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A. Omitted Details for the Algorithm
In this section, we provide omitted details on how to implement our algorithm efficiently.

A.1. Updating Occupancy Measure

This subsection explains how to implement the update defined in Eq. (7) efficiently. We use almost the same approach as
in (Rosenberg & Mansour, 2019a) with the only difference being the choice of confidence set. We provide details of the
modification here for completeness. It has been shown in (Rosenberg & Mansour, 2019a) that Eq. (7) can be decomposed
into two steps: (1) compute q̃t+1(x, a, x′) = q̂t(x, a, x

′) exp{−η̂̀t(x, a)} for any (x, a, x′), which is the optimal solution
of the unconstrained problem; (2) compute the projection step:

q̂t+1 = argmin
q∈∆(Pi)

D(q ‖ q̃t+1), (11)

Since our choice of confidence set ∆(Pi) is different, the main change lies in the second step, whose constraint set can be
written explicitly using the following set of linear equations:

∀k :
∑

x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′) = 1,

∀k, ∀x ∈ Xk :
∑

a∈A,x′∈Xk+1

q (x, a, x′) =
∑

x′∈Xk−1,a∈A
q (x′, a, x),

∀k, ∀ (x, a, x′) ∈ Xk ×A×Xk+1 : q (x, a, x′) ≤
[
P̄i (x′|x, a) + εi (x′|x, a)

] ∑
y∈Xk+1

q (x, a, y),

q (x, a, x′) ≥
[
P̄i (x′|x, a)− εi (x′|x, a)

] ∑
y∈Xk+1

q (x, a, y),

q (x, a, x′) ≥ 0. (12)

Therefore, the projection step Eq. (11) is a convex optimization problem with linear constraints, which can be solved in
polynomial time. This optimization problem can be further reformulated into a dual problem, which is a convex optimization
problem with only non-negativity constraints, and thus can be solved more efficiently.

Lemma 7. The dual problem of Eq.(11) is to solve

µt, βt = argmin
µ,β≥0

L−1∑
k=0

lnZkt (µ, β)

where β := {β(x)}x and µ := {µ+(x, a, x′), µ−(x, a, x′)}(x,a,x′) are dual variables and

Zkt (µ, β) =
∑

x∈Xk,a∈A,x′∈Xk+1

q̂t (x, a, x′) exp
{
Bµ,βt (x, a, x′)

}
,

Bµ,βt (x, a, x′) = β (x′)− β (x) +
(
µ− − µ+

)
(x, a, x′)− η̂̀t (x, a)

+
∑

y∈Xk(x)+1

(
µ+ − µ−

)
(x, a, y) P̄i (y|x, a) +

(
µ+ + µ−

)
(x, a, y) εi (y|x, a).

Furthermore, the optimal solution to Eq.(11) is given by

q̂t+1 (x, a, x′) =
q̂t (x, a, x′)

Z
k(x)
t (µt, βt)

exp
{
Bµt,βt

t (x, a, x′)
}
.

Proof. In the following proof, we omit the non-negativity constraint Eq. (12). This is without loss of generality, since the
optimal solution for the modified version of Eq.(11) without the non-negativity constraint Eq. (12) turns out to always satisfy
the non-negativity constraint.
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We write the Lagrangian as:

L (q, λ, β, µ) =D (q||q̃t+1) +

L−1∑
k=0

λk

 ∑
x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′)− 1


+

L−1∑
k=1

∑
x∈Xk

β (x)

 ∑
a∈A,x′∈Xk+1

q (x, a, x′)−
∑

x′∈Xk−1,a∈A
q (x′, a, x)


+

L−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

µ+ (x, a, x′)

q (x, a, x′)−
[
P̄i (x′|x, a) + εi (x′|x, a)

] ∑
y∈Xk+1

q (x, a, y)


+

L−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

µ− (x, a, x′)

[P̄i (x′|x, a)− εi (x′|x, a)
] ∑
y∈Xk+1

q (x, a, y)− q (x, a, x′)


where λ := {λk}k, β := {β(x)}x and µ := {µ+(x, a, x′), µ−(x, a, x′)}(x,a,x′) are Lagrange multipliers. We also define
β (x0) = β (xL) = 0 for convenience. Now taking the derivative we have

∂L
∂q (x, a, x′)

= ln q (x, a, x′)− ln q̃t+1 (x, a, x′) + λk(x) + β (x)− β (x′) +
(
µ+ − µ−

)
(x, a, x′)

−
∑

y∈Xk(x)+1

(
µ+ − µ−

)
(x, a, y) P̄i (y|x, a) +

(
µ+ + µ−

)
(x, a, y) εi (y|x, a)

= ln q (x, a, x′)− ln q̃t+1 (x, a, x′) + λk(x) − η̂̀t (x, a)−Bµ,βt (x, a, x′) .

