
Optimizing Black-box Metrics with Adaptive Surrogates

Qijia Jiang 1 * Olaoluwa Adigun 2 * Harikrishna Narasimhan 3 Mahdi Milani Fard 3 Maya Gupta 3

Abstract
We address the problem of training models with
black-box and hard-to-optimize metrics by ex-
pressing the metric as a monotonic function of a
small number of easy-to-optimize surrogates. We
pose the training problem as an optimization over
a relaxed surrogate space, which we solve by esti-
mating local gradients for the metric and perform-
ing inexact convex projections. We analyze gradi-
ent estimates based on finite differences and local
linear interpolations, and show convergence of
our approach under smoothness assumptions with
respect to the surrogates. Experimental results
on classification and ranking problems verify the
proposal performs on par with methods that know
the mathematical formulation, and adds notable
value when the form of the metric is unknown.

1. Introduction
We consider the problem of training a machine learning
model when the true evaluation metric is difficult to opti-
mize on the training set. This general problem arises with
many flavors and in different scenarios. For example, we
may have a black-box metric whose mathematical expres-
sion is unknown or difficult to approximate with a convex
training loss. This is the case with non-decomposable evalu-
ation metrics, such as the F-measure or ranking metrics like
Precision@K, where it is not straight-forward to construct
a smooth objective that closely approximates the metric.

Another example is when the training labels are only a
proxy for the true label. This arises in problems where one
has access to cheap-to-acquire noisy labels, such as clicks,
but wishes to optimize for a more expensive label, such as
whether users rate a result as good. If we have access to a
small auxiliary validation set with true labels, how can this
information be used to influence the training loss? Similar

*Equal contribution 1Stanford University, USA 2University of
Southern California, USA 3Google Research USA. Correspon-
dence to: Harikrishna Narasimhan <hnarasimhan@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

examples also arise when the training data has noisy features
and we have a small validation set with clean features, or in
machine learning fairness problems where the training data
contains group-dependent noise, but we may have access to
a small set of auxiliary clean data.

In many of the above scenarios, one wishes to optimize a
black-box metric M over d model parameters, but does not
have access to explicit gradients for M , nor is it practical
to obtain reliable gradient estimates when d is large. We
provide a general solution to this problem by choosing K ⌧

d convex surrogate losses, and expressing M as an unknown
monotonic function : RK

+ ! R of the K surrogates. We
then reformulate the original problem as an optimization of
 over the K-dimensional surrogate space. The choice of
surrogates can be as simple as the hinge losses on positive
and negative samples, which should work well for metrics
like the F-measure, or the surrogates can be chosen to be
a family of different convex losses to handle robustness to
training noise given a small set of clean validation samples.

Our strategy is to estimate gradients for the unknown func-
tion with respect to its K inputs by measuring changes
in the metric M and the K surrogates for different per-
turbations on the model, and use the estimates for r to
perform projected gradient descent over the K-dimensional
surrogate space. We show how the projection step can be
implemented inexactly but with convergence guarantees by
solving a convex problem in the original d parameters. We
are thus able to adaptively combine the K surrogates to
align well with the target metric M .

The main contributions of this paper include:

1. A novel formulation that poses the problem of optimiz-
ing a black-box metric as a lower-dimensional problem
in a surrogate space.

2. A projected gradient descent based training algorithm
using finite-differences and local linear interpolations
to estimate gradients.

3. Theoretical results showing convergence to a stationary
point under smoothness assumptions on .

4. Experiments showing that the proposed approach
works as well as methods that take advantage of the
form of the metric if known, and can give substantial
gains when the metric truly is a black-box.

Optimizing Black-box Metrics with Adaptive Surrogates

2. Related Work
There has been much work on directly optimizing special-
ized classes of evaluation metrics during training. These
include approaches that relax the metric using convex surro-
gates (Joachims et al., 2005; Kar et al., 2014; Narasimhan
et al., 2015a; Kar et al., 2016), plug-in or post-shift meth-
ods that tune a threshold on estimates of class probabilities
(Ye et al., 2012; Koyejo et al., 2014; Narasimhan et al.,
2014; Yan et al., 2018), reduction approaches that formu-
late a sequence of cost-sensitive learning tasks (Parambath
et al., 2014; Narasimhan et al., 2015b; Alabi et al., 2018;
Narasimhan, 2018), and approaches that use constrained op-
timization and game-based formulations (Eban et al., 2017;
Narasimhan et al., 2019).

However, all the above approaches require the evaluation
metric to be available in closed-form. Of these, the clos-
est to ours is the approach of Narasimhan et al. (2015b),
which reformulates the learning problem as an optimization
problem over the space of confusion matrices. To ensure
the constraint set is convex, this approach requires the use
of stochastic classifiers, and the theoretical guarantees as-
sume that the metrics are convex or pseudo-convex in the
confusion matrix. In contrast, we do not require stochastic
classifiers, and can handle general metrics.

Recently, there has been some work on optimizing evalua-
tion metrics that are only available as a black-box. Zhao et al.
(2019b) approximate black-box metrics with a weighted
training loss where the weighting function acts on a low-
dimensional embedding of each example, and a valida-
tion set is used to estimate the parameters of the example-
weighting function. A related approach by Ren et al. (2018)
uses meta-gradient descent to re-weight the training exam-
ples to handle training set biases and label noise. In contrast
we model the unknown metric as a function of surrogate
losses, and directly estimate the metric gradients, rather than
estimating a weighting function on each example.

Huang et al. (2019) also propose jointly adaptively learning
a metric with the model training. They use a parametric
form for their learned metric, whereas we nonparametrically
estimate the metric gradients. They use reinforcement learn-
ing to align the training objective’s optimum with that of the
true metric, whereas we use gradient descent over a surro-
gate space. They do not provide any theoretical guarantees.

