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Figure 1. Comparison of symmetric label noise (Blue noise) and web label noise (Red noise). From left to right, columns are true positive
images, images with incorrect symmetric labels, and images with incorrect web labels from text-to-image search and image-to-image
search, respectively. The image-to-image search results (the last column) only account for 18% in our dataset and fewer images are shown
as a result.

A. Dataset Overview:
Fig. 1 shows some example images with correct labels and incorrect labels of symmetric label noise (blue noise) and
web label noise (red noise). There are three clear distinctions between images with the synthetic and web label noise as
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Table 1. Summary of the difference of images with blue and red noisy labels.

Difference Blue Noise Red Noise

Visual & semantic similarity to true positive images Low High
Level of the label noise instance-level class-level
Latent class vocabulary from which images are sampled Fixed vocabulary Open vocabulary

summarized in Table 1. First, images with noise from the web (or red noise) are more relevant (visually or semantically) to
true positive images. Second, synthetic noise (symmetric or asymmetric) is at class-level which means all examples in the
same class are treated equally. Web label noise is at instance-level in which certain images are more likely to be mislabelled
than others. For example, “Honda Civic” images taken from the side view are more likely to be confused with “Honda
Accord” as the two models are lookalike from the side view. Such confusion is rare for car images taken from the front view.
Third, images with noise from the web come from an open vocabulary outside the class vocabulary of Mini-ImageNet or
Stanford Cars. For example, the noisy images of “ladybug” include “fly” and other bugs that do not belong to any of the
classes in Mini-ImageNet.

Fig. 2 illustrates the distribution of correctly-labeled and incorrectly-labeled images across classes, where symmetric label
noise is in blue and web label noise is in red. It is worth noting that it is not a feasible option for us to annotate existing
datasets of web labels, e.g. WebVision (Li et al., 2017) or Clothing-1M (Xiao et al., 2015). Due to their imbalanced class
distribution, for many classes, we simply cannot find sufficient images with incorrect labels to label in these datasets.

As incorrect images are rare in a few common classes (e.g. hotdog), we need to limit the size of Red Mini-ImageNet to 50K
such that every class can get sufficient incorrect images at every noise level. Recall the role of the blue noisy datasets is to
confirm existing findings on symmetric noise. Initially, we made the Blue and Red Mini-ImageNet to be the same size of
50K examples. However, we found that existing findings on symmetric noise hold on both the full (60K) and subset (50K)
of Blue Mini-ImageNet. In the end, we decided to report the results on the 60K full set which results in a larger size of Blue
Mini-ImageNet. This design would not affect our main contributions for the following reasons. First, on our second dataset
Stanford Cars, the blue and red set have the same size. Second, our method has been verified by extensive experiments on
many other datasets. Third, our main findings are on red noise which may not be affected by the size of the blue set.

B. Detailed Experimental Setups
This section presents detailed setups for training and testing used in our experiments.

B.1. Setup on the proposed dataset

Network architectures. Table 2 lists the parameter count and input image size for each network architecture used in
our experiments. We obtained their model checkpoints trained on the ImageNet 2012 dataset from TensorFlow Slim1,
EfficienNet TPU2, and from Kornblith et al. (2019). The last two columns list the top-1 accuracy of our obtained models
along with the accuracy reported in the original paper. As shown, the top-1 accuracy of these architectures on the ImageNet
ILSVRC 2012 validation ranges from 71.6% to 83.6%. We select the above architectures to be representative of diverse
capacities.

Training from scratch (random initialization). For vanilla training, we trained each architecture on the clean dataset
(0% noise level) to find the optimal training setting by grid search. Our grid search consisted of 6 start learning rates of
{1.6, 0.16, 1.0, 0.5, 0.1, 0.01} and 3 learning rate decay epochs of {1, 2, 3}. The exponential learning rate decay factor was
fixed to 0.975. We trained the network to full convergence, and the maximum epoch to train was 200 on Mini-ImageNet
(Red and Blue) and 300 epochs on Stanford Cars (Blue and Red), where the learning rate warmup (Goyal et al., 2017) was
used in the first 5 epochs. The training was using Nesterov momentum with a momentum parameter of 0.9 with a batch
size of 64, taking an exponential moving average of the weights with a decay factor of 0.9999. We had to reduce the batch
size to 8 for EfficientNet for its larger image input. Following (Kornblith et al., 2019), our vanilla training was with batch
normalization layers but without label smoothing, dropout, or auxiliary heads. We employed the standard prepossessing in

