ single’ ' ¥

In particular, if 7 is € < 1/4-suboptimal, then Lemma [D.3|ensures P™[ss, 1 = (z,£y)] > 1/2. Since H > 2({y + 1) by
assumption, we have

/ H =
€2 max VM — VAT > - (max VRS 0n) = VT (B0
Therefore, max,/ V7™ (nggle, r,) = v (Péfn)gle7 ) < %, as needed. O

We now conclude with the proof of our main theorem:

Proof of Theorem[d.1] Let Alg be (e, p)-correct on the class (&embeds Pembds Zembed). Then, for any z € [2n], we
simulate obtain a (4¢/H, p)-correct algorithm for .#ing1c(4€/H;n, A) as follows:

1. Exploration: Let D be the distribution over Pgingle € Peingle from Lemma Draw a tuple P#r = ([P’iilgle)x/#x

Fax
of n — 1 distributions i.i.d from D, and let Alggfn’gle ) denote the algorithm induced by embeding the instance in

///single(4€ /H;n, A) at stage = of the embedding construction, running Alg on this embedded instance

2. Planning: When queried given a reward vector 7, € Zsingle. Use Alg to compute a policy 7 for reward vector
T2 € Xembed, and return the policy (@) dicated by the corresponding .

(z,P7®

Since Alg is (¢, p)-correct and ¢ < 1/4, the correspondence W ensures that for any draw of P72, Alggingle

Vis (4¢/H, p)-
T x F . . .
correct. Let K(®F”") denote the random number of episodes collected by Alggiﬂgle ) in the exploration phase, Thus, if
€< min{i, %}, and n > ¢g log, A for the appropriate ¢ specified in Lemma the Lemmaentails

nAH?

,.7]11:#30
EPSingleNDE (x,P#T) [K(L )] Z 2 -

IPsingle ’Algsingle €

By taking an expectation over P#*, we have

nAH?

z,PF®
<m.n>¢w>[K( o )]Z 5

single €

Ep opn-1p,, E
BEE D Paingte D P 1o Alg

Note then that, if Nx () denotes the number of times that the original Alg visits state (x, £), then, by Fubini’s theorem
(w,P7*)

and the contruction of Algg; ..

, the expectation of N () under probabilities drawn uniform from D" is eugal to the

expectation of K @P”") where P#® is drawm uniformly from D™~ and then the transition Pgingle 18 selected. Formally,

(= P*7)) _
E]pyétnN’Dn—l}PsinglCN’DEP (z,PF£T) [K ] = EPE(P(I) ,,IP’("') y~Drn E]P’,Alg[Kw]

singleaAIgSmgle single?""*?" single
This implies that

nAH?

) .

Ep_p  po0  paErag[Ka] 2

single’ """ single

€
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Since the number of episodes K encounted by Alg is equal to 22:1 K, (the agent visits exactly one state of the form
(z, £o) per episode), we have

AH?
I

n
nAH? n?
Ep_p  poo )NDW,E]P’,AIg[K]ZZ o =
r=1

single?"*"’" single

€

Since S/8 < n < S, for the above conditions to hold, it suffices that, for a sufficiently large constant C, S > C'log, A,
e <min{, £} and H > C'log, S. Moreover, ”sz? = 9(52‘321{2), as needed. O

D.4. Proof of Lemma

A packing of reward-free MDPs The first step is to construct a family of transition probabilities P; € Z(e;n, A)
which witness the lower bound. Let 1 denote the all ones vector on [2n]. To construct the packing, we define the set of
binary vectors

K={ve{-1,1}" :1Tv=0}.
For a cardinality parameter M to be chosen shortly, we consider a packing of vectors
Vau ={ve; € K:ae€l[A],je [M]}

Throughout, we shall consider packings V4, s which are uncorrelated in the following sense:
Definition D.5 (Uncorrelated). For vy € (0,1), we say that V4 5 is y-uncorrelated if, for any pair (a, §), (a’, j') with either
a # a’ orj# j',itholds that |(vg j, vaer j/)| < 2ny..

The following lemma shows that the exist y-uncorrelated packings of size 2y

Lemma D.6. Fixy € (0, 1), and suppose that 2log(M) < ny?* —log(4n) — 2log(A). Then, there exists a y-uncorrelated
packing Vo .

nif

Proof Sketch. We use the probabilistic method. Specifically, we draw v, ; "' K, and can bound (Va,j,Var,j7) With high-
probability Chernoff bounds. Taking a union bound shows that an uncorrelated packings arise from this construction with
non-zero probability. A full proof is given in in Section[D.4.1] O

Given a ~y-uncorrelated packing V4,57, define transition vectors

€ 1
Ga,j = qo + %vam where ¢ = %1.