Grabocka et al. (2019) express the metric as a set function
that maps each prediction to an embedding and maps the av-
erage embedding across all examples to the predicted metric.
They jointly optimize the parameters for the loss and the
model. This approach is similar to ours in that it expresses
the metric as a function on surrogate losses, and attempts to
learn that function. However, our approach is different in
two key points. First, we take as given known-useful sur-

rogate losses, whereas they learn decomposable surrogate
mappings from scratch. Second, they parameterize their
surrogate functions and final mapping as neural networks,
whereas we nonparametrically adaptively estimate the local
gradients. They provide limited theoretical guarantees.

Similar to Grabocka et al. (2019), the work of Wu et al.
(2018) also learns a parameterized metric (e.g. as a neural
network). An auxiliary parametric “teacher" model is used
to adaptively learn the parameters for the metric that will
maximize performance on a validation set. They do not
provide theoretical guarantees.

3. Problem Setup and High-level Approach
Let X be some instance space and Y be the label space.
Let f✓ : X ! R be a model parametrized by ✓ 2 Rd that
outputs a score f✓(x) for instance x 2 X . One can use this
score to make a prediction; e.g. for binary classification
problems, one predicts sign(f✓(x)). We measure perfor-
mance w.r.t. a test distribution D over X ⇥ Y . We consider
two scenarios, one where we are provided a training sample
S of n examples directly drawn from D, and the other where
the training sample S is drawn from a noisy distribution,
and we are provided a smaller clean validation set from D.

The performance of f✓ is evaluated by a metric M : Rd
!

[0, 1] computed on D, where M may be as simple as the
error rate Merr(✓) = E(x,y)⇠D [yf✓(x) > 0] (or an esti-
mate), or M may be a complex, non-decomposable metric
such as Precision@K that depends on the scores and the
distribution in a more intricate manner. We consider settings
where the form of M is unknown, and the metric is avail-
able only as a black-box, i.e., for a given ✓ 2 Rd, we can
evaluate M(✓). The goal is to learn a good f✓ by solving:

min
✓2Rd

M(✓). (1)

3.1. Reformulation with Surrogates

To optimize (1), one could directly estimate gradients of
M with respect to the d parameters, but d is usually too
large for that to be practical. To relax (1) to a more tractable
problem, we take as given K convex surrogate loss functions
`1, . . . , `K : Rd

! R+ where K ⌧ d, and express M as
an unknown non-decreasing function of the K surrogates,
with an unknown slack:

M(✓) = (`1(✓), . . . , `K(✓)) + ✏(✓),

where : RK
+ ! [0, 1] is monotonic but possibly non-

convex, and the slack ✏ : Rd
! [�1, 1] determines how well

the metric can be approximated by the K surrogates. Note
that this decomposition of M is not unique. Our results hold
for any such decomposition, but to enable a tighter analysis
we consider a for which the associated worst-case slack
over all ✓, i.e., max✓2Rd |✏(✓)| is the minimum.

Optimizing Black-box Metrics with Adaptive Surrogates

Here are examples of target metrics and convex surrogates.

Example 1 (Classification Metrics). Consider the task of
minimizing the G-mean metric given by 1�

p
TPR ⇥ TNR,

where TPR is the true positive rate and TNR is the true neg-
ative rate. This metric promotes high accuracies on both the
positive and negative class and is popular for classification
tasks where there is class imbalance (Daskalaki et al., 2006).
Possible surrogates for this metric include the average logis-
tic or hinge losses on the positive and negatives examples as
these serve as proxies for the TPR and TNR. It is reasonable
to assume monotonic here, since lower surrogate values
tend to produce better TPR and TNR values, and in turn
lower G-means. The F-measure is another popular metric
that can be written as a monotonic function of the TPR
and TNR (Koyejo et al., 2014), and there again the average
positive and negative losses would make good surrogates.

Example 2 (Misaligned Training Data). Consider min-
imizing a metric using a training dataset that is noisy or
misaligned with the test distribution, but we have access to
a small validation set with clean data. The metric M here
is evaluated on the clean validation set, and the surrogates
`1, . . . , `K might be convex lp losses on the training data
with different values of p > 1 to tune the noise robustness.
In this case, the precise mathematical relationship be-
tween the validation metric and the surrogates is unknown.

Example 3 (ML Fairness Problems). For blackbox ML
fairness metrics, good surrogates might be logistic losses on
the positive and negative samples for different groups.

Example 4 (Ranking Metrics). Consider optimizing a
ranking metric such as precision@K. While there are dif-
ferent convex surrogates available for this metric (Joachims,
2005; Narasimhan et al., 2015a), the surrogate that performs
the best can vary with the application. We have also ob-
served in practice that sometimes setting a different value
of K in the training loss produces a better precision@K
during evaluation time. The proposed set-up gives us a way
to combine multiple available ranking surrogates (possibly
with different K values) to align well with the test metric.

3.2. High-level Approach

Let L := {(`1(✓), . . . , `K(✓)) | ✓ 2 Rd
} be the set of feasi-

ble surrogate profiles. We then seek to approximate (1) by
ignoring the slack ✏ and posing the problem as an optimiza-
tion of over the K-dimensional set L:

min
`2L

 (`). (2)

Our high-level idea is to solve this re-formulated problem
by applying projected gradient descent over L.

However, there are many challenges in implementing this
idea. First, while each `k is convex, the space of feasible
surrogates L is not necessarily a convex set. Second, the

function is unknown to us, and therefore we need to
estimate gradients for with only access to the metric M
and the surrogates `. Third, we would need to implement
projections onto the K-dimensional surrogate space without
explicitly constructing this set.