1https://github.com/tensorflow/models/tree/master/research/slim
2https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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(a) Blue Mini-ImageNet 40% Noise
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(b) Red Mini-ImageNet 40% Noise
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(c) Blue Stanford Cars 20% Noise
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(d) Red Stanford Cars 20% Noise

Figure 2. The distribution of images with correct and incorrect labels in Mini-ImageNet and Stanford Cars. The grey, blue, and red bar
represent images of correct labels, symmetric noisy labels, and web noisy labels, respectively. Classes are ranked by the number of
training examples. Better viewed in color.

Table 2. Overview of the ImageNet architectures used in our study.

Network Parameters Image Size ImageNet Top-1 Acc.
Paper Our checkpoint

EfficientNet B5 (Tan & Le, 2019) 28.3M 456 83.3 83.3
Inception V2 (Ioffe & Szegedy, 2015) 10.2M 224 74.8 73.9
Inception V3 (Szegedy et al., 2016) 21.8M 299 78.8 78.6
Inception-ResNet V2 (Szegedy et al., 2017) 54.2M 299 80.0 80.3
MobileNet V2 (Sandler et al., 2018) 2.2M 224 72.0 71.6
ResNet 50 V1 (He et al., 2016) 23.5M 224 75.2 75.9
ResNet 101 V1 (He et al., 2016) 42.5M 224 76.4 77.5

EfficientNet3 for data augmentation and evaluated on the central cropped images on the validation set. Training in this way,
we obtained reasonable performance on the clean Stanford Cars validation set. For example, our Inception-ResNet-V2 got
90.8 (without dropout) and 92.4 (with dropout) versus 89.9 reported in (Kornblith et al., 2019).

Fine-tuning from ImageNet checkpoints. For fine-tuning experiments, we initialized networks with ImageNet-pretrained
weights. We used a similar training protocol for fine-tuning as training from scratch. The start learning rate was stable in
fine-tuning so we fixed it to 0.01 and only searched the learning rate decay epochs in {1, 3, 5, 10}. Learning rate warmup
was not used in fine-tuning. As fine-tuning converges faster, we scaled down the maximum number of epochs to train by a
factor of 2 and trained the network to full convergence. Training in this way, we obtained reasonable performance on the
clean Stanford Cars test set. For example, our Inception-ResNet-V2 got 92.4 versus 92.0 reported in (Kornblith et al., 2019)
and our EfficientNet-B5 got 93.8% versus 93.6% reported in (Tan & Le, 2019).

Baseline comparison. For method comparison, we used Inception-ResNet as the default network. All methods employed
the identical setting discussed above, including the same start learning rate, learning rate decay factor, batch size, and the
maximum number of epochs to train. For Dropout, as it converges slower, we added another 100 epochs to its #maximum

3https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py
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epochs to train. We extensively searched the hyperparameter for each method on every noise level using the hyperparameter
range discussed in the main manuscript. The performance variance under different hyperparameters can be found in Fig. 5,
Fig. 6, Fig. 7, and Fig. 8, where the black line shows the 95% confidence interval of the accuracy under all searched
hyperparameters.

B.2. Setup on public benchmarks: CIFAR and WebVsion

CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) consist of 32 × 32 color images arranged in 10 and 100 classes.
Both datasets contain 50,000 training and 10,000 validation images. The ResNet-32 (He et al., 2016) with standard data
augmentation function was used as our network backbone. In training, the batch size was set to 128 and we trained 400K
iterations for the ResNet model by a distributed asynchronized momentum SGD optimizer (momentum = 0.9) on 8 V100
GPUs. We used the common learning rate scheduling strategy: setting the starting learning rate as 0.1 and using the
step-wise exponential learning rate decay which multiplies it by 0.9 every 20K iterations. In this way, training ResNet-32 on
the clean training dataset, the validation accuracy reaches 95.2% on CIFAR-10, and 78.0% on CIFAR-100. We searched the
hyperparameters of MentorMix in the following range: α = {2, 4, 8, 32} and γp = {0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.1}. We
used a simple MentorNet called “Predefined MentorNet” from (Jiang et al., 2018)4 which, as discussed in the main paper,
computes the weight by a thresholding function v∗i = 1(`(xi, yi) ≤ γ).

