Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

A. Proofs for Sec 4.1

Proposition 2. For a fixed unit vector z9, fixed input data X and a network of depth L at random initialization, with a
&) _ (0.
= zW.

Lipschitz nonlinearity o, and in the limit ny, ...,ny,_1 — 00, J(f{)z(o) has the following recursion with z,;

%113 %7z
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Proof. We will prove this by induction for { =1, ..., L — 1.
Basic Step

1 1 ONT A 1 0
o) =o' (= (W) (W)

Notice that WEO) ~ N(0,1,,). Thus, we have the following:

L (0\Ts (Hﬂa
a=—(W V'R~ N{0,—=
= W) o
1 (0)1|12
b= (WZ(O))TZ(O) ~ N (0, |z |2)
/1o no
a and b are not independent:
i) = Bl (W))W 0] = LT miw ) w0 = Ly, 0 L X020
Voot Voo no ‘ ! ng~ no

Note that the result is independent of the index 4, we can define (1) = zgl). Therefore, the base step has been proven.

Inductive Step
41 1 Vi ~ N 1 ¢
7" = o (= (W) Tal () = (W) 2
Then,
1 w® 1\
_ b ONT A0 4 s ~(0) (o) \2
a W, %) ~ N(0, a (%),
¢m(l) (%) ( WZ% (%X)i)7)

With ny, ..., ng — 0o, Var(a) = E[(4(9)?]. Similarly,
1

Nan
b~ N(O,E[(2)?]) ifng,...,ng — oo

b= —— (W)
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On the other hand,
abl = Bl (W OV 50 (0 (WO T 50 — L (40 (5T OV WOVTI0 — L (50 (5T 50
Elab] E[(W(Wl )7 et ))(W(Wz ) z)] W( (x))" E[(W;7)(W;7)"] W( (x))

=E[a®W29] ifny,..,ne — o0
The recursive definition is now proven up to layer £ — 1. Now let’s look at the last layer.

a1 — L Wl
nr—

By similar arguments as before, it is easy to show that with ny, ..., np_1 — 00, z) ~ N(0, E[(2(E=1)2]). This concludes
the proof. [

Theorem 1. For any data point X;, i € [1, .., n], with probability at least 1 — O(n)e~9("0),

13 llop < ev/noT

where c is a constant and
~(L—1)32], (0
r= s B[220 x)
x;€X, |20 [|]2=1

Proof. For a fixed unit vector z® and fixed input X, we know that based on Proposition 2, Z(L) ~

N0, E[(2E=1)22(0) K]). Define z as
1
BT DR,

First, notice that we can have the following tail bound for chi-square distribution (for instance, (Kolar & Liu, 2012))

[

— 2
z = XTLO

Prlz/no — 1] > d < exp(—noe?)

when € € [0,1/2). In this case, let € = . Consider a subset of coordinates M with cardinality [M| < O(no) (Allen-Zhu
et al., 2018). Taking the € ball B of this subspace with ¢ = 1/3, we know what

1B < 71M| = IMIinT — ¢O(no)
Then, taking the union bound for all unit vectors in 3, we know that

Vzg € B | JPrllz/ng — 1] > %]

< oxp(~5m0) exp(O(no)) < exp(~O(rno))

Therefore, by the e-net argument (Tao, 2012), for any unit vector u with only non-zero entries in M, we have with probability
1 —exp(—0O(ny)), ) ) -
[I&)ullz < 2no7[ullz = C7[lullz

For any arbitrary vector v, we can decompose it in the following way: v = u; + us + ... + ug with K = O(1) where each
u; comes from a different non-overlapping coordinate set M .

K K
IEv]z < CY il < CVEQQ flwi]3)!?
i=1 i=1
<o@)C|vl.

Thus, with probability at least 1 — O(1) exp(—O(nyg)),
13)]l,, < O(1)C = O()V2ner
— e/,

where c is a constant. Taking the union bound over all the data points concludes the proof. O
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B. Proofs for Sec 4.2

Lemma 5. Under the setting in Section 3.1 with sigmoid as the activation function,

o) (x,x) >

N

Proof. For any ¢, we have
L™ (x,x) = 00 (x,x) 1"V (x,x) + B (x,x)
> 2+ (x x)

= ]EgNN(O,Z(@)) [U(Q(X))2]

1\*| 1
=Eynozo || olg(x) - 5 + 1
1
> -
— 4
where o(f(x)) — 1 moves sigmoid function to the origin such that it is an odd function. O

C. Proofs for Sec 4.3

C.1. Main Lemmas

Lemma 2. Suppose there is a 2-layer network. If the activation function is o(x) = ax, n = ng and the data matrix is full
rank. Then at NTK limit, J oo (x) = L.