4. Surrogate Projected Gradient Descent
We now explain how we address the above challenges.

4.1. Convexifying the Surrogate Space

To turn (2) into a problem over a convex domain, we define
the epigraph of the convex surrogate function profiles:

U := {u 2 RK
+ | u � `(✓) for some ✓ 2 Rd

} .

Observation 1. U is a convex superset of L.

We then optimize over this K-dimensional convex set:

min
u2U

 (u). (3)

This relaxation preserves the optimizer for (2) because
is monotonic and U consists of upper bounds on surrogate
profiles in L:
Observation 2. For any u

⇤
2 argmin

u2U
 (u), there exists

`⇤ 2 L, `⇤  u
⇤, such that (`⇤) = (u⇤).

4.2. Projected Gradient Descent over U

We then perform projected gradient descent over U . We
maintain iterates ut in U , and at each step, (i) estimate the
gradient of w.r.t. the K-dimensional point ut, (ii) perform
a descent step: ũ

t+1 = u
t
� ⌘r (ut), for some ⌘ > 0,

and (iii) project ũt+1 onto U to get the next iterate u
t+1.

In order to implement these steps without knowing , or
having direct access to the set U , we simultaneously main-
tain iterates ✓t in the original parameter space that map to
iterates ut

2 U , i.e., for which u
t = `(✓t).

Now to estimate gradients without direct access to , we
measure changes in the K surrogates `(·) and changes in
the metric M(·) at different perturbations of ✓t and compute
estimates of r (ut)) based on finite-differences or local
linear interpolations. To compute projections without direct
access to U , we formulate a convex optimization problem
over the original parameters ✓, and show that this results in
an over-constrained projection onto U .

Thus we maintain iterates (ut, ✓t) such that ut = `(✓t), and
execute the following at every iteration:

ũ
t+1 = u

t
� ⌘ gradient (✓

t; M, `)

(ut+1, ✓t+1) = projectU (ũ
t+1; `).

Figure 1 gives a schematic description of the updates. The
gradient computation takes the current ✓t as input and

Optimizing Black-box Metrics with Adaptive Surrogates

Figure 1. PGD over K-dimensional set U . ‘project’ performs an
over-constrained projection onto U . ‘gradient’ probes M and `
returns an estimate ĝt+1 2 RK for r .

L

U

`1(✓)

`2(✓)

ua

ũb

ub

ũa

Figure 2. Over-constrained projection. The space of surrogate
profiles L = {(`1(✓), `2(✓)) | ✓ 2 Rd} is a non-convex set (solid
line), and its epigraph U = {u � ` | ` 2 L} is convex (shaded
region). For the point ũa outside U , the solution ua to (4) is the
same as the exact projection ⇧(ũa) onto U . For the point ũb inside
the set, the projection ⇧(ũb) is the same point ũb, whereas the
the solution to (4) is any point ub on the boundary that is lesser or
equal to the exact projection in each coordinate, i.e., ub  ⇧(ũb).

probes M and ` to return an estimate of r (ut). We
elaborate on how we estimate gradients in Section 5. The
projection computation takes the updated ũ

t+1 as input and
returns a point ut+1 in U and an associated ✓t+1 such that
u
t+1 = `(✓t+1). We explain this next.

4.3. Over-constrained Projection

To implement the projection without explicit access to U ,
we set up an optimization over ✓ by penalizing a clipped
L2-distance between the surrogate profile `(✓) and ũ

t+1:

✓t+1
2 argmin

✓2Rd

k
�
`(✓) � ũ

t+1
�
+
k
2

u
t+1 = `(✓t+1), (4)

where (z)+ := max{0, z} is applied element-wise and k · k

is the L2-norm. Note that we penalize errors in only one
direction (i.e., the errors where `k(✓) � ũt+1

k). This has the
advantage of the optimization problem being convex. More-
over, as we show below, (4) results in an over-constrained
projection: any solution u

t+1 to (4) is feasible (i.e., is in U),
and for a monotonic , yields a -value that is no worse
than what we would get with an exact projection.

Lemma 1. Let u+ be the exact projection of ũt+1
2 RK

+

onto U . For any solution u
t+1 to (4), we have u

t+1
2 U ,

u
t+1

 u
+, and for a monotonic , (ut+1)  (u+).

Algorithm 1 Surrogate Projected Gradient Descent
1: Input: Black-box metric M , surrogate loss functions
`1, . . . , `K : Rd

! RK
+ , hyper-parameters: T, ⌘

2: Initialize ✓1 2 Rd,u1 = `(✓1)
3: for t = 1 to T do
4: Gradient estimate: Obtain an estimate ĝ

t for gra-
dient r (ut) by invoking Algorithms 2 or 3 with
inputs ✓t, M and `1, . . . , `K

5: Gradient update: ũt+1 = u
t
� ⌘ ĝt

6: Over-constrained projection: Solve:

✓t+1
2 argmin

✓2Rd

k
�
`(✓) � ũ

t+1
�
+
k
2

to accuracy O
�

1
�2T

�
and set ut+1 = `(✓t+1)

7: end for

Problem (4) may not have a unique solution. For example,
when ũ

t+1 is in the interior of U , the exact projection u
+ is

the same as ũt+1, whereas the solutions to (4) are the points
u on the boundary of U with u  u

+ (see Figure 2). As
 is monotonic, picking any of these solutions for the next
iterate is sufficient for the algorithm’s convergence.

An outline of the projected gradient descent with this inexact
projection is presented in Algorithm 1. One can interpret the
algorithm as adaptively combining the K surrogates `k’s to
optimize the metric M (see Appendix C for the details).