Setting the derivative to zero gives the explicit form of the optimal q? by

q? (x, a, x′) = q̃t+1 (x, a, x′) exp
{
−λk(x) + η̂̀t (x, a) +Bµ,βt (x, a, x′)

}
= q̂t (x, a, x′) exp

{
−λk(x) +Bµ,βt (x, a, x′)

}
.

On the other hand, setting ∂L/∂λk = 0 shows that the optimal λ? satisfies

exp {λ?k} =
∑

x∈Xk,a∈A,x′∈Xk+1

q̂t (x, a, x′) exp
{
Bµ,βt (x, a, x′)

}
= Zkt (µ, β) .

It is straightforward to check that strong duality holds, and thus the optimal dual variables µ?, β? are given by

µ?, β? = argmax
µ,β≥0

max
λ

min
q
L (q, λ, β, µ) = argmax

µ,β≥0
L (q?, λ?, β, µ) .

Finally, we note the equality

L (q, λ, β, µ) =D (q||q̃t+1) +

L−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

(
∂L

∂q (x, a, x′)
− ln q (x, a, x′) + ln q̃t+1 (x, a, x′)

)
q(x, a, x′)−

L−1∑
k=1

λk

=

L−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

[(
∂L

∂q (x, a, x′)
− 1

)
q(x, a, x′) + q̃t+1(x, a, x′)

]
−
L−1∑
k=1

λk.

This, combined with the fact that q? has zero partial derivative, gives

L (q?, λ?, β, µ) =− L+

L−1∑
k=0

∑
x∈Xk,a∈A,x′∈Xk+1

q̃t+1(x, a, x′)−
L−1∑
k=0

lnZkt (µ, β).
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Note that the first two terms in the last expression are independent of (µ, β). We thus have:

µ?, β? = argmax
µ,β≥0

L (q?, λ?, β, µ) = argmin
µ,β≥0

L−1∑
k=0

lnZkt (µ, β).

Combining all equations for (q?, λ?, µ?, β?) finishes the proof.

A.2. Computing Upper Occupancy Bounds

This subsection explains how to greedily solve the following optimization problem from Eq. (10):

max
P̂ (·|x̃,a)

∑
x′∈Xk(x̃)+1

P̂ (x′|x̃, a)f(x′)

subject to P̂ (·|x̃, a) being a valid distribution over Xk(x̃)+1 and for all x′ ∈ Xk(x̃)+1,∣∣∣P̂ (x′|x̃, a)− P̄i(x′|x̃, a)
∣∣∣ ≤ εi(x′|x̃, a),

where (x̃, a) is some fixed state-action pair, εi(x′|x̃, a) is defined in Eq. (6), and the value of f(x′) for any x′ ∈ Xk(x̃)+1 is
known. To simplify notation, let n = |Xk(x̃)+1|, and σ : [n]→ Xk(x̃)+1 be a bijection such that

f(σ(1)) ≤ f(σ(2)) ≤ · · · ≤ f(σ(n)).

Further let p̄ and ε be shorthands of P̄i(·|x̃, a) and εi(·|x̃, a) respectively. With these notations, the problem becomes

max
p∈Rn

+:
∑

x′ p(x
′)=1

|p(x′)−p̄(x′)|≤ε(x′)

n∑
j=1

p(σ(j))f(σ(j)).

Clearly, the maximum is achieved by redistributing the distribution p̄ so that it puts as much weight as possible on states
with large f value under the constraint. This can be implemented efficiently by maintaining two pointers j− and j+

starting from 1 and n respectively, and considering moving as much weight as possible from state x− = σ(j−) to state
x+ = σ(j+). More specifically, the maximum possible weight change for x− and x+ are δ− = min{p̄(x−), ε(x−)} and
δ+ = min{1− p̄(x+), ε(x+)} respectively, and thus we move min{δ−, δ+} amount of weight from x− to x+. In the case
where δ− ≤ δ+, no more weight can be decreased from x− and we increase the pointer j− by 1 as well as decreasing ε(x+)
by δ− to reflect the change in maximum possible weight increase for x+. The situation for the case δ− > δ+ is similar. The
procedure stops when the two pointers coincide. See Algorithm 4 for the complete pseudocode.