Proof.
202 202 e iom
Joo(x) = — (X = fo(X)(—X"X)7" X" + Jo(x)
no no
Notice that Jo(x) = a = A=W W and fo(X) = a=A=WHWOX = Jo(2)X.

Joo(x) = Jo(x) = fo(X)(XTX) 1 XT + X(XTX)"'XT

1 1 1 1 PSS - A oA .
—a——WOWO _ — — WOWOXXTX)1XT + X(XTX)1XT
== N v (X7X) (X7X)
1 1 1 1
—a——WOWO _ — —_WwOWOT, +1,
VN1 /1o VN1 /N 0 ’
= I’I’L()
O
Lemma 3. Suppose there is a 2-layer network with activation function o(x) = o and given initial weights W) € R™ "1,

WO e R™*"_ If the data matrix is full rank with n < ng, then, at the NTK limit (n1 — c0), J oo (x) has eigenvalue 1
with multiplicity at least n. If at the NTK limit, o is chosen such that ||Jo(x)||op < 1, then the multiplicity is exactly n and 1
is the largest eigenvalue norm.

Proof. Based on the proof of last section, we know that

In this case,
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where V' is an orthgonal matrix and

1 0 0

0 1 0

= 1o 1 0

0 0 0

So
Joo(x) = Jo(x)(I,, — VEVT) 4+ VEVT
11

=a——WOWO I, —vEvT) +vEvT

N

Interestingly, (I; — VXVT) and VXVT contain orthogonal eigenvectors. For convenience, let {v;}"; be the set of
eigenvectors of VX V7 with eigenvalue 1. Furthermore, let Vj = span({v;}7_) and V| = span({v;}/ ). Because we
are in the linear region, Jo.(x) and Jo(x) do not depend on x. We’ll use J to refer J oo (x) and Jg as Jo(x).

e For any vector v/l € V],
Jo(L, —VEVT )l =0

and
JOO»UH —pl

Thus, all vectors in {v; }}* ; are eigenvetors of J, with eigenvalue 1 regardless of the choice of a.
e On the other hand, let v be any complex vector such that
v = Re(v) + ilm(v)
If v is an eigenvector of J, with eigenvalue A = a + b, then

JoRe(v) = aRe(v) — bIm(v)
JooIm(v) = bRe(v) + alm(v)

Let’s first decompose Re(v) and Im(v).
Re(v) = vt + ol

L1 Il
where v~ v;- € V) and vr,v; € V).

Joo(of + 0y = Jovf + 0l = (avit = o) + (aw] — bo))
Joo (o + 0y = Jovi +0) = (v} + avt) + (bo]l + av))

By adding and subtracting two equations,
oot o)+ ol o = [(@+ 0yt + (@ = 0| + @@+ 0yl + (a0l
Jo(vt — o)+ o)l — vy = [(a — b — (a+ b)vf} + {(a — bl — (a+ b)vl}

When « is chosen such that ||Jo|| < 1,

I(a+b)oy + (a =)ol < flo + 0|2

(@ —b)o — (a+b)vi|la < [Jo- — ol
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Then,
(a® + ) lvp[13 + (a® + 6%) v 13 < oz [13 + lloi" |13
N2 =a?+0b% <1
This suggests that any complex eigenvector with components from V| would have eigenvalue with norm smaller than

1.

O

Lemma 4. Suppose there is a 2-layer network with activation function o(x) = ax+ 3, given initial weights W ¢ Rroxn
W) ¢ R™*™ and every data point has the same norm r (i.e. ¥i € [n] ||x||2 = r). If the data matrix is full rank with
n < nyg, then, at the NTK limit ny — 00, Joo(X) has eigenvalues 1 with multiplicity at least n — 1. If at the NTK limit, «
and 3 are chosen such that

1
1o, =1 A, Hrwmlm

2
where 0 < A < 1, then the multiplicity is exactly n — 1 and 1 is the largest eigenvalue norm.