4.4. Convergence Guarantee

We show convergence of Algorithm 1 to a stationary point
of (`(·)). Since we probe M to estimate gradients for
 , the errors in the estimate would depend on how closely
 (`(·)) approximates M , and in turn on the magnitude of
the slack term ✏. We assume here that the gradient estimation
error E

⇥
kĝ

t
� r (`(✓t))k2

⇤
at each step t is bounded by

✏ that depends on the slack ✏. In Section 5, we present
gradient estimates that satisfy this condition.
Theorem 2 (Convergence of Algorithm 1). Let M(✓) =
 (`(✓)) + ✏(✓), for a that is monotonic, �-smooth and
L-Lipschitz, and the worst-case slack max✓2Rd |✏(✓)| is the
minimum among all such decompositions of M .

Suppose each `k is �-smooth and �-Lipschitz in ✓ with
k`(✓)k  G, 8✓. Suppose the gradient estimates ĝt satisfy
E
⇥
kĝ

t
� r (`(✓t))k2

⇤
 ✏, 8t 2 [T] and the projec-

tion step satisfies k(`(✓t+1)� ũ
t)+k2  min✓2Rd k(`(✓)�

ũ
t)+k2 + O(1

�2T), 8t 2 [T]. Set stepsize ⌘ = 1
�2 .

Then Algorithm 1 converges to an approximate stationary
point of (`(·)):

min
1tT

E
⇥
kr (`(✓t))k2

⇤
 C

✓
�
p
T

+
p
✏ +

p

L1/4✏

◆
,

where the expectation is over the randomness in the gradient
estimates, and C = O

�
KL

�
�
�
G+ L

�2

�
+ �2

��
.

Optimizing Black-box Metrics with Adaptive Surrogates

Remark 1 (Stationary point of M). When the gradient
estimation error ✏ is small and the number of steps T ! 1,
the algorithm reaches a model ✓ with a small gradient norm
kr (`(·))k. If additionally the slack term ✏ is Lipschitz in
✓, then this implies that the algorithm also converges to an
approximate stationary point of the metric M .
The proof of Theorem 2 proceeds in two parts. We first show
that the algorithm converges to an approximate stationary
point of over U . For this, we extend recent results of
Ghadimi et al. (2016) on convergence of projected gradient
descent for smooth non-convex objectives. We then exploit
the smoothness of the surrogates ` to show that this result
translates to the algorithm converging to an approximate
stationary point of (`(·)) w.r.t. ✓.
Remark 2 (Prior convergence results). A key difference
between our analysis and prior works on zeroth-order gra-
dient methods (Duchi et al., 2015; Ghadimi et al., 2016;
Nesterov and Spokoiny, 2017) is that we do not directly
optimize the given objective over the space of parameters
✓, and instead perform an optimization over a relaxed surro-
gate space U that is not directly specified, and do so using
inexact projections and approximate gradient estimates.

5. Gradient Estimation Techniques
We now address the issue of estimating the gradient ĝt of
at a given `(✓t) without explicit access to . We provide an
algorithm based on finite-differences, and another based on
local linear interpolations. We also show error bounds for
these algorithms, i.e., bound the errors ✏ in Theorem 2.

5.1. Finite Differences

We first consider the case where both the surrogates `
and metric M are evaluated on the same sample. Let
f✓ := [f✓(x1), . . . , f✓(xn)]> 2 Rn denote the scores of
the model ✓ computed on the n training examples. We
overload notation and use M(f✓,y) to denote the value of
the evaluation metric M on the model scores f✓ 2 Rn and
labels y 2 Y

n. Similarly, we use `k(f✓,y) to denote the
value of surrogate loss `k on f✓ and y.

We present our method in Algorithm 2. We adopt a standard
finite-difference gradient estimate (Nesterov and Spokoiny,
2017), which requires us to perturb the surrogates ` with ran-
dom Gaussian vectors Z1, . . . , Zm

⇠ N (0, IK), evaluate
 at the perturbed surrogate profiles, and calculate

1

m

mX

j=1

 (`(f✓,y) + �Zj) � (`(f✓,y))

�
,

for � > 0. In our case, we cannot directly perturb the
surrogates ` and evaluate changes in . Instead, we perturb
the scores f✓ so that the corresponding changes in ` follows
a Gaussian distribution, and evaluate the difference between

Algorithm 2 Finite-difference Gradient Estimate

1: Input: ✓0 2 Rd, M , `1, . . . , `K
2: Hyper-parameters: Num of perturbations m, �
3: Draw Z1, . . . , Zm

⇠ N (0, IK)
4: Find �j

2 Rn s.t. `(f✓0 + �j ,y) = `(f✓0 ,y) + �Zj ,
for j = 1, . . . ,m

5: ĝ =
1

m

mX

j=1

M(f✓0 + �j ,y) � M(f✓0 ,y)

�
Zj

6: Output: ĝ

Algorithm 3 Linear Interpolation Gradient Estimate

1: Input: ✓0 2 Rd, M , `1, . . . , `K
2: Hyper-parameters: Num of perturbations m, �
3: Draw Z1

1 , . . . , Z
m
1 , Z1

2 , . . . , Z
m
2 ⇠ N (0, Id)

4: Hj,: = `(✓0 + �Zj
1) � `(✓0 + �Zj

2), j = 1, . . . ,m

5: Mj,: = M(✓0+�Zj
1) � M(✓0+�Zj

2), j = 1, . . . ,m
6: ĝ 2 argmin

ĝ2RK

kHĝ �Mk
2

7: Output: ĝ

the metric M at the original and perturbed scores. This is
possible, for example, when each `k(f✓,y) is an average of
point-wise losses �k(yif✓(xi)) on different subsets of the
data, for some invertible function �k : R ! R, in which
case, it is easy to compute the right amount of perturbation
to the scores f✓ to produce the desired perturbation in `k.
Lemma 3 (Finite difference estimate). Let M be as defined
in Theorem 2 and |✏(✓)|  ✏̄, 8✓. Let ĝ be returned by
Algorithm 2 for a given ✓0, m perturbations and � =

p
✏̄p

K�2
.