Since ¢ < land 1Tv, ;, =0, gj., € A(2n). Wet indices J denote tuples J = (J1,...,Ja) € [M]4, let g;(-,a) = qa,J,,
and define P; as the instance P, ,, where P, is as in Definition []. Formally,

Py: IP’PJ[sl =0] =1, PPJ[SQ =0] =0, Vs € [2n], ]P)PJ[SQ =s|s1=0,a] =qs(s,a) =qq.1,(5)

Lower Bound for Estimating the Packing Instance:  Let us suppose we have an exploration algorithm Alg.., which,
for any P, collects (a possibly random number) K trajectories, and returns estimates Ji,...,Ja of Ji, ..., Ja. Our first
step is to establish a lower bound on K assuming that Alg,, satisfies a uniform correctness guarantee:

Lemma D.7. For any Alg., satisfying the guarantee
VI € [AM, Pe, aig., |[Jo=JuVac[A]| >1—a. 9)

Then, we must have

log M — log 2

E 2

(1-p)
Juf.‘if[A]MEIP’J,Algest [K] > A- -

The above bound essentially follows from an application of Fano’s inequality, and is proven in Section[D.4.2] In particular,

if we take say p = 1/2, and require M = e*(), then we have E]ur,if[A]M EFvAlgest [K] > 5;—’24, as desired.
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Estimation Reduces to Exploration Of course, the above bound applies only to an estimation algorithm Alg,,, but
our intent is to establish lower bounds for exploration algorithms. In the following lemma, we state that if the packing is
suffciently uncorrelated, then we can convert an (e/24, p)-correct exploration algorithm into an Algorithm Alg,, satisfying

Eq. (9.
Lemma D.8. Suppose Alg is (e/24,p)-correct on the class Mgingie(€,n, A), and that the packing Vs a is v = 1/10-
uncorrelated. Then, there is an algorithm Alg, which collects K trajectories according to Alg, and satisfies Eq.[9]

Proof Sketch. Consider reward vectors 7, induced by v4 j as,50 X 2¢a,; — qas,jo- These reward vectors can be used
to “pick out” g, s, as follows. For a given a, we show that on the good exploration event, Alg returns policies with
P77 (0) = a] > 1/2for all v = vq_j, 4,5, ranging across ag, jo. However, for j # J,, we show that on this good event
there exists some as, jo for which Alg returns policies with P[7} (0) = a] < 1/2. Hence, we can estimate g, s, by finding
the (say, the first) index j for which P[7}(0) = a] > 1/2 for all v = v j 4, ,j,, Tanging across as, j. A full proof is given
in Section[D.4.3] O

As a consequence, we find that if v < 1/10 and Alg is (¢/24, p)-correct,

(1 —-p)logM —log?2

EJ%f[A]MEPJ,Ng[K] >A- 2
In particular, if log M > 4log 2 and p < 1/2, then,
log M
E.]u,rgf[A]ME]P’,],AIg[K] > A 12 (10)

Concluding the proof Take v = 1/10. For constants ¢y, ¢; sufficiently large, we can ensure that if n > ¢glog, A,
then M = e~"/ statisfies 2log(M) < ny? — log(4n) — 2log(A) and log M > 4log?2. Thus, we can construct a
~-uncorrelated packing of cardinality log M > n/cq,

n

E L
4cq€?’

J“ﬁ,‘f[A] M E]PJ JAlg [K] > A

as needed. O

D.4.1. PROOF OF LEMMA [D.G]

We begin with the following concentration inequality:
Lemma D.9. For any fixed (a, j) and (a', j'), we have

2

P[|<’Ua,j7va’,j'>‘ > 271’}/] < elog(4n)—ny*

Proof. By permuting coordinates, we may assume that

1 sen]
var,jr[s] = ~
-1 se{n+1,...,2n}
Then,

(Va,j;var,jr) = 2l{s € [n] : va j[s] = 1} = 2(n = [{s € [n] : vaj[s] = 1}])
=2n—4{s € [n] : vy j[s] = 1}| :=2n —4Z,

where we set Z = |{s € [n] : vy, [s] = 1}|. Hence, if |(vq,j, va j/)| > 271, we need

Z 1’
Z 2>
n 2|

po |2
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Now, we have that for ¢ € [n],

IP’[Z = ’L] < (?) . (nil) = (?)2 5 <N

Z?:o (7) ’ (nii) Z?:o (?)