We point out that the step of sorting the values of f and finding σ can in fact be done only once for each layer (instead of
every call of Algorithm 4). For simplicity, we omit this refinement.

B. Omitted Details for the Analysis
In this section, we provide omitted proofs for the regret analysis of our algorithm.

B.1. Auxiliary Lemmas

First, we prove Lemma 2 which states that with probability at least 1 − 4δ, the true transition function P is within the
confidence set Pi for all epoch i.

Proof of Lemma 2. By the empirical Bernstein inequality (Maurer & Pontil, 2009, Theorem 4) and union bounds, we have
with probability at least 1− 4δ, for all (x, a, x′) ∈ Xk ×A×Xk+1, k = 0, . . . , L− 1, and any i ≤ T ,

∣∣P (x′|x, a)− P̄i(x′|x, a)
∣∣ ≤

√√√√2P̄i(x′|x, a)(1− P̄i(x′|x, a)) ln
(
T |X|2|A|

δ

)
max{1, Ni(x, a)− 1}

+
7 ln

(
T |X|2|A|

δ

)
3 max{1, Ni(x, a)− 1}
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Algorithm 4 GREEDY

Input: f : X → [0, 1], a distribution p̄ over n states of layer k , positive numbers {ε(x)}x∈Xk

Initialize: j− = 1, j+ = n, sort {f(x)}x∈Xk
and find σ such that f(σ(1)) ≤ f(σ(2)) ≤ · · · ≤ f(σ(n))

while j− < j+ do
x− = σ(j−), x+ = σ(j+)
δ− = min{p̄(x−), ε(x−)} Bmaximum weight to decrease for state x−

δ+ = min{1− p̄(x+), ε(x+)} Bmaximum weight to increase for state x+

p̄(x−)← p̄(x−)−min{δ−, δ+}
p̄(x+)← p̄(x+) + min{δ−, δ+}
if δ− ≤ δ+ then
ε(x+)← ε(x+)− δ−
j− ← j− + 1

else
ε(x−)← ε(x−)− δ+

j+ ← j+ − 1
end if

end while
Return:

∑n
j=1 p̄(σ(j))f(σ(j))

≤ 2

√√√√ P̄i(x′|x, a) ln
(
T |X||A|

δ

)
max{1, Ni(x, a)− 1}

+
14 ln

(
T |X||A|

δ

)
3 max{1, Ni(x, a)− 1}

= εi(x
′|x, a)

which finishes the proof.

Next, we state three lemmas that are useful for the rest of the proof. The first one shows a convenient bound on the difference
between the true transition function and any transition function from the confidence set.

Lemma 8. Under the event of Lemma 2, for all epoch i, all P̂ ∈ Pi, all k = 0, . . . , L− 1 and (x, a, x′) ∈ Xk ×A×Xk+1,
we have

∣∣∣P̂ (x′|x, a)− P (x′|x, a)
∣∣∣ = O


√√√√P (x′|x, a) ln

(
T |X||A|

δ

)
max{1, Ni(x, a)}

+
ln
(
T |X||A|

δ

)
max{1, Ni(x, a)}

 , ε?i (x
′|x, a).

Proof. Under the event of Lemma 2, we have

P̄i(x
′|x, a) ≤ P (x′|x, a) + 2

√√√√ P̄i(x′|x, a) ln
(
T |X||A|

δ

)
max{1, Ni(x, a)− 1}

+
14 ln

(
T |X||A|

δ

)
3 max{1, Ni(x, a)− 1}

.

Viewing this as a quadratic inequality of
√
P̄i(x′|x, a) and solving for P̄i(x′|x, a) prove the lemma.

The next one is a standard Bernstein-type concentration inequality for martingale. We use the version from (Beygelzimer
et al., 2011, Theorem 1).

Lemma 9. Let Y1, . . . , YT be a martingale difference sequence with respect to a filtration F1, . . . ,FT . Assume Yt ≤ R a.s.
for all i. Then for any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ, we have

T∑
t=1

Yt ≤ λ
T∑
t=1

Et[Y 2
t ] +

ln(1/δ)

λ
.