WebVision 1.0 (Li et al., 2017) contains 2.4 million images of real-world noisy labels, crawled from the web using the 1,000
concepts in ImageNet ILSVRC12. We downloaded the resized images from the official website5. The inception-resnet
v2 (Szegedy et al., 2017) was used as our network backbone. In training, the batch size was set to 64 and we trained 4M
iterations using a distributed asynchronized momentum optimizer on 32 V100 GPUs. The start learning rate was 0.01 and
was discounted by a factor of 0.95 every 562K steps. The weight decay was 4e−5. The batch norm was used and its decay
was set to 0.9997 and the epsilon was 0.001. The default data augmentation for the ResNet model is used. We also tested our
method on the WebVision mini-training set that contains about 61K Google images on the first 50 classes. All the models
were evaluated on the clean ILSVRC12 and WebVision validation set. The best hyperparameter is γp = 0.7 and α = 0.4 for
both the WebVision full training set and the WebVision mini-training set.

C. Alternative Approaches for Dataset Construction
In this section, we study two alternative approaches to construct our red datasets. Our goal is to verify whether our findings
in Section 5.3 of the main paper are consistent when the datasets are constructed differently. Please note that it may not be
necessary to verify the proposed method MentorMix on these new datasets as it has already been verified in Section 5.2 on
the two public benchmarks (CIFAR and WebVision) that contain both synthetic and real-world noisy labels. We consider the
following settings to construct our red datasets:

• Setting 0 (default) uses the approach discussed in the main paper where we replace the clean images in Mini-ImageNet
and Stanford Cars with incorrectly labeled images from the web while leaving the label unchanged. The advantage of
our approach is that we closely match the construction of synthetic datasets while still being able to introduce controlled
levels of noise that better resembles realistic label noise distributions.

• Setting 1 (web images only): in this setting, the red datasets only contain images from the web (with both correct and
incorrect labels). No clean images in the original Mini-ImageNet or Stanford Cars datasets are used. This setting is
used to understand the impact of the domain difference in Setting 0.

• Setting 2 (no image-to-image results): this setting is the same as setting 0 except only web images obtained from the
text-to-image search are used. This setting examines the impact after removing the image-to-image search label noise.

First, we show that DNNs generalize much better on the red label noise under all three settings. We compare the standard
deviation of the final accuracies at 10 noise levels (0%-80%) in Table 3. A higher standard deviation suggests a poorer
generalization performance when DNNs are trained on noisy labels. Ideally, we expect to observe a significantly smaller
standard deviation in web noise. Table 3 shows the standard deviation of the red noise is at least two times less than that of

4https://github.com/google/mentornet
5https://www.vision.ee.ethz.ch/webvision/download.html
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the blue noise. The standard deviations of red noise are comparable among all three settings. These results show that DNNs
generalize much better on red label noise despite specific approaches used to construct the dataset.

Table 3. Comparison of the standard deviation of the final accuracies across 10 noise levels. A higher standard deviation suggests a poorer
generalization performance of DNNs trained on noisy labels.

Noise Settings Mini-ImageNet Stanford Cars
Fine-tuned Trained from scratch Fine-tuned Trained from scratch

Blue Noise 0.205 0.195 0.268 0.347
Red Noise (setting 0) 0.051 0.088 0.104 0.146
Red Noise (setting 1) 0.046 0.068 0.104 0.127
Red Noise (setting 2) 0.056 0.077 0.067 0.096

Second, we show that DNNs may not learn patterns first on red noise i.e. DNNs are able to automatically learn generalizable
“patterns” in the early training stage before memorizing all noisy training labels. This is manifested by the gap between the
peak and final validation accuracy. Fig. 3 illustrates the relative difference, namely the drop, between the peak and final
accuracy on the clean validation set. Recall a larger drop between the peak and final validation accuracy means a better
pattern is found in the early training stage. As it shows, the drops of red noise under all three settings are significantly and
consistently smaller than that of the blue noise. These results show the domain differences and the types of label noise
(image-to-image search) do not distort this finding.