Proof. First of all, let B be an all-one matrix

Joo(x) = (x — fo(X))K*a;”” + Jo(x)

(x fo(X ) (XTX+62B)1 (i’fxT) +Jo(x)

:(X—fo(X)) (XTX+ nof” >1XT+JO(X)

2«

_ -1
052 T (1)xx7(0) w (w1 , "B T
502 ) X —( nanW W X+ﬁ—1 1,, 1) X" X+ 502 B X

=J()+X<XTX+ 052 )_ X" — (Jolx )X+ﬁ\ﬁw<)1ml§)<xTx+ OBQ >_ X7

= Jo(x )+X<XTX+

Because in the linearized region, J . (x) and Jo(x) do not depend on x. We’ll use J » to refer J, (x) and Jg as Jo(x). For
nofB?

2a2 *

simplicity, we’ll also use ¢ =

Based on Lemma 6,
A A~ A 71 A
X <XTX + cB> X' =vAvT

where A = diag(1, ..., 1, 5\, 0,...,0) where 0 < A < 1. Now,
N~ =

n—1 nog—mn

Joo =Jo(In, —VAVT) + VAVT — B\/%W(l)lmlf (XTX + cB) AXT
From Corollary 7, we know that the following two vectors are eigenvectors of VAV with eigenvalue A,
X(X'X +¢eB)'1, XXTX)!
Furthermore,

X(XTX +¢B)7'1,, = AX(XTX)" 1,
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And
1

5\:
1+4+cg

where o o
g = trace(B(X"X)™") = [X(X"X)""1,3
Let 4 be a rescaled unit vector of X(XTX)’l 1,,, then

1Tciifla = [To(1 = 2t + 3 — /GAF——WD1,,,a],
Wi
< 1 Jollopll (1 — )U||2+||>\U||2+||f)\5\ﬁw(l)1mu\\2

:( )||J0||0p+>‘+\f/\”B\/—W(l)lm”Q

. N . A
<(1-N1-A)+ A+ \/§A52”0
. N NICRI VAN
< (1—)\)(1—A)+>\+g)\'62no2 (Lemma 9)
o
ZngA
_ (1= A)eg+1+ 258 .,
1+cg
Therefore, J, will shrink every vectors orthogonal to the eigenvectors in V' with eigenvalue 1. By the same arguments in
the proof of Lemma 3, we can conclude the proof. O

C.2. Useful Lemmas

Lemma 6. Suppose X € RF>*™ s g full-rank matrix with k > m and m > 2. Let c be an arbitrary positive constant and

B an all-one matrix. Consider the following real symmetric matrix,
X(XTX +cB) ' XT

It can be characterized by having eigenvalue 1 with multiplicity m — 1, eigenvalue 0 with multiplicity k — m and another
eigenvalue \ such that 0 < A < 1.

Proof. By (Miller, 1981), if P and P + Q are invertible, and ) has rank 1, then let ¢’ = trace(QP~!), we know that g’ # 1,

and 1
— _plgp!
149 @

First of all, it is easy to see that (X7 X + ¢B)~! is invertible. This is because X X is positive definite and cB is positive
semi-definite.

(P+Q) =P -

Since B is a rank one matrix,

(XTX +¢B)™! = (XTX)™ -
N———

I

— (XTX) " 'B(XTX) !
1Jrcg( )7 B( )

I
where g = trace(B(X7X)™1).

Let’s consider the singular value decomposition of X* = UXVT

e XTX = U2UT and (XTX)~' = UL 2UT. So
XL XT =X(XTX)'XT = vevuTus2uTusvT = VA, VT
where A,,, = diag(1,...,1,0,...,0)
\V-’ \V/

m k—m
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c _c
14+¢cg  l4cg

XTLX = X(XTX)'B(XTX)" !XT

The first thing to notice is that B = 117 where 1 is a vector of ones. Therefore,
M=XXTX)"'B(XTX)'XT = X(XTX)"'11"(XTX) !XT = aa”

where a = X(X7X)711.