The last one is a based on similar ideas used for proving many other optimistic algorithms.
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Lemma 10. With probability at least 1− 2δ, we have for all k = 0, . . . , L− 1,

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
= O (|Xk||A| lnT + ln(L/δ)) (13)

and
T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)√
max{1, Nit(x, a)}

= O
(√
|Xk||A|T + |Xk||A| lnT + ln(L/δ)

)
. (14)

Proof. Let It(x, a) be the indicator of whether the pair (x, a) is visited in episode t so that Et[It(x, a)] = qt(x, a). We
decompose the first quantity as

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
=

T∑
t=1

∑
x∈Xk,a∈A

It(x, a)

max{1, Nit(x, a)}
+

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)− It(x, a)

max{1, Nit(x, a)}
.

The first term can be bounded as

∑
x∈Xk,a∈A

T∑
t=1

It(x, a)

max{1, Nit(x, a)}
=

∑
x∈Xk,a∈A

O (lnT ) = O (|Xk||A| lnT ) .

To bound the second term, we apply Lemma 9 with Yt =
∑
x∈Xk,a∈A

qt(x,a)−It(x,a)
max{1,Nit (x,a)} ≤ 1, λ = 1/2, and the fact

Et[Y 2
t ] ≤ Et


 ∑
x∈Xk,a∈A

It(x, a)

max{1, Nit(x, a)}

2


= Et

 ∑
x∈Xk,a∈A

It(x, a)

max{1, N2
it

(x, a)}

 (It(x, a)It(x′, a′) = 0 for x 6= x′ ∈ Xk)

≤
∑

x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
,

which gives with probability at least 1− δ/L,

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)− It(x, a)

max{1, Nit(x, a)}
≤ 1

2

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
+ 2 ln

(
L

δ

)
.

Combining these two bounds, rearranging, and applying a union bound over k prove Eq. (13).

Similarly, we decompose the second quantity as

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)√
max{1, Nit(x, a)}

=

T∑
t=1

∑
x∈Xk,a∈A

It(x, a)√
max{1, Nit(x, a)}

+

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)− It(x, a)√
max{1, Nit(x, a)}

.

The first term is bounded by

∑
x∈Xk,a∈A

T∑
t=1

It(x, a)√
max{1, Nit(x, a)}

= O

 ∑
x∈Xk,a∈A

√
NiT (x, a)


≤ O

√|Xk||A|
∑

x∈Xk,a∈A
NiT (x, a)

 = O
(√
|Xk||A|T

)
,
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where the second line uses the Cauchy-Schwarz inequality and the fact
∑
x∈Xk,a∈ANiT (x, a) ≤ T . To bound the second

term, we again apply Lemma 9 with Yt =
∑
x∈Xk,a∈A

qt(x,a)−It(x,a)√
max{1,Nit (x,a)}

≤ 1, λ = 1, and the fact

Et[Y 2
t ] ≤ Et


 ∑
x∈Xk,a∈A

It(x, a)√
max{1, Nit(x, a)}

2
 =

∑
x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
,

which shows with probability at least 1− δ/L,

T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)− It(x, a)√
max{1, Nit(x, a)}

≤
T∑
t=1

∑
x∈Xk,a∈A

qt(x, a)

max{1, Nit(x, a)}
+ ln

(
L

δ

)
.

Combining Eq. (13) and a union bound proves Eq. (14).

B.2. Proof of the Key Lemma

We are now ready to prove Lemma 4, the key lemma of our analysis which requires using our new confidence set.

Proof of Lemma 4. To simplify notation, let qxt = qP
x
t ,πt . Note that for any occupancy measure q, by definition we have for

any (x, a) pair,

q(x, a) = πq(x|a)
∑

{xk∈Xk,ak∈A}k(x)−1
k=0

k(x)−1∏
h=0

πq(ah|xh)

k(x)−1∏
h=0

P q(xh+1|xh, ah).

where we define xk(x) = x for convenience. Therefore, we have

|qxt (x, a)− qt(x, a)| = πt(x|a)
∑

{xk,ak}k(x)−1
k=0

k(x)−1∏
h=0

πt(ah|xh)

k(x)−1∏
h=0

P xt (xh+1|xh, ah)−
k(x)−1∏
h=0

P (xh+1|xh, ah)

 .