(a) Red Noise (Setting 0) (b) Red Noise (Setting 1) (c) Red Noise (Setting 2)

Figure 3. Performance drop from the peak accuracy across 10 noise levels. Different colors are used to differentiate noise types. A larger
drop (y-axis) means a better pattern is found during the early training stage

Finally, we show that ImageNet architectures generalize on noisy labels when the networks are fine-tuned. To do so, we
compute Pearson correlation r for different red noise settings. The results are shown in Fig. 4, where the x-axis is the
accuracy of the pretrained architectures on ImageNet and the y-axis shows the peak validation accuracy on noisy datasets.
The bar plots the 95% confidence interval across 10 noise levels, where the center dot marks the mean. As it shows, the
correlation is consistent across all types of label noise where the Pearson correlations are shown in the parentheses. These
results show a better pretrained architecture is likely to perform better when it is fine-tuned on noisy training labels. This
finding seems to be consistent across all types of label noise.

D. Detailed Method Comparison
This subsection presents detailed comparison results on our datasets. To be specific, we show the peak/final accuracy
on the clean validation set in four tables: Table 4, Table 5, Table 6, and Table 7, where the best trial out of all searched
hyperparameters is shown. The performance variance of all searched hyperparameters is shown in four figures: Fig. 6, Fig. 5,
Fig. 8, and Fig. 7, where the black line shows the 95% confidence interval. The results in all tables and figures show that the
proposed method MentorMix consistently outperforms baseline methods and has comparable performance variance in the
searched hyperparameter range.
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Table 4. Best peak accuracy (%) for baseline methods fine-tuned on Mini-ImageNet. The peak and final validation accuracies are shown
in the format of XXX/YYY.

Type Noise Level Vanilla WeDecay Dropout S-Model Reed Soft Mixup MentorNet MentorMix

B
lu

e
N

oi
se

0 85.1/83.3 84.5/81.9 85.0/83.6 85.2/83.5 85.6/84.3 83.4/82.0 84.8/83.4 85.0/83.9
5 84.5/82.0 84.2/79.7 84.5/80.8 84.1/81.5 84.7/81.9 83.5/82.0 84.9/84.5 84.8/84.0

10 83.9/77.8 83.8/75.9 84.3/78.0 84.3/78.2 84.4/81.5 83.3/80.1 84.5/84.3 85.2/83.6
15 83.6/75.8 83.1/73.8 83.6/74.7 83.7/76.1 84.7/80.4 84.0/79.5 84.5/81.2 84.6/83.2
20 83.5/74.0 82.8/71.9 83.5/73.9 83.9/73.7 84.5/79.2 82.9/77.9 84.3/76.5 84.5/83.6
30 82.9/66.6 82.8/64.1 82.4/67.5 82.4/66.0 83.0/76.7 83.3/74.6 83.2/74.0 84.5/82.8
40 81.6/61.0 81.1/58.5 82.4/59.0 82.2/60.2 83.0/78.3 81.8/70.8 82.5/80.4 84.3/81.3
50 80.9/50.5 80.5/47.9 82.0/68.1 80.0/50.8 81.6/53.1 79.9/64.6 81.8/71.0 83.7/79.0
60 80.5/40.9 79.7/40.3 81.4/38.9 80.7/42.3 81.6/45.2 79.2/63.6 81.0/79.8 83.4/77.9
80 76.1/19.7 76.5/17.6 78.9/24.7 76.9/20.2 77.8/22.2 76.1/60.0 77.5/32.3 82.0/73.3

R
ed

N
oi

se

0 84.7/82.6 83.6/81.9 84.3/83.0 85.0/83.3 84.8/82.5 83.0/81.8 84.6/83.5 84.4/83.4
5 84.6/80.0 84.0/78.9 84.6/80.2 84.7/80.4 85.2/80.9 84.8/82.3 84.6/84.0 85.3/85.0