E
⇥
kĝ � r (`(✓0))k2

⇤
 O

✓
L2K

m
+ ✏̄K2�2

◆
,

where the expectation is over the random perturbations.

This gives a bound on ✏ in Theorem 2 when Algorithm 2 is
used for gradient estimates. Note the error depends on the
slack magnitude ✏̄, and decreases with more perturbations.

5.2. Local Linear Interpolations

The finite difference approach is not applicable to settings
where the metric is evaluated on a validation sample but the
surrogates are evaluated on training examples (as in Exam-
ple 2), or where finding the right amount of perturbation
on the scores is difficult. For such cases we present a local
linear interpolation based approach in Algorithm 3, where
we perturb the model parameters ✓ instead of the scores.

We use the fact that a smooth function can be locally
approximated by a linear function, and estimate the gradient
of of at `(✓) by perturbing ✓, measuring the correspond-
ing differences in the surrogates ` and the metric M , and
fitting a linear function from the surrogate differences to

Optimizing Black-box Metrics with Adaptive Surrogates

the metric differences. Specifically, for d model parameters,
we draw two independent sets of d-dimensional Gaussian
perturbations Z1

1 , . . . , Z
m
1 , Z1

2 , . . . , Z
m
2 ⇠ N (0, Id), and

return a linear fit from H = [`(✓+�Zj
1) � `(✓+�Zj

2)]
m
j=1

to M = [M(✓ + �Zj
1) � M(✓ + �Zj

2)]
m
j=1.

Lemma 4 (Linear interpolation estimate). Let M be de-
fined as in Theorem 2 and |✏(✓)|  ✏̄, 8✓. Assume each `k
is �-Lipschitz in ✓ w.r.t. the L1-norm, and k`(✓)k  G 8✓.
Suppose for a given ✓0, � and perturbation count m, the ex-
pected covariance matrix for the left-hand-side of the linear
system H is well-conditioned, and has the smallest singlular
value �min(

Pm
i=1 E[HiH

>
i]) = O(m�2�2). Then setting

� = Õ

⇣
G1/3 ✏̄1/3

�K3/2�1/3

⌘
and m = Õ

⇣
G4K9�2

✏̄2

⌘
, Algorithm

3 returns w.h.p. (over draws of random perturbations) a
gradient estimate ĝ that satisfies:

kĝ � r (`(✓0))k2  Õ

⇣
G1/3✏̄1/3K3�2/3

⌘
.

We show in Appendix A.5 how this high probability state-
ment can then be used to derive a bound on the expected
errors ✏ in Theorem 2. Prior works provide error bounds
on a similar gradient estimate under an assumption that
the perturbation matrix H can be chosen to be invertible
(Conn et al., 2008; 2009; Berahas et al., 2019). In our case,
however, H is not chosen explicitly, but instead contains
measurements of changes in surrogates for random perturba-
tions on ✓. Hence to show an error bound, we need a slightly
subtle condition on the correlation structure of the surro-
gates (that essentially says the variance of the perturbed
surrogates are large enough and the rates are not strongly
correlated with each other), which we express as a condition
on the smallest singular value of the covariance of H.

5.3. Handling Non-smooth Metrics

For that is non-smooth and Lipschitz, we extend the finite
difference gradient estimate in Section 5.1 with a two-step
perturbation. We draw two sets of Gaussian random vectors
Z1
1 , . . . , Z

m
1 , Z1

2 , . . . , Z
m
2 ⇠ N (0, IK) and calculate

1

m

mX

j=1

 (`(f✓,y) + �1Z
j
1 + �2Z

j
2)� (`(f✓,y) + �1Z

j
1)

�2

for �1,�2 > 0, where we perturb ` by perturbing the scores
f✓. This approach computes a finite-difference gradient
estimate for a smooth approximation to the original , given
by �1(u) := E [(u + �1Z1)], where Z1 ⇠ N (0, IK).
We provide error bounds in Appendix B by building on
recent work by Duchi et al. (2015), and discuss asymptotic
convergence of Algorithm 1 as �1 ! 0.

6. Experiments
We present experiments to show the proposed approach,
Algorithm 1, is able to perform as well as methods that

Table 1. Datasets used in our experiments.
Dataset #instances #features Groups
Simulated 5000 2 -
COMPAS 4073 31 M/F
Adult 32561 122 M/F
Credit 30000 89 M/F
Business 11560 36 C/NC
KDD Cup 08 102294 117 -

Table 2. Test G-mean on sim. data. Lower is better. Due to the
class imbalance, logistic regression learns to always predict the
majority negative class and yields a poor G-mean. Post-shift tunes
a threshold on the logistic regression model to optimize G-mean.

LogReg PostShift Proposed
Simulated 1.000 0.498 0.344

take advantage of a metric’s form where available, and is
also able to provide gains for metrics that are truly a black-
box. We consider a simulated classification task, a fair
classification task with noisy features, a ranking task and
classification tasks with proxy and noisy labels. The datasets
we use are listed in Table 1.