This implies that M is a rank one matrix with singular value ||a||2. But we also know the following:

Ta = trace(aa’’) = trace(M)

= trace(X(XTX)'B(X”TX)*XT) = trace(XTX(XTX)'B(XTX)™!)
= trace(B(X'X) 1) =g >0

la]]* = a

The last strict inequality comes from the fact that X is full rank so that X(X?X)~! has no zero singular value.
Furthermore,

X1 XTa=X(XTX)"1XTa
= X(XTX)"'XTX(XTX)" 1 = X(XTX)" "1
=a
Because a is not a zero vector, it is also one of the eigenvector of X /; X with eigenvalue 1.
And the eigenvalue of X7 I X is the following:

c
0<—9_ <1
14cg
The inequalities comes from the fact that c is also non-negative. We’ll denote o = 15&, 5 So
XLX" = caa”

where a is a rescaled to have unit length.

Now that we have examined two parts separately. Let’s put them together. For convenience, we’ll also denote X(X7X +
CB)_le = X[le — XIQXT =M; — M.

Based on the eigen decomposition of M,

m
M, = E ukuz
k=1

with lost of generality, let’s also denote a = u;. Now,

m
M; — M, = E uku;‘: — Juluf
k=1
m
=(1—-o)wul + E ujul

k=2

Because 0 < 0 < 1, X(XTX + ¢B) !XT has eigenvalue 1 with multiplicity m — 1, eigenvalue 0 with multiplicity k — m
and another eigenvalue A such that 0 < A < 1. O

Corollary 7. Following the setup in Lemma 6, we could also know that X7 (X7X)~!1 is an eigenvector with with
eigenvalue A\ and

<X(XTX + cB)1XT>X(XTX)11 =X(X"X +ceB) ™1 = AX(XTX) 11
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Corollary 8. Suppose X € R**™ is a full-rank matrix with k& > m and m > 2. Let ¢ be an arbitrary non-negative constant
and B an all-one matrix.
[X(X"X 4+ eB) ' X", = 1

Remark 2. c can also takes on negative values as long as cg is not close to —1.

Lemma 9. Suppose X € RFX™ s a full-rank matrix with k > m and B an all-one matrix. If
IX. il =" Vi € [m]
Then,
trace(B(XTX) 1) > ri?
Proof. First of all,

trace(B(XTX)™1) > trace(17(XTX)11)

> 1 — = 2
T UPIXTX op X7 X [op
On the hand,
IXTXlop = XT3, < [IXT[F < trace(XTX) < r?m
Therefore,
1
trace(B(X7X)™!) > =
O
D. Proofs for Sec 4.4

D.1. Derivation for the Approximated NTK
The closed form NTK of erf (Lee et al., 2019; Williams, 1997) can be written with the following two components:
2 Y(x, X
T (X, erf, erf)(x,%X) = — arcsin ( (x, %) — >
™ V(E(x,x) + 0.5)(2(%, %) + 0.5)
1
2

s - et om)t !
T (2, erf, erf)(x, %) = - det(I + 2%) T+ 25, x)(1 L 25X, %)) — 42 (x, 0)?)

Here, we can approximate sigmoid function o, by erf function:

1 1 1
os(z) = os(x) = §erf(§a:) + 5

Then,

T(2,05,05)(%,%) = By vnr(o,)[0s(u)os(v)] = E[ierf(%u)erf(%v)] + ]E&erf(%u) + ierf(%v)] + i
1

1 1 1
1 E[erf(iu)erf(iv)] +1
1__,1
ET(EZ’ erf, erf) (x, ) +

1
4

s o )(x, % _ 1 ianrcsin Ex %)
T(E05,08)(x,%) = 3+ o (\/(z(x,x)+2)(2(&7&)+2)>
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and
T(E,65,03)(%,%) = Eyy yono,5)[0s(w)ds(v)] = %E[e.rf(%u)ei’f(%v)]

= RT(ZE’ erf, erf) (x, X)

v L .
T 00 0 ) = o S e 0 2 D& %) — SR

Based on the definition of NTK, we can derive the following for o
1
oL (x,x) =¥ (x,x) = —xTx
no

0% (%, %) = O, (%,%)T (05, 65, 75) (%, %) + T (04, 75, 05) (%, %)

Let’s look at the first part
1 1
[—x"x]

2m \/(2 + AxTx)(2 4+ LxT%) - (L%Tx)?)