(1)’
(X (1)

2 = n]PWNBinom(n,l/2) [W = Z]2

Hence,

zZ 1 0% .
— — ‘ > 2] <n Z Py ~Binom(n,1,2)[W = i]*

<n ]PWNBmom(n 1/2) [W Z}
iln—3123
2
=n (PWNBinom(n,l/Q) [ e ;‘ = ﬂ) < 71(2672(”/2)%)2 = eloslin) =y
n

We now finish the proof of our intended lemma:

Proof of Lemma[D.6] By a union bound over at most A>M? — 1 pairs (a, j), (a/, j'), there exists a y-uncorrelated packing
for any M satisfying

A2M2610g(4n)—n72 <1

Taking logarithms, we require 21log(M) < nvy? — log(4n) — 2log(A).

D.4.2. PROOF OF LEMMA [D.7]

To begin, let us state a variant of Fano’s inequality, which replaces mutual-information with an arbitrary comparison
measure:

Lemma D.10 ( Fano’s Inequality ). Consider M probability measures Py, . .., P on a space Q). Then for any estimator
7 on Q) and any comparison law Py on §Q,

M
iip, [A,# } - log2 + 47 >-5— KL(P;, Po)
M7= log M

Proof. This follows from the standard statement of Fano’s inequality, where we use that

M
mf—ZKL (P, ) = ZKL P, — ZI@,
j/=1

For reference, see e.g. Equation (11) in (Chen et al., [2016)). O

We will apply Fano’s inequality of each a € [A]. To begin, for a fixed J € [M]* and a € [A], let us define the laws “P;”.
We let P, ; denote the reward-free MDP with starting at « = 0 deterministically, and with transitions

. qa [3]
PPJ’G‘] [S | xr1 = O7 a; = a’] = J
Qa’,Ja/ [5] a 7£ a.
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For fixed J, a, we let P;. ;. denote the joint law induced by Alg.y; and P, ;. For the comparison measure, let P;, o
denote the analogous MDP to P, j, but where P¥7.«.i[s | z1 = 0,a1 = a] = qq for the fixed action a. We let Py, ;,
denote the law induced by Alg,; and P, ;. Then, Fano’s igequality implies that

M
1
¥, (1-p)logM —log2 < - ;KL(PJW, P, .0)- (11)
Now, observe that the laws P, ; and Py, ;, only differ due to transitions selecting action a; = a. Under the first

law, these have distribution Multinomial(g,,;), and under the second, Multinomial(gg). Let Nx(a = a1) denote the
expected number of times algorithm Alg,, selects action a; = a at time step 1. From a Wald’s identity argument (see e.g.
(Kaufmann et al.l 2016))), we have

KL(Pja.j,Po;5.a) = Ep,, ; Ak, [Nk (a1 = a)] KL (Multlnomlal(qa ), Multinomial(gqa.0))

1—|—ev
= EIPJa J)Algeit NK ar = Cl Z ]7 1 g(l + 611] a[ ])
2n 2

Zevja—ke Vjal]

NS

< Ep,, Al [N
s=1
(G
< € Epja,jal, [Nk(a1 = a)]
where (i) uses 1+€v; 4[s] > 0 and the identity log(1+z) < z, and (i7) uses the fact that v; ,[s]* = 1 and Zle Vjq[s] =0
for v; , € K. Thus, by Eq[TT]

M

1—p)logM —log?2 1

LopNlos M2 082« LS B, .., .. Nic(n = )]
j=1

vJ, a,

€

By taking an expectation over index tuples .J drawn uniformly from [A]™, we have

(1—p)logM —

log 2 1 &
va, 2 <77 Z EJ“,[\‘/if[A]M Ep, . ;.. [Nk (a1 = a)]
j=1

€

=E ““‘f[A]M EPLA'gedt [NK ((11 = a)] )

where the last line follows that P, ; = P for some J’ and that, by symmetry, each index J' has equal weight when
averaged over both J € [A]™ and j € [M]. Summing over a € [A], we have

A
—p)log M —log2
2 < EJ“&“[A]MEIP’J,AIgcst 2—:1 Ni (a1 = a)

4 U

=E .. ]\/[EH:DJyAIgcst [K]

€ J~[A]

D.4.3. PROOF OF LEMMA [D.§]

Let us now show that (e/12, p)-learning implies the existence of an algorithm Alg,, satisfying Eq. E], provided the packing
is sufficiently uncorrelated. Introduce the vectors