By adding and subtracting k(x)− 1 terms we rewrite the last term in the parentheses as

k(x)−1∏
h=0

P xt (xh+1|xh, ah)−
k(x)−1∏
h=0

P (xh+1|xh, ah)

=

k(x)−1∏
h=0

P xt (xh+1|xh, ah)−
k(x)−1∏
h=0

P (xh+1|xh, ah)±
k(x)−1∑
m=1

m−1∏
h=0

P (xh+1|xh, ah)

k(x)−1∏
h=m

P xt (xh+1|xh, ah)

=

k(x)−1∑
m=0

(P xt (xm+1|xm, am)− P (xm+1|xm, am))

m−1∏
h=0

P (xh+1|xh, ah)

k(x)−1∏
h=m+1

P xt (xh+1|xh, ah),

which, by Lemma 8, is bounded by

k(x)−1∑
m=0

ε?it(xm+1|xm, am)

m−1∏
h=0

P (xh+1|xh, ah)

k(x)−1∏
h=m+1

P xt (xh+1|xh, ah).

We have thus shown

|qxt (x, a)− qt(x, a)|

≤ πt(x|a)
∑

{xk,ak}k(x)−1
k=0

k(x)−1∏
h=0

πt(ah|xh)

k(x)−1∑
m=0

ε?it(xm+1|xm, am)

m−1∏
h=0

P (xh+1|xh, ah)

k(x)−1∏
h=m+1

P xt (xh+1|xh, ah)
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=

k(x)−1∑
m=0

∑
{xk,ak}k(x)−1

k=0

ε?it(xm+1|xm, am)

(
πt(am|xm)

m−1∏
h=0

πt(ah|xh)P (xh+1|xh, ah)

)

·

πt(x|a)

k(x)−1∏
h=m+1

πt(ah|xh)P xt (xh+1|xh, ah)


=

k(x)−1∑
m=0

∑
xm,am,xm+1

ε?it(xm+1|xm, am)

 ∑
{xk,ak}m−1

k=0

πt(am|xm)

m−1∏
h=0

πt(ah|xh)P (xh+1|xh, ah)



·

∑
am+1

∑
{xk,ak}k(x)−1

k=m+2

πt(x|a)

k(x)−1∏
h=m+1

πt(ah|xh)P xt (xh+1|xh, ah)


=

k(x)−1∑
m=0

∑
xm,am,xm+1

ε?it(xm+1|xm, am)qt(xm, am)qxt (x, a|xm+1), (15)

where we use qxt (x, a|xm+1) to denote the probability of encountering pair (x, a) given that xm+1 was visited in layer
m+ 1, under policy πt and transition P xt . By the exact same reasoning, we also have

|qxt (x, a|xm+1)− qt(x, a|xm+1)| ≤
k(x)−1∑
h=m+1

∑
x′h,a

′
h,x
′
h+1

ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1)qxt (x, a|x′h+1)

≤ πt(a|x)

k(x)−1∑
h=m+1

∑
x′h,a

′
h,x
′
h+1

ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1) (16)

Combining Eq. (15) and Eq. (16), summing over all t and (x, a), and using the shorthands wm = (xm, am, xm+1) and
w′h = (x′h, a

′
h, x
′
h+1), we have derived

T∑
t=1

∑
x∈X,a∈A

|qxt (x, a)− qt(x, a)|

≤
∑
t,x,a

k(x)−1∑
m=0

∑
wm

ε?it(xm+1|xm, am)qt(xm, am)qt(x, a|xm+1)

+
∑
t,x,a

k(x)−1∑
m=0

∑
wm

ε?it(xm+1|xm, am)qt(xm, am)

πt(a|x)

k(x)−1∑
h=m+1

∑
w′h

ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1)


=
∑
t

∑
k<L

k−1∑
m=0

∑
wm

ε?it(xm+1|xm, am)qt(xm, am)
∑

x∈Xk,a∈A
qt(x, a|xm+1)

+
∑
t

∑
k<L

k−1∑
m=0

∑
wm

k−1∑
h=m+1

∑
w′h

ε?it(xm+1|xm, am)qt(xm, am)ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1)

 ∑
x∈Xk,a∈A

πt(a|x)


=

∑
0≤m<k<L

∑
t,wm

ε?it(xm+1|xm, am)qt(xm, am)

+
∑

0≤m<h<k<L

|Xk|
∑

t,wm,w′h

ε?it(xm+1|xm, am)qt(xm, am)ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1)

≤
∑

0≤m<k<L

∑
t,wm

ε?it(xm+1|xm, am)qt(xm, am)︸ ︷︷ ︸
,B1
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+ |X|
∑

0≤m<h<L

∑
t,wm,w′h

ε?it(xm+1|xm, am)qt(xm, am)ε?it(x
′
h+1|x′h, a′h)qt(x

′
h, a
′
h|xm+1)

︸ ︷︷ ︸
,B2

.