10 83.9/78.1 83.9/78.1 83.9/78.1 84.5/78.4 84.3/78.6 84.1/80.8 84.3/84.1 85.1/85.0
15 82.3/77.4 83.0/76.5 83.1/76.5 83.0/77.5 84.3/78.0 83.9/80.8 83.6/82.9 85.5/84.7
20 82.9/76.1 82.9/75.6 82.7/75.5 82.5/76.9 84.3/77.4 83.2/79.4 83.5/83.4 85.0/84.6
30 82.0/74.6 81.2/74.6 81.6/73.7 82.5/73.8 83.0/74.7 83.3/78.6 82.7/82.6 83.9/81.4
40 80.7/74.0 81.2/71.7 81.2/72.6 81.4/73.9 82.3/73.1 82.4/77.6 81.9/80.2 83.1/81.5
50 80.3/72.9 80.3/71.4 80.7/71.9 80.5/72.2 81.7/72.4 82.0/77.3 81.1/79.3 82.2/80.4
60 78.6/70.3 79.2/68.8 80.1/69.4 78.8/70.1 80.7/69.5 80.4/75.5 80.5/73.4 81.0/77.1
80 76.3/64.6 76.1/63.1 76.1/63.4 76.7/65.0 76.7/65.3 76.6/71.3 76.8/72.8 77.2/74.0

Table 5. Best peak accuracy (%) for baseline methods trained from scratch on Mini-ImageNet. The peak and final validation accuracies
are shown in the format of XXX/YYY. ’-’ denotes the method that has failed to converge.

Type Noise Level Vanilla WeDecay Dropout S-Model Reed Soft Mixup MentorNet MentorMix

B
lu

e
N

oi
se

0 73.1/72.8 -/- 73.1/67.9 73.8/71.8 73.8/71.2 73.7/73.0 73.2/71.5 75.1/74.4
5 70.9/70.7 -/- 70.2/63.4 71.1/67.1 71.1/66.7 72.4/70.3 72.5/69.5 75.0/74.7

10 69.0/63.9 -/- 68.5/60.5 68.1/63.6 69.2/63.4 70.2/67.2 70.2/67.9 73.6/73.3
15 67.1/60.7 -/- 65.6/56.7 66.6/61.1 67.7/60.5 68.1/63.2 69.7/66.1 73.6/73.2
20 63.0/58.0 -/- 65.1/53.4 63.5/57.7 65.2/57.6 66.5/60.6 67.4/65.8 73.9/73.3
30 59.9/50.7 -/- 61.5/47.2 62.4/50.8 63.6/52.2 63.0/54.6 66.0/64.2 72.3/71.6
40 56.9/43.5 -/- 58.1/40.2 57.3/45.0 60.2/44.5 60.3/46.9 62.5/62.1 70.4/69.4
50 52.9/36.4 -/- 54.3/33.5 50.9/36.1 54.1/36.8 55.3/42.8 59.6/57.7 69.2/66.7
60 44.6/26.0 -/- 48.2/23.3 46.7/27.1 47.2/27.2 48.9/47.4 52.0/47.2 66.5/62.9
80 25.9/14.0 -/- 28.4/18.8 26.5/18.7 29.0/12.7 28.5/28.5 25.4/18.5 59.9/52.7

R
ed

N
oi

se

0 70.9/68.5 -/- 71.8/65.7 71.4/68.4 71.8/68.4 72.8/72.3 71.2/68.9 74.3/73.7
5 70.9/66.6 -/- 71.8/62.8 71.2/67.0 71.9/66.7 71.8/69.4 71.5/67.4 73.6/73.4

10 70.8/63.9 -/- 71.0/61.3 69.8/63.9 70.4/63.6 71.1/68.3 70.8/65.6 73.0/71.4
15 69.8/62.2 -/- 69.3/60.0 69.0/60.5 69.3/62.2 69.9/65.9 69.7/66.3 71.5/70.8
20 68.3/60.3 -/- 68.7/57.6 67.9/60.3 68.3/60.4 69.3/64.4 67.9/62.8 70.1/69.1
30 66.1/56.5 -/- 66.6/55.0 65.2/56.3 66.6/56.7 66.8/61.8 66.2/64.0 68.3/67.2
40 64.5/54.7 -/- 66.1/53.0 64.1/54.6 64.7/54.0 65.8/59.6 63.9/56.5 66.0/64.7
50 60.9/51.7 -/- 62.1/50.1 61.3/51.3 62.6/52.5 63.2/58.4 61.7/58.0 63.3/61.8
60 57.6/49.0 -/- 59.7/46.8 57.0/47.5 59.0/49.2 59.0/53.4 58.8/51.3 60.0/57.5
80 48.8/39.8 -/- 49.5/37.6 49.0/40.6 50.1/40.1 50.7/45.5 49.3/43.4 50.2/48.4
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Figure 4. Fine-tuning seven ImageNet architectures on the red and blue datasets. The number in parentheses is the Pearson correlation
between the architecture’s ImageNet accuracy and the performance on our red dataset. All three settings of red noise are illustrated. Better
view in color.



Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels

Table 6. Best peak accuracy (%) for baseline methods trained from scratch on Stanford Cars. The peak and final validation accuracies are
shown in the format of XXX/YYY.

Type Noise Level Vanilla WeDecay Dropout S-Model Reed Soft Mixup MentorNet MentorMix

B
lu

e
N

oi
se

0 91.2/90.6 92.4/92.2 91.9/91.3 91.0/90.7 91.3/91.0 91.7/91.6 90.1/90.0 92.9/92.9
5 88.8/87.7 90.8/90.5 89.5/88.4 88.8/88.3 88.8/88.8 90.3/90.0 90.3/89.8 92.4/92.2

10 86.4/84.6 89.1/87.9 87.7/85.1 85.4/84.2 85.4/87.5 89.1/88.9 89.5/89.5 91.8/91.8
15 83.6/81.7 87.5/86.4 85.6/81.7 83.9/81.4 83.9/86.4 87.7/87.2 89.1/89.1 91.3/91.2
20 81.3/78.2 84.9/82.9 83.7/77.4 81.2/78.1 81.2/83.9 85.6/85.6 88.1/87.8 90.5/90.4
30 76.7/68.2 79.1/75.3 78.6/67.0 75.7/68.5 75.7/79.8 79.8/76.4 85.3/85.2 87.3/86.3
40 69.3/56.8 72.9/63.8 71.9/56.0 69.7/58.2 69.7/71.8 73.6/68.1 80.9/79.3 81.9/77.7
50 58.8/44.1 61.2/48.7 62.0/44.2 59.2/45.1 59.2/60.0 63.0/56.2 71.1/66.7 71.7/65.1
60 47.5/32.8 49.4/36.9 50.9/31.8 46.0/32.4 46.0/47.8 52.0/43.6 58.5/57.0 60.9/52.5
80 16.1/10.8 15.2/10.0 15.5/10.1 16.0/10.6 16.0/15.9 18.3/17.2 15.8/13.8 21.2/19.2

R
ed

N
oi

se

0 91.0/90.7 92.3/92.1 91.8/91.2 90.9/90.7 91.2/90.8 92.3/92.3 91.2/91.1 93.2/93.2
5 90.3/90.1 91.7/91.7 90.6/89.6 89.8/89.2 90.3/89.6 91.9/91.8 89.7/89.3 92.2/92.2

10 89.2/88.5 90.7/90.5 90.0/89.1 89.7/89.1 89.4/88.9 90.7/90.5 89.1/88.7 91.9/91.9
15 88.1/87.5 90.1/89.5 Mix/88.1 88.2/87.8 88.7/88.4 89.8/89.7 88.2/87.8 91.4/91.4
20 86.9/86.2 89.5/89.0 88.4/87.0 87.3/86.8 87.4/86.1 89.2/89.0 87.7/86.7 90.6/90.5
30 85.0/84.3 87.0/86.0 86.3/84.0 85.0/84.2 84.5/83.8 87.1/86.9 84.6/84.3 89.3/89.3
40 82.2/81.4 82.4/81.3 83.4/81.7 82.4/80.9 82.6/81.6 84.8/84.3 81.9/81.0 87.4/87.4
50 78.4/76.7 80.5/80.0 80.3/77.2 78.1/76.6 78.7/76.7 81.7/81.6 78.3/76.8 84.3/83.9
60 73.2/71.4 76.8/75.0 75.6/72.1 73.3/71.6 74.7/72.1 77.7/77.4 74.1/72.9 80.2/80.1
80 60.0/57.7 62.5/61.2 62.1/57.3 59.0/56.8 60.9/58.1 64.3/63.0 61.2/57.2 68.1/67.9

Table 7. Best peak accuracy (%) for baseline methods trained from scratch on Stanford Cars. The peak and final validation accuracies are
shown in the format of XXX/YYY. ’-’ denotes the method that has failed to converge.