0L (%, x)T(0L,,0s,04)(x,%)

1 xTx

27 /@ng + xTX) (210 + X1 %) — (X X)?)

and the second part
1 . 1 1 %)A(Tx
7(900705705)(&?()=*+—arcsin 0
S \/(,%DxTx +2)(oxTx +2)

1 N 1 . ( xT'x >
= — — arcsin
4 2 \/(XTX + 2%0)(?(,11)2 + 2n0)

Oky
ox

D.2. Detailed Discussion of
Without loss of generality, we will focus on aakx” ;5

@go(xl,x)

8kx B Ox
ox 0L (%n,x)
ox

905 (%,x))T (0L, d5,53) (%, %))

where
8@&0(&, X) B 8T(®éo,a§,a§)()27x)) i
ox - ox ox
17 (%,x) 1§ (%,x)

Let’s look at each row separately, and break this down into two parts.

o I{(%,%)
After deriving the derivative, we get this:
. L X {(XTX +2n0)(x"x + 2no)} - X {(&ch + 2n0)xT§<]

I (x,x) = T
{(XT)A( + 2n0) (xTx + ZHO)]

2

xTx
VvV (xXTx + 2n9) (XT% + 2ng)

A:
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Since we are only interested in J . (x1) and each row of 68111 , we’ll examine 1Y (x;, X1 ).

x;(r% + 2n0)? — x1 |:(7“2 + 2n0)r2pi1}

17 (xi,%x1) = s = 2ng
21 \/(r2 4 2n0)? — (r2pin)? (r? + 2ng)?
. 1 1 X,L'(T’2 + 2n0) — X1’/‘2pi1
21 /(7 + 2n0)% — (r2pn)? r2 4+ 2ng

It is easy to see that 1] (x;,x1) — 0 as r grows regardless of p;;.

o [§(x,x)

We know that

% [(xTx + 2n0) (XT% + 2ng) — (XTx)ﬂ —xTx [(2n0 +%T%)x — (xTx)%

2

|:(XTX + 2n0)(XTX + 2ng) — ()A(TX)Q:|
Again, let’s examine I3 (x;,X1).
1 (7% + 2n9)2x; — 72pi1(2ng + 12)x1

I (xi,%1) = o 5
[(7‘2 +2n¢)% — 7“4p121}

r2 [(7‘2 +2n0)t + 11 p3 (2no + r?)? — 2r2p% (20 + 7“2)3]

178 iy x0) |3 = £

3
|:(T2 +2ng)? — T4p121:|

16ng + 72 |n3(32 — 16p2) + r? [n%(% —20p%) + 12 [no(8 — 8p%) + r*(1 — pfl)}H

T 4r?

3
{7’4(1 — p?) +4ngr? + 471(2)]

Based on the equation for ||T§ (x;, x1)||3, we know that if p?, # 1, || I3 (x;,x1)]||3 eventually decays to zero with larger
7. But ||I§ (x;, x1)||3 converges to a constant if p?, = 1. For simplicity, in this section, we do not assume there is any
parallel input. Therefore, we can see that all the other terms will go to zero except I3 (x1,x1). It is worth noting that if
pi1 1s close to one, the norm will see a spike before going down to zero. But in practice, the data is more than likely to
be well separated with small |p;;|. The discussion here is illustrated in Figure. D.1.

Combining the above analysis on the two components of gradient, it is easy to see that with large 7,

oL (x1,x) |
X1

ak$| 5 axo
ox X7
0
||8kw‘ ” NH@go(xl,x)l b~ 1 2no(r? + 2no) I = 1 2ngr(r? 4 2ng) 1
ox xliep ox xa iz 27 (4ngr? +4n%)% 2T (dngr? +4n%)% 87\/no
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>

-1

Figure D.1: p, r vs Norm of Gradient Component 2

D.3. Parallel Inputs Analysis
In the previous section, we assume that there are no parallel inputs. But this assumption is not necessary. In fact, given
training data {x;}7, w.l.o.g, let’s impose x; = —x3. Based on the results we have in Section 4.4, we can still derive a

similar approximation for the NTK regression solution.

o K
Fisrt of all,

1 1 11 r’pij
K;; = T (O, 0s,05)(Xi,%X;) = 1 + ﬂarcsm m

If p; j; = 1, then Kilj is going to converge to % as r grows bigger. But if p; ; = —1, this term is going to zero.

Therefore, K can be approximated by this block diagonal matrix.

