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A. Decomposing the Expected Batch Utility
The expected marginal utility of designing the batch of
experiments X is

Q(X | D) = EY [u(Y | X,D)], (1)

where the expectation is taken over the joint distribution of
Y = {y1, . . . , yT }, p(Y | X,D).

Let xj be an arbitrary point in the batch X and let X−j =
X \ {xj}. Through the use of a telescoping sum trick,
Q(X | D) can be decomposed as follows:
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Rewriting the set in the first term as
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(
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)
∪ {(X−j , Y−j)}, (3)

the derivation in (2) can be continued as follows:
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(4)

Finally, to achieve the desired result, the expectation w.r.t.
p(Y | X,D) can be rewritten as nested expectations w.r.t.
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p(yj | xj ,D) and p(Y−j | X−j ,D ∪ {(xj , yj)}):
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(5)

B. Full-Lookahead Expected Improvement as
Bellman Equation

When T = 1, i.e., there is only one evaluation left, the
optimal policy degenerates to the simplest case known as
expected improvement (EI):

x∗ = argmax
x

EI1(x) ≡ E[(f(x)− y0)+]. (6)

Now consider T = 2. Starting from location x, the improve-
ment of the next two evaluations depends on three random
variables: y ≡ f(x), the next evaluation location x′, and its
value y′ ≡ f(x′); computing the expected utility of starting
from x requires integrating all three variables out:

EI2(x) =

∫
y,x′,y′

(max{y1, y2} − y0)+ p(y | x)

p(x′ | x, y)p(y′ | x′, y, x)dydx′dy′. (7)

Given

(max{y, y′} − y0)
+
= (y − y0)+ + (y′ −max(y0, y))

+

(Ginsbourger et al., 2010), we have
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By Bellman’s principle of optimality, we have

p(x′ | x, y) = δ(x′ − argmaxx∗ EI1(x
∗ | x, y)). (9)

Therefore,∫
x′
EI1(x

′ | x, y)p(x′ | x, y)dx′ = max
x′

EI1(x
′ | x, y),

(10)
and hence

EI2(x) = EI1(x) + E[max
x′

EI1(x
′ | x, y)]. (11)

In general, we have the following Bellman equation for
k-step expected utility

EIk(x) = EI1(x) + E[max
x′

EIk−1(x
′ | x, y)]. (12)

C. Additional Bayesian Optimization Results
In the main paper, we presented BO results for nine synthetic
functions. These nine functions are selected from the 31
functions shown in Table 1, with gap of EI less than 0.9.
We only run up to 10.EI for all functions, so 12.EI.s and
15.EI.s are not shown. We argue that by identifying this
set of “hard” functions, we are able to consistently see the
advantage of nonmyopic BO methods. In Table 1, we can
see all variants of our method perform better than EI on
average, but other interesting patterns are weak, possibly
because they are averaged out by the “easy” functions.

Table 2 includes results of rollout and GLASSES on five
synthetic functions, after removing four from the nine for
which the optima are located in the center of the domain.
We remove these functions because the DIRECT optimiza-
tion procedure used in our implementations of rollout and
GLASSES always starts evaluating exactly at the center of
the domain. Thus the performance of these methods on
benchmarks where the global optimum just happens to be
in the center is artificially inflated. This artifact was also
pointed out in Lam et al. (2016); Wu and Frazier (2019) also
excluded such results because of this.

We surprisingly see rollout and GLASSES perform even
worse than EI on average for these five functions. This is
an indicator that the synthetic benchmark functions are very
different than the real-world functions. Note that Malkomes
and Garnett (2018) also observed significantly different
results on synthetic and real functions in their unrelated BO
experiments.

Table 3 shows the average results of 50 repeats of EI and
both “sampling” and “best” variants of q.EI on the real world
functions. Different from the results on synthetic functions,
we do not see “sampling” being consistently better than
“best” or the other way around.
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Table 1: Average gap of 30 repeats on all 31 synthetic functions.

EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 5.EI.b 5.EI.s 10.EI.b 10.EI.s
branin 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999
rosenbrock2 0.989 0.978 0.985 0.990 0.981 0.971 0.979 0.969 0.996 0.981 0.973
rosenbrock4 0.989 0.989 0.988 0.990 0.990 0.991 0.990 0.992 0.988 0.991 0.989
rosenbrock6 0.989 0.989 0.990 0.992 0.990 0.990 0.990 0.991 0.990 0.991 0.985
hartmann3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
hartmann6 0.957 0.966 0.964 0.970 0.965 0.974 0.970 0.976 0.974 0.978 0.971
eggholder 0.605 0.606 0.589 0.603 0.612 0.649 0.638 0.554 0.620 0.600 0.651
dropwave 0.455 0.489 0.524 0.475 0.599 0.538 0.550 0.435 0.613 0.448 0.651
beale 0.920 0.903 0.910 0.935 0.915 0.927 0.874 0.901 0.902 0.912 0.900
shubert 0.323 0.299 0.440 0.387 0.551 0.382 0.500 0.464 0.371 0.285 0.458
sixhumpcamel6 0.996 0.994 0.992 0.994 0.991 0.997 0.990 0.995 0.988 0.990 0.992
holder 0.936 0.873 0.913 0.941 0.930 0.965 0.949 0.950 0.948 0.883 0.936
threehumpcamel 0.988 0.981 0.978 0.970 0.978 0.981 0.949 0.975 0.931 0.971 0.930
rastrigin2 0.917 0.903 0.882 0.884 0.891 0.899 0.884 0.877 0.910 0.847 0.836
rastrigin4 0.806 0.759 0.773 0.830 0.838 0.834 0.815 0.769 0.800 0.766 0.775
ackley2 0.850 0.772 0.838 0.802 0.918 0.832 0.869 0.774 0.783 0.811 0.896
ackley5 0.528 0.557 0.555 0.579 0.562 0.602 0.594 0.604 0.620 0.671 0.621
levy2 0.925 0.949 0.927 0.933 0.915 0.960 0.961 0.958 0.913 0.963 0.929
levy3 0.960 0.948 0.962 0.954 0.962 0.951 0.961 0.960 0.968 0.969 0.951
levy4 0.968 0.959 0.970 0.970 0.974 0.962 0.950 0.976 0.976 0.970 0.972
griewank2 0.960 0.963 0.952 0.958 0.966 0.954 0.955 0.962 0.958 0.961 0.960
griewank5 0.981 0.984 0.983 0.985 0.984 0.985 0.983 0.986 0.984 0.985 0.983
stybtang2 0.999 0.970 0.999 1.000 0.999 0.999 0.999 0.999 0.992 1.000 0.999
stybtang4 0.937 0.911 0.897 0.916 0.884 0.915 0.901 0.900 0.908 0.893 0.883
powell4 0.976 0.965 0.973 0.975 0.972 0.977 0.965 0.978 0.971 0.966 0.957
dixonprice2 0.988 0.985 0.990 0.989 0.963 0.967 0.953 0.959 0.945 0.982 0.953
dixonprice4 0.987 0.986 0.985 0.958 0.981 0.982 0.986 0.982 0.985 0.987 0.971
bukin 0.822 0.864 0.865 0.844 0.860 0.851 0.861 0.852 0.850 0.885 0.826
shekel5 0.273 0.383 0.400 0.414 0.413 0.402 0.405 0.425 0.366 0.401 0.439
shekel7 0.280 0.414 0.330 0.397 0.341 0.380 0.369 0.378 0.406 0.445 0.387
michal2 0.990 0.999 0.983 0.977 1.000 1.000 0.982 0.967 0.984 1.000 0.961
Average 0.842 0.844 0.850 0.853 0.861 0.859 0.856 0.850 0.853 0.851 0.858

Table 2: Average gap of 100 repeats on all the five “hard” synthetic.

Rand EI 2.EI.s 3.EI.s 4.EI.s 10.EI.s 12.EI.s 2.G 3.G 2.R.10 3.R.3
eggholder 0.498 0.613 0.633 0.657 0.694 0.704 0.738 0.583 0.563 0.569 0.518
shubert 0.355 0.408 0.441 0.507 0.484 0.455 0.479 0.302 0.254 0.271 0.297
bukin 0.600 0.849 0.855 0.859 0.865 0.850 0.829 0.829 0.811 0.772 0.762
shekel5 0.038 0.286 0.320 0.343 0.344 0.373 0.358 0.265 0.175 0.378 0.350
shekel7 0.045 0.268 0.313 0.325 0.370 0.358 0.412 0.256 0.174 0.376 0.361
Average 0.307 0.485 0.512 0.538 0.551 0.548 0.563 0.447 0.395 0.473 0.458

Table 3: Average gap of 50 repeats on real functions for all q.EI variants.

EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 6.EI.b 6.EI.s 8.EI.b 8.EI.s
SVM 0.738 0.926 0.913 0.930 0.940 0.914 0.911 0.892 0.937 0.929 0.834
LDA 0.956 1.000 1.000 0.998 0.996 0.996 0.993 0.999 0.982 0.995 0.995
LogReg 0.963 1.000 0.998 0.999 1.000 0.999 0.999 1.000 0.999 1.000 1.000
NN Boston 0.470 0.491 0.467 0.490 0.478 0.495 0.460 0.460 0.502 0.455 0.467
NN Cancer 0.665 0.652 0.627 0.625 0.654 0.640 0.686 0.625 0.700 0.609 0.686
Robot3d 0.928 0.959 0.960 0.944 0.962 0.956 0.957 0.960 0.962 0.967 0.961
Robot4d 0.730 0.725 0.726 0.720 0.695 0.764 0.695 0.760 0.736 0.732 0.697
Average 0.779 0.821 0.813 0.815 0.818 0.823 0.815 0.813 0.831 0.812 0.806