Type Noise Level Vanilla WeDecay Dropout S-Model Reed Soft Mixup MentorNet MentorMix

B
lu

e
N

oi
se

0 90.5/89.9 -/- 92.4/92.4 89.6/89.5 91.2/91.2 91.5/91.3 90.6/90.4 92.1/92.0
5 86.7/86.3 -/- 89.7/89.6 87.7/87.6 86.4/86.2 90.4/90.4 87.6/87.6 91.8/91.6

10 82.4/81.7 -/- 87.9/87.6 81.5/81.4 83.5/83.1 87.5/87.4 84.0/83.9 90.4/90.2
15 78.3/77.9 -/- 84.8/84.5 75.4/75.2 79.4/79.1 84.1/84.0 79.5/79.3 88.9/88.9
20 69.9/69.0 -/- 82.3/82.2 73.0/72.8 73.0/72.7 81.7/81.6 75.4/75.2 88.1/87.9
30 62.7/62.6 -/- 75.8/71.1 56.9/56.4 65.2/64.7 71.2/71.1 58.9/57.7 80.9/80.7
40 40.4/37.2 -/- 59.0/58.7 37.0/37.0 41.1/40.7 60.1/60.0 47.6/47.5 66.2/66.2
50 14.6/14.0 -/- 34.7/33.2 26.9/26.6 21.9/21.9 44.2/42.9 27.5/27.5 54.2/53.5
60 09.1/06.8 -/- 18.5/18.0 8.5/8.5 11.8/11.3 27.5/25.4 14.5/14.2 21.2/17.2
80 03.1/01.3 -/- 02.4/02.3 02.8/02.8 02.8/02.7 03.3/03.0 02.8/02.7 02.9/02.8

R
ed

N
oi

se

0 90.8/90.8 -/- 92.2/92.2 90.1/90.1 90.3/90.0 91.9/91.9 90.2/90.1 91.8/91.6
5 89.2/89.2 -/- 91.2/90.8 89.0/88.9 88.9/88.8 90.3/90.2 88.8/88.6 91.4/91.3

10 88.3/88.3 -/- 90.2/90.2 87.8/87.8 87.9/87.7 89.9/89.9 88.3/88.3 91.2/90.9
15 86.3/86.3 -/- 89.6/89.6 87.0/86.9 87.2/87.2 89.4/89.1 86.1/59.9 89.7/89.5
20 84.9/84.7 -/- 88.9/88.9 83.7/83.6 85.8/85.7 87.8/87.6 85.0/84.8 88.7/88.6
30 80.4/80.2 -/- 87.6/87.6 82.2/81.9 83.4/83.0 85.6/85.2 81.1/80.9 87.8/87.7
40 77.4/76.9 -/- 84.0/84.0 78.0/77.8 78.2/77.8 82.8/82.5 80.2/76.9 81.0/80.4
50 70.6/70.3 -/- 79.3/79.2 70.1/70.1 73.6/73.5 79.1/78.9 72.0/72.0 80.4/79.8
60 66.2/66.2 -/- 76.3/75.9 61.8/61.4 66.8/66.6 72.5/72.1 66.7/66.6 75.0/74.9
80 43.3/43.0 -/- 61.8/61.8 46.4/46.4 47.4/46.7 55.7/55.4 51.0/50.9 58.6/58.6
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Figure 5. Peak accuracy of robust DNNs (trained from scratch) on Red and Blue Mini-ImageNet.
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Figure 6. Peak accuracy of robust DNNs (fine-tuned) on Red and Blue Mini-ImageNet.
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Figure 7. Peak accuracy of robust DNNs (trained from scratch) on Red and Blue Stanford Cars.
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Figure 8. Comparison of the peak validation accuracy fine-tuned on Red and Blue Stanford Cars.
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