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A. Theory
Definition 1. Let BS , BT be minibatches from US and UT ,
respectively, where BS ⊆ US , BT ⊆ UT , and mb = |BS | =
|BT |. The empirical estimation of dH∆H(BS ,BT ) over the
minibatches BS , BT is defined as

d̂H∆H(BS ,BT ) =
1

mb
sup

h,h′∈H

∣∣∣∣∣∑
BT

[h 6= h′]−
∑
BS

[h 6= h′]

∣∣∣∣∣ .
(1)

For simplicity, we drop the multiple 1
mb

in the following
analysis as it does not affect the result of optimization.

Theorem 2 (The decomposition of d̂H∆H(BS ,BT )). Let
H be a hypothesis space and Y be the label space of the
classification task where BS , BT are minibatches drawn
from US , UT , respectively, and YS , YT are the label set of
BS , BT . We define three disjoint sets on the label space:
the shared labels YC := YS ∩ YT , and the domain-specific
labels YS := YS − YC , and YT := YT − YC . We also
define the following disjoint sets on the input space where
BCS := {x ∈ BS | y ∈ YC}, BCS := {x ∈ BS | y /∈ YC},
BCT := {x ∈ BT | y ∈ YC}, BCT := {x ∈ BT | y /∈ YC}.
The empirical d̂H∆H(BS ,BT ) divergence can be decom-
posed into class aligned divergence and class-misaligned
divergence:

d̂H∆H(BS ,BT ) = sup
h,h′∈H

∣∣∣ξC(h, h′) + ξC(h, h′)
∣∣∣ , (2)

where

ξC(h, h′) =
∑
BC

T

1 [h 6= h′]−
∑
BC

S

1 [h 6= h′] , (3)

ξC(h, h′) =
∑
BC

T

1 [h 6= h′]−
∑
BC

S

1 [h 6= h′] . (4)

Proof. By definition, we have

d̂H∆H(BS ,BT ) = sup
h,h′∈H

∣∣∣∣∣∑
BT

1 [h 6= h′]−
∑
BS

1 [h 6= h′]

∣∣∣∣∣
(5)

We rewrite the summation over all the samples B into the
sum of disjoint subsets BC and BC .∑

BT

1 [h 6= h′]−
∑
BS

1 [h 6= h′] (6)

=
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BC

T

1 [h 6= h′]−
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BC

S

1 [h 6= h′]

 (7)

+

∑
BC

T

1 [h 6= h′]−
∑
BC

S

1 [h 6= h′]

 (8)

=ξC(h, h′) + ξC(h, h′). (9)

This completes the proof.

B. Experiments
B.1. Additional Evaluation Measures on Office-Home

Table 1. Evaluation on Office-Home (%) with ResNet-50.
Ar�Cl Pr�Rw

MDD ours MDD ours

accuracy 54.91 56.17 77.46 79.94
macro F1 score 53.66 55.29 75.86 78.42
weighted F1 score 53.97 55.81 77.24 79.79
macro precision 57.02 57.72 78.21 79.56
weighted precision 58.85 60.30 79.60 80.97
macro recall 56.41 57.76 76.30 78.61
weighted recall 54.91 56.17 77.65 79.94

Table 1 presents additional evaluation on Office-Home
(standard). We re-implement MDD using identical batch
sizes (50) and random seeds for fair comparison. The results
show that our proposed method has consistent improvements
across all evaluation measures, and the improvements are
not a result of batch sizes or random seeds.

B.2. Additional Ablation on Alignment Options

Table 2 presents the ablation study on Office-Home (stan-
dard) that aims to assess the impact of different implicit
alignment options: alignment in the domain divergence
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Table 2. The impact of different implicit alignment options, i.e.,
masking the classifier-based domain discrepancy measure and
sampling examples from the source and target domains, on Ar→Cl
and Cl→Pr, Office-Home (standard).

Alignment options

Domains masking sampling Accuracy

Ar�Cl

× × 55.3
√

× 55.5
×

√
54.6

√ √
56.2

Cl�Pr

× × 71.4
√

× 70.1
×

√
70.5

√ √
73.1

estimations (i.e., masking in MDD) and alignment in the
input space (i.e., sampling class-conditioned examples). We
observe that both alignment techniques are essential for
domain adaptation because alignment should be enforced
consistently across all aspects of the domain adaptation
training. This is consistent to findings in the main paper.

B.3. Learning Curve
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Figure 1. Learning curve of the target domain accuracy for
Pr→Rw, Office-Home (RS-UT).

Figure 1 shows the learning curve of the target domain accu-
racy for different methods. The proposed implicit alignment
converges better than other methods.