1
Vay,az,j1,j2 = gvalle + Bvaz,jz + 517

which can be checked to lie [0, 1]2"*. We shall establish the following lemma, which says that for sufficciently uncorrelated
packings, the vectors v ) witness separations between ¢, ;, and g, ;, for different actions a1, az:

Lemma D.11. Fix a; € [A] and j; € [M), and suppose the packing is v = 1/10-uncorrelated: Then, for any as # a;
and js € [M), the following holds

. €
H}H}@al,jl - qa2,j2’ya17alz’j1>jé> > 12
2172

€

-/ .
Vi1 # 1 Wil{day g~ Gaz,gas Vasag.itig) < 15
CDEND
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Proof of Lemma[D.T]|

€

(dargs = Gaz.gas Vat saji4,4) = 5 (Var g = Vaz.as Vag ag.0.33)

€
m@al,jl — Vay,jzs 2Va) 54 — ”a’z,jQ»

where we use the fact that UI ;1= 1foralla,j. If @} = a; and j; = ji, and the packing is v < 1/6-uncorrelated

€
<Qa1,j1 — Gas,jo> Va17al27j1:jé> = 12n <Ua1~,j1 — Vay,jor 2Vay,j1 — va’gJé)

€
= 1920 (2<Ua1,j17’ua1,j1> - 2<'Ua2,j2;'Ua1,j1> + <’Ua1,j1,71a’2,jé> - <’Ua2’j27va§,jé>)

€

dn — — o —

> 12n( n —4dyn — 2n — 2n7y)
€ €

>—(2n—-6 = —.

2 g -6 = 53

On the other hand, if j; # ji, but (ag, j2) = (ab, j5) then a similar computation reveals that for v < 1/10,

€
(Gar.jr — qag,jz,l/al,ag,j{,jJ < on (10yn —2n)) < 12

We can now conclude the proof of our reduction:

Proof of Lemma[D.8] Suppose that Alg is run on P; for J € [M ]4. Further, recall the rewards r,, which assign reward of
ru(s,a) =1I(s € [2n])v(s). By (¢/24, p)-correctness of Alg, then with probability 1 — p, Alg computes policies 7, which
satisfies the following bound simultaneously for all v € {v4, 45,5152 }:

max V7 (Py,r,) — VT (Ps,r,) < €/24. (12)

For a possibly randomized policy, we use the shorthand 7[a] to denote the probability of selecting a at the initial state 0;
that is P™[a; = a]. Now, Consider the following procedure: for each a € [A], estimate .J, by returning the first j € [M]
for which

Vay, iy, T, ,, ., la] > 1/2. (13)

il
510,35

We conclude our proof by showing that, on the good event Eq. (12), the condition in Eq. (I3)) holds if and only if j = J,.
To this end, define the short hand

x =Y _7lalqar s,

a’

Then, we have that
max V"™ (Py,r,) — & (Py,ry) =max (gr — gz, V),

so that on the good event of Eq.[T12] we have

True Positive for j = J,: First let’s show that Equation [I3] holds for j = J,. Indeed, if it does not, then there exists

some aj, jj for which P[7,,  , . [a]] <1/2,and (setting v = y,j,q,,j3 for shorthand in 7)

€/24 > max (¢ — qz,, V),
s



Reward-Free Exploration for RL

> (qa,1, — Gz, Va,,j,a;,j;> (choose 7[a] = 1)
= Z Tola'] (da,0. = Gar 0,0 Varjal.g)
a’#a
~ . €
> (1 - ﬂ—l/[a]) : ,13/17132 <qa,Ja —da’,J,s Va,j,a’z,jé> > ﬂv

>e€/12 by Lemma[D.T1]

yielding a contradiction.

True Negative for j # J,: On the other hand, for j # .J, suppose that for all all ¢, # « and all j5 € [M],

Va,jab i) o ‘ .
P[7,""*272(0) = a] > 1/2. Then, considering a4 = az and j5 = J,,, we have (setting v = v ja,,,, for short-
hand in 7)

6/24 2 H}f}x <qa’,.]a/ — Qqzv, Va,j,az,,]2>

Z <Qa2,Ja2 — qzv, Va,j,ag,J2>
~ . €
WV[GQ] : ;&132 <Qa2,.]a2 —da’,J, Va,j,a’z,jé> > ﬂv

>7y[a]>1/2

v

>€/12 by Lemma[D.11]

again drawing a contradiction. O