By ... 0
K ~ 0 By 0
0 ... B
where
1 r2 - r

I.+1 -—I 1
By = 2 Bo=Iy+- Iy=—
! [ I Iy Jr% ? e 2 " or VAng + 4dngr?  4my/ng

The inverse of K, is the following, as r grows large:

Bt 0 Bt
1 /N
K1~ 0 pps 0 - 0 @ 0
o o
0 s 0 ‘F
where
-1 1 I + % I
! Li+3 [ I It 3
Based on the discussion from Section 4.4,
@;g;l,x) | JpX1
5kz _Ggo(x17x)| _kal
Tx o=
0
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1 2no(r? + 2ng) 1 1

where
Jk = T R~ _
27 (4ngr? +4n3)z  8my/nor
Finally,
Byt .. 0 ijl
N 1 Oky o 1 Oky o | O L0 | |7
(X - fo(X)>K_1 XK1 22X Itz 0
ox .. .
1
0 == Y
le
Ii+i 1
2 X1 J
T 5Jk
=X Ilm(;z; =2 n lxlxl
kT3
0
Thus,
11
Ok, 2Ty T28ﬂ\/mF 1
= . =3

H(X—faXQK1|ox
ox "P Ik-i-% Iy /ro

1

By similar argument, as » — oo, we have
oo ()l < 5



Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

25.0%

200%

15.0%

10.0%

Percentage

50%

oz ) s s
Norm of Eigenvalues

(a) 2 training points

s
3

H

0.0%

Percentage

100%

o ) s s
Norm of Eigenvalues

(b) 5 training points

Percentage
§ 08 8§ 8

3

H

02 s ) ) o
Norm of Eigenvalues

(c) 8 training points

Figure E.1: Eigenvalue distribution of 2-layer sigmoid network trained with input dimension 10
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Figure E.2: Convergence success rate vs input norm: random data with input dimension 32

E. Additional Simulations

E.1. Multiple Points: Linear Region

In this section, we first illustrate the eigenvalue distribution in the linear region. Here, we trained 2 layer sigmoid networks
with input dimension 10 and hidden size 1000 for 2, 5 and 8 training points. As suggested by Lemma 4, there should be
n — 1 eigenvalues with norm around 1. This is supported by Figure E.1, as there are 10%, 40% and 70% eigenvalues around

that region.

E.2. Basin of Attraction

We test basin of attraction by adding Gaussian noises to training examples and check if the modified examples can converge
to the original ones via iterative maps under 50 iterations. The standard deviation of the Gaussian noise is called the noise
radius. The network has 2 layers with hidden size 10000 and input dimension 32. Figure E.3 details experiments for 5, 20
and 40 examples. Not surprisingly, the basin of attraction is larger when there are fewer training examples and larger input

norms since a level of separation between data is required.

°

Convergence Success Rate

o o

50

Input Radius

500

(a) 5 training points

Convergence Success Rate

- 100
- 200

+
X0 B0 400

il

50

500 550

Input Radius

(b) 20 training points

Figure E.3: Convergence success rate vs input norm: MNIST dataset
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Figure E.4: Specturm Change for Sigmoid

E.3. Basin of Attraction on Mnist

We also test basin of attraction experiments on MNIST dataset to check if we can recover real training examples. The images
are prepossessed by subtracting means and rescaled to have different input norms for testing. Similar to the setting before,
Figure 4b also shows that larger input norm gives greater basin of attraction for 5 and 20 examples. Notice that because
MNIST images have large input dimension, they need larger radius to move out of the linear region.

E.4. Sigmoidal Activations

Finally, we show that our results can be extended to different sigmoidal activation functions as well. We chose 2 layer
network with hidden size 10000, input dimension 32 and 20 training examples. As before, only settings that can let network
converges to training loss below 10~7 are included. Figure 5 clearly suggests all the activation functions share similar
curves. Notice that both tanh and erf have large eigenvalue when r is small. This is not a contradiction to our Lemma 3
as their « = ¢(0) is too large to satisfy the conditions in Lemma 3. The histogram of eigenvalue norm changes for those
activation is shown in Figure E.4, Figure E.5, Figure E.6. It is clear that they all follow the same pattern.
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Figure E.5: Specturm Change for Erf
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Figure E.6: Specturm Change for Sigmoid