We use the linear interpolation approach in Algorithm 3 for
estimating gradients, as this is the most practical among
the proposed estimation methods, and applicable when the
surrogates and metrics are evaluated on different samples.
We train linear models in all experiments, and tune hyper-
parameters such as step sizes and the perturbation parameter
� for gradient estimation using a held-out validation set. We
run the projected gradient descent with 250 outer iterations
and 1000 perturbations. For the projection step, we run 100
iterations of Adagrad. See Appendix D for more details and
a discussion on perturbations. TensorFlow code has been
made available.1

6.1. Optimizing G-mean on Simulated Data

As a sanity check, we first apply our approach to maxi-
mize a non-black box evaluation metric: G-mean = 1 �
p

TPR ⇥ TNR, described in Example 1. We consider a sim-
ulated 2-dimensional binary classification task, containing
10% positives and 90% negatives. The positive examples
are drawn from a Gaussian with mean [0, 0] and covariance
matrix 0.2⇥ I2. The negative examples are drawn from a
mixture of two Gaussians centered at [�1,�1] and [1, 1],
with equal priors, and with a covariance matrix of 0.1⇥ I2.

We apply our method with two surrogate functions: the aver-
age hinge losses on the positive and negative examples. We
compare with the plug-in or post-shift approach, a common
baseline for the G-mean metric (Narasimhan et al., 2014).
This method trains a logistic regression model and tunes

1https://github.com/google-research/google-research/
tree/master/adaptive_surrogates

https://github.com/google-research/google-research/tree/master/adaptive_surrogates
https://github.com/google-research/google-research/tree/master/adaptive_surrogates

Optimizing Black-box Metrics with Adaptive Surrogates

Table 3. Average test macro F-measure across groups with clean features. Higher is better. Despite having only black-box access to the
metric, our approach performs comparable to methods that take advantage of the form of the metric.

LogReg PostShift RelaxedFM GenRates Proposed
Business 0.793 0.789 0.794 0.793 0.796
COMPAS 0.560 0.631 0.614 0.620 0.629
Adult 0.668 0.664 0.665 0.654 0.665
Default 0.467 0.536 0.525 0.532 0.533

Figure 3. Hyperplanes learned by proposed method and PostShift
on simulated data.

a threshold on the model to optimize G-mean. As shown
in Table 2, the proposed approach yields the best G-mean.
It is clear from the resulting decision boundaries shown in
Figure 3 that our method learns the better linear separator.

6.2. Macro F-measure with Noisy Features

For this experiment we consider training a classifier with
fairness goals defined on binary protected attributes. We
seek to maximize the average F-measure across the groups:

Macro F1 =
1

2

X

G2{0,1}

2⇥ PrecisionG ⇥ RecallG
PrecisionG + RecallG

,

where PrecisionG and RecallG are the precision and re-
call on protected group G. Optimizing a sum of F-
measures is harder than optimizing the binary F-measure
because the summation destroys its pseudo-convexity prop-
erty (Narasimhan et al., 2019).

We use four fairness datasets: (1) COMPAS, where the goal
is to predict recidivism with gender as the protected attribute
(Angwin et al., 2016); (2) Adult, where the goal is to predict
if a person’s income is more than 50K/year, and we take
gender as the protected group (Blake and Merz, 1998);
(3) Credit Default, where the task is to predict whether
a customer would default on his/her credit card payment,
and we take gender as the protected group (Blake and Merz,
1998); (4) Business Entity Resolution, a proprietary dataset
from a large internet services company, where the goal is
to predict whether a pair of business descriptions refer to
identical businesses, and we consider non-chain businesses
as protected. In each case, we split the data into train-
validation-test sets in the ratio 4/9 : 2/9 : 1/3.

Training with no noise. The first set of experiments tests if
the proposed approach is able to match the performance of
existing methods that are customized to optimize the macro
F-measure. We compare against (i) plain logistic regres-
sion method, (ii) a plug-in or post-shift method that tunes a
threshold on the logistic regression model to maximize the
F-measure (Koyejo et al., 2014; Narasimhan et al., 2014),
(iii) an approach that optimizes a continuous relaxation to
the F-measure that replaces the indicators with the hinge
loss (see e.g. Zhao et al. (2019a)), and (iv) the recent “gen-
eralized rates” approach of Narasimhan et al. (2019) for
optimizing metrics that are a sum of ratios. We apply our
approach using four surrogate losses, each one is the hinge
loss averaged over either the positive or negative examples,
calculated separately for each of the two groups. As seen in
Table 3, despite having only black-box access to the metric,
the proposed approach is competitive with the other methods
that are directly tailored to optimize the macro F-measure.

Training with noisy features. The second set of experi-
ments evaluates the performance of these methods when the
training set has noisy features for just one of the groups,
while the smaller validation set contains clean features. We
use our approach to adaptively combine the same four sur-
rogate losses computed on the noisy training set to best
optimize the macro F-measure on the clean validation set.

We chose a certain fraction of the examples at random from
one of the groups, which we refer to as group 0, and for these
examples, we add Gaussian noise to the real features (with
mean 0 and the same standard deviation as the feature), and
flip the binary features with probability 0.9. Figure 4 shows
the test F-measure for the different methods with varying
fraction of noisy examples in group 0. Except for logistic
regression, all other methods have access to the validation
set: post-shift uses the validation set to tune a threshold on
the logistic regression model; the RelaxedFM and GenRates
method optimize their loss on the training set, but pick the
best model iterate using the validation set. The proposed
approach is able to make the best use of the validation set,
and consistently performs the best across most noise levels.

6.3. Ranking to Optimize PRBEP

We next consider a ranking task, where the goal is to learn a
scoring function f that maximizes the precision-recall break-
even point (PRBEP), i.e. yields maximum precision at the

Optimizing Black-box Metrics with Adaptive Surrogates

(a) Business (b) Adult

(c) Default (d) COMPAS

Figure 4. Test macro F-measure across groups for varying noise levels, averaged over 5 trials. Higher is better.