It remains to bound B1 and B2 using the definition of ε?it . For B1, we have

B1 = O

 ∑
0≤m<k<L

∑
t,wm

qt(xm, am)

√√√√P (xm+1|xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

+
qt(xm, am) ln

(
T |X||A|

δ

)
max{1, Nit(xm, am)}



≤ O

 ∑
0≤m<k<L

∑
t,xm,am

qt(xm, am)

√√√√ |Xm+1| ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

+
qt(xm, am) ln

(
T |X||A|

δ

)
max{1, Nit(xm, am)}


≤ O

 ∑
0≤m<k<L

√
|Xm||Xm+1||A|T ln

(
T |X||A|

δ

)
≤ O

 ∑
0≤m<k<L

(|Xm|+ |Xm+1|)

√
|A|T ln

(
T |X||A|

δ

)
= O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
,

where the second line uses the Cauchy-Schwarz inequality, the third line uses Lemma 10, and the fourth line uses the
AM-GM inequality.

For B2, plugging the definition of ε?it and using trivial bounds (that is, ε?it and qt are both at most 1 regardless of the
arguments), we obtain the following three terms (ignoring constants)

∑
0≤m<h<L

∑
t,wm,w′h

√√√√P (xm+1|xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

qt(xm, am)

√√√√P (x′h+1|x′h, a′h) ln
(
T |X||A|

δ

)
max{1, Nit(x′h, a′h)}

qt(x
′
h, a
′
h|xm+1)

+
∑

0≤m<h<L

∑
t,wm,w′h

qt(xm, am) ln
(
T |X||A|

δ

)
max{1, Nit(xm, am)}

+
∑

0≤m<h<L

∑
t,wm,w′h

qt(x
′
h, a
′
h) ln

(
T |X||A|

δ

)
max{1, Nit(x′h, a′h)}

.

The last two terms are both of order O(lnT ) by Lemma 10 (ignoring dependence on other parameters), while the first term
can be written as ln

(
T |X||A|

δ

)
multiplied by the following:

∑
0≤m<h<L

∑
t,wm,w′h

√
qt(xm, am)P (x′h+1|x′h, a′h)qt(x′h, a

′
h|xm+1)

max{1, Nit(xm, am)}

√
qt(xm, am)P (xm+1|xm, am)qt(x′h, a

′
h|xm+1)

max{1, Nit(x′h, a′h)}

≤
∑

0≤m<h<L

√√√√ ∑
t,wm,w′h

qt(xm, am)P (x′h+1|x′h, a′h)qt(x′h, a
′
h|xm+1)

max{1, Nit(xm, am)}

√√√√ ∑
t,wm,w′h

qt(xm, am)P (xm+1|xm, am)qt(x′h, a
′
h|xm+1)

max{1, Nit(x′h, a′h)}

=
∑

0≤m<h<L

√√√√|Xm+1|
∑

t,xm,am

qt(xm, am)

max{1, Nit(xm, am)}

√√√√|Xh+1|
∑

t,x′h,a
′
h

qt(x′h, a
′
h)

max{1, Nit(x′h, a′h)}

= O
(
|A| ln

(
T |X||A|

δ

)) ∑
0≤m<h<L

√
|Xm||Xm+1||Xh||Xh+1| = O

(
L2|X|2|A| ln

(
T |X||A|

δ

))
,

where the second line uses the Cauchy-Schwarz inequality and the last line uses Lemma 10 again. This shows that the entire
term B2 is of order O(lnT ). Finally, realizing that we have conditioned on the events stated in Lemmas 8 and 10, which
happen with probability at least 1− 6δ, finishes the proof.
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B.3. Bounding REG and BIAS2

In this section, we complete the proof of our main theorem by bounding the terms REG and BIAS2. We first state the
following useful concentration lemma which is a variant of (Neu, 2015, Lemma 1) and is the key for analyzing the implicit
exploration effect introduced by γ. The proof is based on the same idea of the proof for (Neu, 2015, Lemma 1).
Lemma 11. For any sequence of functions α1, . . . , αT such that αt ∈ [0, 2γ]X×A is Ft-measurable for all t, we have with
probability at least 1− δ,

T∑
t=1

∑
x,a

αt(x, a)

(̂̀
t(x, a)− qt(x, a)

ut(x, a)
`t(x, a)

)
≤ L ln L

δ .