B.4. Computational Efficiency

Self-training requires estimating the target domain labels,
which could be time-consuming depending on the size of
the dataset. To improve the computational efficiency of our
algorithm, we only update pseudo-labels periodically, i.e.,
every 20 steps, instead of at every training step. We show
in Table 3 that different pseudo-label update frequencies

Table 3. The impact of pseudo-label update frequency on Ar→Cl,
Office-Home (standard).

pseudo-labels
updated every N steps accuracy

5 56.0
10 56.7
20 56.2
50 55.2

100 56.3
500 55.7

exhibit similar performance on the target domain. Notably,
implicit alignment outperforms the baseline method in spite
of only updating the pseudo-labels every 500 training steps.
This validates the robustness of implicit alignment.

For the experiments described in Section B.3, training the
baseline methods take 31 hours (wall clock time), whereas
implicit alignment takes 34 hours under the same training
condition when the pseudo-labels are updated every 20 steps.
The 10% computational overhead is rather restricted. More-
over, from an engineering perspective, partially updating
and caching the pseudo-labels could further improve the
computational efficiency, and we leave them as future work.

B.5. Impact of Batch Size

Table 4. Impact of batch size on target domain accuracy (%),
Ar→Cl, Office-Home (standard). The MDD results are based
on our re-implementation.

batch size baseline implicit

8 48.9 49.7
16 52.7 52.8
32 54.9 56.2
50 55.3 56.2

Table 4 presents the impact of batch size on the target do-
main accuracy. We find that implicit alignment consistently
improves the model performance over the MDD baseline
across different batch sizes, and both methods work better
with larger batch sizes.

B.6. Empirical Class Diversity

Figure 2 shows the empirical class diversity comparing im-
plicit alignment with the baseline. In both experiments, the
batch size is identical with the total number of classes (i.e.,
31). For the baseline method, random sampling only obtains
about 19 unique classes per-batch, which is much smaller
than the batch size, in spite of the batch sizes being the
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Figure 2. Empirical class diversity while training A→W (Office-
31) with batch size 31.

same with the total number of classes. This is because ran-
dom sampling can be viewed as sampling with replacement
in the label space, whereas the implicit alignment can be
viewed as sampling without replacement in the label space,
which naturally increases the empirical class diversity. The
expected class diversity of the baseline is

E [|Y |] = n

[
1−

(
n− 1

n

)k
]
, (10)

where n is the number of unique classes and k is the size
of the minibatch. The expected class diversity is 19.78 if
n = 31 and k = 31, which is consistent with the empirical
class diversity shown in Figure 2.

For the implicit alignment method shown in Figure 2, al-
though it has low class diversity at training step 0 due to the
random pseudo-labels, it has a sharp increase in class diver-
sity for the first few hundred training steps, and eventually
being able to sample 28 classes from the total of 31 classes.
This confirms that implicit alignment is effective in improv-
ing empirical class diversity beyond random sampling.

C. Datasets
Figure 3 shows the frequencies of different classes for
Cl→Rw on the Office-Home (standard) dataset. This dataset
is under natrual class imbalance where examples of different
classes are not evenly distributed.

Figure 4 shows the frequencies of different classes for
Cl→Rw on the Office-Home (RS-UT) dataset (Tan et al.,
2019). In this dataset, the minority classes in the source
domain are majority classes in the target domain, which cre-
ates extreme within-domain class imbalance and between-
domain distribution shift.
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Figure 3. Class frequency of Cl→Rw, Office-Home (standard)
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Figure 4. Class frequency of of Cl→Rw, Office-Home (RS-UT)

D. Model Architecture and Training Details
Code. We use PyTorch 1.2 as the training environment,
and we observe that the adaptation performance on PyTorch
1.4 is slightly better PyTorch 1.2. The differences between
PyTorch versions do not change the findings and the con-
clusions of this paper. Our code and training instructions
are provided in https://github.com/xiangdal/
implicit_alignment.

Model architecture. We use ResNet-50 (He et al., 2016)
pre-trained from ImageNet (Russakovsky et al., 2015) as
the backbone, and use hyper-parameters from (Zhang et al.,
2019) for MDD-based domain discrepancy measure. The
backbone is followed by a 1-1ayer bottleneck. The classifier
f and auxiliary classifier f ′ are both 2-layer networks.

Optimization. We use the SGD optimizer with learning
rate 0.001, nesterov momentum 0.9, and weight decay
0.0005. We empirically find that SGD converges better
than Adam for adversarial optimization. We use a gradient
reversal layer for minimax optimization, and we use a train-
ing scheduler (Ganin et al., 2016) for gradient reversal layer
defined as

λp =
0.2

1 + exp(− i
1000 )

− 0.1, (11)

where i denotes the step number. We used the same sched-
uler from (Zhang et al., 2019) for all experiments and have
not tried hyperparameter search for λp. The batch size is 31
for Office-31 and 50 for Office-Home.

https://github.com/xiangdal/implicit_alignment
https://github.com/xiangdal/implicit_alignment
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