Table 4. PRBEP on KDD Cup 2008 data. Higher is better.
Kar et al. (2015) Proposed

Train 0.473 0.546
Test 0.441 0.480

threshold where precision and recall are equal. PRBEP
is a special case of Precision@K when K is set to the
number of positive examples in the dataset. For this task, we
experiment with the KDD Cup 2008 breast cancer detection
data set (Rao et al., 2008) popularly used in this literature
(Kar et al., 2015; Mackey et al., 2018). We randomly split
this dataset 60/20/20 for training, validation, and test.

Since the break-even point for a dataset is not known before-
hand, we use surrogates that approximate precision at differ-
ent recall thresholds ⌧ . We use the quantile-based surrogate
losses of Mackey et al. (2018) with ⌧ = 0.25, 0.5, 0.75. As
a comparison, we optimize the avg-precision@K surrogate
provided by Kar et al. (2015). As seen in Table 4, the pro-
posed approach is able to learn a better training loss by
combining the three quantile surrogates, and yields the best
PRBEP on the both the training and test sets.

6.4. Classification with Proxy Labels

Next, we consider classification tasks where the training
labels are proxies for the true labels, but the validation data
has the true labels. We seek to minimize the classification er-
ror on the validation set by combining hinge loss surrogates

Table 5. Test classification error where the training labels are only
proxy labels with unknown relationship to the true labels. The
proposed method was run with both hinge and sigmoid surrogates.
Lower is better.

LogReg PostShift Hinge Sigmoid
Adult 0.333 0.322 0.314 0.314
Business 0.340 0.251 0.256 0.236

evaluated separately on the positive and negative training
examples. While the theory requires convex losses, we ex-
periment with also running the algorithm with non-convex
sigmoid losses as surrogates.

For the Adult data, we predict whether a candidate’s gender
is female, and take the marital-status-wife feature as the
proxy label. For the Business Entity Resolution data, we
predict whether a pair of business descriptions refer to the
same business, and use the has-same-phone-number feature
as a proxy label.

We compare with a logistic regression model trained with
the proxy labels and a post-shift method that corrects the
logistic regression threshold to minimize classification error
on the validation data. In the results shown in 5, as expected
logistic regression yields the highest test error. On Adult,
both variants of the proposed method are better than Post-
Shift. On Business, the proposed method performs slightly
worse than PostShift when run with hinge surrogates, but
yields notable improvements when run with sigmoid surro-
gates, which are tighter relaxations to the true errors.

Optimizing Black-box Metrics with Adaptive Surrogates

Table 6. Validation and test G-mean on Adult dataset with noisy
training labels, averaged over 5 trials. The proposed method was
run with both hinge and sigmoid surrogates. Lower is better.

LogReg PostShift MOEW Hinge Sigmoid
Vali 0.482 0.178 0.199 0.187 0.165
Test 0.437 0.184 0.223 0.186 0.176

6.5. Optimizing G-mean with Noisy Labels

We finally consider classification tasks where the training
labels are noisy, but we have access to a validation sample
with true labels. We experiment with the Adult dataset,
with the goal of predicting if a person’s income is more than
50K/year. We hold out 1% of the training data for validation,
and in remaining data, we randomly pick 30% of the positive
labels and flip them to negative. We seek to minimize the G-
mean metric given by 1�

p
TPR ⇥ TNR on the validation

set. We apply our approach using ten surrogate losses, each
one is the hinge loss averaged over either the positive or
negative examples, calculated separately for five groups of
examples: male, female, black, white and private-workforce.
We also applied our approach using sigmoid surrogates
averaged over the same ten subsets.

We compare with a logistic regression model trained with
the noisy labels and a post-shift method that corrects the
logistic regression threshold to minimize G-mean on the
validation data. We also compare with a grid-search-based
variant of the metric-optimized example weights (MOEW)
approach of Zhao et al. (2019b). MOEW optimizes a black-
box metric by learning a weighted training objective, where
the weights on the individual examples are trained to min-
imize a given metric on the validation set. We model the
example weights as a linear function of a 2-dimensional
feature embedding and the labels, and tune the parameters
of the weighting function using an exhaustive grid search.

The results are shown in Table 6. The proposed method
with sigmoid surrogates yields the lowest G-mean on the
validation and test sets, with post-shift coming in second.
The sigmoid surrogates, being tighter approximation to the
training errors, once again yield better results than the hinge
surrogates. In Appendix D, we provide further details and
an additional experiment with simulated data.

7. Discussion
There is currently a lot of interest in training models with
better alignment with evaluation metrics. Here, we have
investigated a simple method that directly estimates only
the needed gradients for gradient descent training, and does
not require assuming a parametric form. This simplicity
enabled us to provide rigorous theoretical guarantees.

Experimentally, our approach was as good as strategies that

take advantage of a metric’s known mathematical form. In
our experiments imitating real use cases for our method, we
obtained notable gains over existing baselines for classifica-
tion with group-dependent noise, and for black-box ranking.
For the experiments with proxy and noisy labels, however,
we found the post-shifting approach to be competitive, with
the proposed method yielding gains over post-shift when run
with tight surrogate approximations to classification errors.

Post-shift is a strong baseline – in theory, for many metrics
it is optimal to simply post-shift the Bayes class probability
model P(y = 1|x) with a suitable threshold � (Koyejo
et al., 2014; Yan et al., 2018). Post-shift only has one degree
of freedom, which limits it, but also enables choosing � to
directly optimize the true metric. In contrast, our method
acts through surrogate losses to optimize the target metric.
We argue that post-shift should be a required baseline for
experiments on custom metric optimization.

We look forward to seeing further theoretical analysis for
handling black-box metrics, and further experimentation
comparing methods with fewer but smarter parameters to
those with more flexible modeling.