Proof. Fix any t. For simplicity, let β = 2γ and It,x,a be a shorthand of I{xk(x) = x, ak(x) = a}. Then for any state-action
pair (x, a), we have

̂̀
t(x, a) =

`t(x, a)It,x,a
ut(x, a) + γ

≤ `t(x, a)It,x,a
ut(x, a) + γ`t(x, a)

=
It,x,a
β
· 2γ`t(x, a)/ut(x, a)

1 + γ`t(x, a)/ut(x, a)
≤ 1

β
ln

(
1 +

β`t(x, a)It,x,a
ut(x, a)

)
, (17)

where the last step uses the fact z
1+z/2 ≤ ln(1 + z) for all z ≥ 0. For each layer k < L, further define

Ŝt,k =
∑

x∈Xk,a∈A
αt(x, a)̂̀t(x, a) and St,k =

∑
x∈Xk,a∈A

αt(x, a)
qt(x, a)

ut(x, a)
`t(x, a).

The following calculation shows Et
[
exp(Ŝt,k)

]
≤ exp(St,k):

Et
[
exp(Ŝt,k)

]
≤ Et

exp

 ∑
x∈Xk,a∈A

αt(x, a)

β
ln

(
1 +

β`t(x, a)It,x,a
ut(x, a)

) (by Eq. (17))

≤ Et

 ∏
x∈Xk,a∈A

(
1 +

αt(x, a)`t(x, a)It,x,a
ut(x, a)

)
= Et

1 +
∑

x∈Xk,a∈A

αt(x, a)`t(x, a)It,x,a
ut(x, a)


= 1 + St,k ≤ exp(St,k).

Here, the second inequality is due to the fact z1 ln(1 + z2) ≤ ln(1 + z1z2) for all z2 ≥ −1 and z1 ∈ [0, 1], and we apply it
with z1 = αt(x,a)

β which is in [0, 1] by the condition αt(x, a) ∈ [0, 2γ]; the first equality holds since It,x,aIt,x′,a′ = 0 for
any x 6= x′ or a 6= a′ (as only one state-action pair can be visited in each layer for an episode). Next we apply Markov
inequality and show

Pr

[
T∑
t=1

(Ŝt,k − St,k) > ln

(
L

δ

)]
≤ δ

L
· E

[
exp

(
T∑
t=1

(Ŝt,k − St,k)

)]

=
δ

L
· E

[
exp

(
T−1∑
t=1

(Ŝt,k − St,k)

)
ET
[
exp

(
ŜT,k − ST,k

)]]

≤ δ

L
· E

[
exp

(
T−1∑
t=1

(Ŝt,k − St,k)

)]

≤ · · · ≤ δ

L
. (18)

Finally, applying a union bound over k = 0, . . . , L− 1 shows with probability at least 1− δ,
T∑
t=1

∑
x,a

αt(x, a)

(̂̀
t(x, a)− qt(x, a)

ut(x, a)
`t(x, a)

)
=

L−1∑
k=0

T∑
t=1

(Ŝt,k − St,k) ≤ L ln

(
L

δ

)
,

which completes the proof.
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Bounding REG. To bound REG =
∑T
t=1〈q̂t − q∗, ̂̀t〉, note that under the event of Lemma 2, q∗ ∈ ∩i ∆(Pi), and thus

REG is controlled by the standard regret guarantee of OMD. Specifically, we prove the following lemma.

Lemma 12. With probability at least 1− 5δ, UOB-REPS ensures REG = O
(
L ln(|X||A|)

η + η|X||A|T + ηL ln(L/δ)
γ

)
.

Proof. By standard analysis (see Lemma 13 after this proof), OMD with KL-divergence ensures for any q ∈ ∩i ∆(Pi),

T∑
t=1

〈q̂t − q, ̂̀t〉 ≤ L ln(|X|2|A|)
η

+ η
∑
t,x,a

q̂t(x, a)̂̀t(x, a)2.

Further note that q̂t(x, a)̂̀t(x, a)2 is bounded by

q̂t(x, a)

ut(x, a) + γ
̂̀
t(x, a) ≤ ̂̀t(x, a)

by the fact q̂t(x, a) ≤ ut(x, a). Applying Lemma 11 with αt(x, a) = 2γ then shows with probability at least 1− δ,

∑
t,x,a

q̂t(x, a)̂̀t(x, a)2 ≤
∑
t,x,a

qt(x, a)

ut(x, a)
`t(x, a) +

L ln L
δ

2γ
.