Acknowledgements
We thank Andrew Cotter for several helpful discussions.

References
Alabi, D., Immorlica, N., and Kalai, A. (2018). Unleashing

linear optimizers for group-fair learning and optimization.
In COLT.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016).
Machine bias. ProPublica, May, 23.

Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg,
K. (2019). A theoretical and empirical comparison of
gradient approximations in derivative-free optimization.
arXiv preprint arXiv:1905.01332.

Blake, C. and Merz, C. J. (1998). UCI repository of machine
learning databases.

Conn, A. R., Scheinberg, K., and Vicente, L. N. (2008).
Geometry of interpolation sets in derivative free optimiza-
tion. Mathematical programming, 111(1-2):141–172.

Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009).
Introduction to derivative-free optimization, volume 8.
Siam.

Daskalaki, S., Kopanas, I., and Avouris, N. (2006). Evalua-
tion of classifiers for an uneven class distribution problem.
Applied Artificial Intelligence, 20:381–417.

Optimizing Black-box Metrics with Adaptive Surrogates

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono,
A. (2015). Optimal rates for zero-order convex optimiza-
tion: The power of two function evaluations. IEEE Trans-
actions on Information Theory, 61(5):2788–2806.

Eban, E., Schain, M., Mackey, A., Gordon, A., Saurous,
R. A., and Elidan, G. (2017). Scalable learning of non-
decomposable objectives. In AISTATS.

Garmanjani, R. and Vicente, L. N. (2013). Smoothing and
worst-case complexity for direct-search methods in nons-
mooth optimization. IMA Journal of Numerical Analysis,
33(3):1008–1028.

Ghadimi, S., Lan, G., and Zhang, H. (2016). Mini-batch
stochastic approximation methods for nonconvex stochas-
tic composite optimization. Mathematical Programming,
155(1):267–305.

Grabocka, J., Scholz, R., and Schmidt-Thieme, L.
(2019). Learning surrogate losses. arXiv preprint
arXiv:1905.10108.

Huang, C., Zhai, S., Talbott, W., Bautista, M. A., Sun, S.-Y.,
Guestrin, C., and Susskind, J. (2019). Addressing the
loss-metric mismatch with adaptive loss alignment. In
ICML.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan,
M. I. (2019). A short note on concentration inequalities
for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736.

Joachims, T. (2005). A support vector method for multivari-
ate performance measures. In ICML.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay,
G. (2005). Accurately interpreting clickthrough data as
implicit feedback. In SIGIR.

Kar, P., Li, S., Narasimhan, H., Chawla, S., and Sebastiani,
F. (2016). Online optimization methods for the quantifi-
cation problem. In KDD.

Kar, P., Narasimhan, H., and Jain, P. (2014). Online and
stochastic gradient methods for non-decomposable loss
functions. In NIPS.

Kar, P., Narasimhan, H., and Jain, P. (2015). Surrogate
functions for maximizing precision at the top. In ICML.

Koyejo, O., Natarajan, N., Ravikumar, P., and Dhillon, I.
(2014). Consistent binary classification with generalized
performance metrics. In NIPS.

Mackey, A., Luo, X., and Eban, E. (2018). Constrained
classification and ranking via quantiles. arXiv preprint
arXiv:1803.00067.

Narasimhan, H. (2018). Learning with complex loss func-
tions and constraints. In AISTATS.

Narasimhan, H., Cotter, A., and Gupta, M. (2019). Optimiz-
ing generalized rate metrics through game equilibrium.
In NeurIPS.

Narasimhan, H., Kar, P., and Jain, P. (2015a). Optimizing
non-decomposable performance measures: A tale of two
classes. In ICML.

Narasimhan, H., Ramaswamy, H., Saha, A., and Agarwal,
S. (2015b). Consistent multiclass algorithms for complex
performance measures. In ICML.

Narasimhan, H., Vaish, R., and Agarwal, S. (2014). On
the statistical consistency of plug-in classifiers for non-
decomposable performance measures. In NIPS.

Nesterov, Y. and Spokoiny, V. (2017). Random gradient-
free minimization of convex functions. Found. Comput.
Math., 17(2):527–566.

Parambath, S., Usunier, N., and Grandvalet, Y. (2014). Op-
timizing F-measures by cost-sensitive classification. In
NIPS.

Rao, R. B., Yakhnenko, O., and Krishnapuram, B. (2008).
Kdd cup 2008 and the workshop on mining medical data.
ACM SIGKDD Explorations Newsletter, 10(2):34–38.

Ren, M., Zeng, W., Yang, B., and Urtasun, R. (2018). Learn-
ing to reweight examples for robust deep learning. In
ICML.

Tropp, J. A. (2015). An introduction to matrix concentration
inequalities. Found. Trends Mach. Learn., 8(1-2):1–230.

Wainwright, M. J. (2019). High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge Uni-
versity Press.

Wu, L., Tian, F., Xia, Y., Fan, Y., Qin, T., Jian-Huang, L.,
and Liu, T.-Y. (2018). Learning to teach with dynamic
loss functions. In NeurIPS, pages 6466–6477.

Yan, B., Koyejo, O., Zhong, K., and Ravikumar, P.
(2018). Binary classification with karmic, threshold-
quasi-concave metrics. In ICML.

Ye, N., Chai, K., Lee, W., and Chieu, H. (2012). Optimizing
F-measures: A tale of two approaches. In ICML.

Zhao, K., Gao, S., Wang, W., and Cheng, M.-M. (2019a).
Optimizing the F-measure for threshold-free salient ob-
ject detection. In ICCV.

Zhao, S., Milani Fard, M., Narasimhan, H., and Gupta, M. R.
(2019b). Metric-optimized example weights. In ICML.