Finally, note that under the event of Lemma 2, we have q∗ ∈ ∩i ∆(Pi), qt(x, a) ≤ ut(x, a), and thus qt(x,a)
ut(x,a)`t(x, a) ≤ 1.

Applying a union bound then finishes the proof.

Lemma 13. The OMD update with q̂1(x, a, x′) = 1
|Xk||A||Xk+1| for all k < L and (x, a, x′) ∈ Xk ×A×Xk+1, and

q̂t+1 = argmin
q∈∆(Pit )

η〈q, ̂̀t〉+D(q ‖ q̂t)

where D(q ‖ q′) =
∑
x,a,x′ q(x, a, x

′) ln q(x,a,x′)
q′(x,a,x′) −

∑
x,a,x′ (q(x, a, x

′)− q′(x, a, x′)) ensures

T∑
t=1

〈q̂t − q, ̂̀t〉 ≤ L ln(|X|2|A|)
η

+ η
∑
t,x,a

q̂t(x, a)̂̀t(x, a)2

for any q ∈ ∩i ∆(Pi), as long as ̂̀t(x, a) ≥ 0 for all t, x, a.

Proof. Define q̃t+1 such that
q̃t+1(x, a, x′) = q̂t(x, a, x

′) exp
(
−η̂̀t(x, a)

)
.

It is straightforward to verify q̂t+1 = argminq∈∆(Pit )D(q ‖ q̃t+1) and also

η〈q̂t − q, ̂̀t〉 = D(q ‖ q̂t)−D(q ‖ q̃t+1) +D(q̂t ‖ q̃t+1).

By the condition q ∈ ∆(Pit) and the generalized Pythagorean theorem we also have D(q ‖ q̂t+1) ≤ D(q ‖ q̃t+1) and thus

η

T∑
t=1

〈q̂t − q, ̂̀t〉 ≤ T∑
t=1

(D(q ‖ q̂t)−D(q ‖ q̂t+1) +D(q̂t ‖ q̃t+1))

= D(q ‖ q̂1)−D(q ‖ q̂T+1) +

T∑
t=1

D(q̂t ‖ q̃t+1).

The first two terms can be rewritten as

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) ln
q̂T+1(x, a, x′)

q̂1(x, a, x′)
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≤
L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) ln(|Xk||A||Xk+1|) (by definition of q̂1)

=

L−1∑
k=0

ln(|Xk||A||Xk+1|) ≤ L ln(|X|2|A|).

It remains to bound the term D(q̂t ‖ q̃t+1):

D(q̂t ‖ q̃t+1) =

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

(
ηq̂t(x, a, x

′)̂̀t(x, a)− q̂t(x, a, x′) + q̂t(x, a, x
′) exp

(
−η̂̀t(x, a)

))

≤ η2
L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q̂t(x, a, x
′)̂̀t(x, a)2

= η2
∑

x∈X,a∈A
q̂t(x, a)̂̀t(x, a)2

where the inequality is due to the fact e−z ≤ 1− z + z2 for all z ≥ 0. This finishes the proof.

Bounding BIAS2. It remains to bound the term BIAS2 =
∑T
t=1〈q∗, ̂̀t − `t〉, which can be done via a direct application

of Lemma 11.

Lemma 14. With probability at least 1− 5δ, UOB-REPS ensures BIAS2 = O
(
L ln(|X||A|/δ)

γ

)
.

Proof. For each state-action pair (x, a), we apply Eq. (18) in Lemma 11 with αt(x′, a′) = 2γI{x′=x,a′=a}, which shows
that with probability at least 1− δ

|X||A| ,

T∑
t=1

(̂̀
t(x, a)− qt(x, a)

ut(x, a)
`t(x, a)

)
≤ 1

2γ
ln

(
|X||A|
δ

)
.

Taking a union bound over all state-action pairs shows that with probability at least 1− δ, we have for all occupancy measure
q ∈ Ω,

T∑
t=1

〈
q, ̂̀t − `t〉 ≤∑

t,x,a

q(x, a)`t(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+
∑
x,a

q(x, a) ln |X||A|δ

2γ

=
∑
t,x,a

q(x, a)`t(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+
L ln |X||A|δ

2γ
.

Note again that under the event of Lemma 2, we have qt(x, a) ≤ ut(x, a), so the first term of the bound above is nonpositive.
Applying a union bound and taking q = q? finishes the proof.


