
Optimizing Black-box Metrics with Adaptive Surrogates

Optimizing Black-box Metrics with Adaptive Surrogates
Qijia Jiang, Olaoluwa Adigun, Harikrishna Narasimhan, Mahdi Milani Fard, Maya Gupta

Appendix

Notations. We use [K] to denote {1, . . . ,K}. We use k·k to denote the L2-norm. Unless specified otherwise, all smoothness
and Lispchitz definitions are with respect to the L2-norm.

A. Proofs for Theorems and Lemmas
A.1. Proof of Observation 1

Proof. To see that the vector [u1, · · · , uK] belongs to a convex set, since by assumption {`i}Ki=1 are convex functions,
therefore the set of constraints `i(✓)  ui defines a convex set in [✓, u1, · · · , uK] as intersection of sublevel sets of convex
functions are convex.

A.2. Proof of Lemma 1

Lemma 1 (Restated). Let u+ be the exact projection of ũt+1
2 RK

+ onto U . For any solution u
t+1 to (4), we have

u
t+1

2 U , ut+1
 u

+, and for a monotonic , (ut+1)  (u+).

We first show how one can compute an exact projection onto U , and show that the projection described in Lemma 1
implements this approximately.
Lemma 5 (Exact projection). The projection u

+ of ũt+1
2 RK

+ onto U is given by:

(i) ✓t+1
2 argmin

✓2Rd

1
2k
�
`(✓) � ũ

t+1
�
+
k
2; u

t+1 = `(✓t+1)

(ii) u+
k = max{ũk, u

t+1
k }, 8k 2 [K],

where (z)+ = max{0, z}, applied element-wise.

Proof. It is easy to see that step (i) is a convex problem because each `k is convex in ✓, and both (·)+ and k · k
2 are convex

and monotonic in their arguments, making the composition k
�
`(✓) � ũ

�
+
k
2 also convex in ✓.

To perform the projection, since step (i) above is a convex problem, the optimality condition gives

KX

i=1

(`i(✓
+)� ũi)+ · {`i(✓

+)� ũi > 0} ·r✓`i(✓
+) = 0d

which is the same as
KX

i=1

(u+
i � ũi) ·r✓`i(✓

+) = 0d (5)

by the second step of the procedure. We shall use (5) to show that u+
i is the projection in the U -space.

The projection in the U -space can equivalently be written as the following convex problem

minimize
u1,··· ,uK ,✓

1

2

KX

i=1

(ui � ũi)
2

subject to ui � `i(✓) � 0 8i 2 [K] .

Introducing the dual variable � 2 RK and the KKT condition of the problem becomes

KX

i=1

(ui � ũi)�
KX

i=1

�i = 0
KX

i=1

�i ·r✓`i(✓) = 0

Optimizing Black-box Metrics with Adaptive Surrogates

ui � `i(✓) � 0 �i � 0 �i(ui � `i(✓)) = 0 8i 2 [K]

if (u1, · · · , uK , ✓) and � are optimal.

Taking �i = u+
i � ũi and ✓ = ✓+ with ui = u+

i , one can easily verify using (5) that all the conditions hold. Since the
optimization problem satisfies Slater’s constraint qualification and therefore we can conclude that the primal optimal solution
is u+, as defined in the lemma statement.

We go on to prove Lemma 1.

Proof of Lemma 1. Because u
t+1 is the surrogate loss at ✓t+1, it clearly lies in L and hence in the superset U ◆ L. Next,

notice that the over-constrained projection u
t+1 in Lemma 1 is the same as step (i) in the exact projection in Lemma 1, with

step (ii) giving us that the exact projection u+
k = max{ũk, u

t+1
k }, 8k 2 [K]. It follows that: ut+1

k  u+
k , 8k 2 [K]. So for

a monotonic , we have (ut+1)  (u+).

A.3. Proof of Theorem 2

Theorem 2 (Restated). Let M(✓) = (`(✓)) + ✏(✓), for a that is monotonic, �-smooth and L-Lipschitz, and the
worst-case slack max✓2Rd |✏(✓)| is the minimum among all such decompositions of M .

Suppose each `k is �-smooth and �-Lipschitz in ✓ with k`(✓)k  G, 8✓. Suppose the gradient estimates ĝ
t satisfy

E
⇥
kĝ

t
� r (`(✓t))k2

⇤
 ✏, 8t 2 [T] and the projection step satisfies k(`(✓t+1) � ũ

t)+k2  min✓2Rd k(`(✓) �
ũ
t)+k2 + O(1

�2T), 8t 2 [T]. Set stepsize ⌘ = 1
�2 .

Then Algorithm 1 converges to an approximate stationary point of (`(·)):

min
1tT

E
⇥
kr (`(✓t))k2

⇤
 C

✓
�
p
T

+
p
✏ +

p

L1/4✏

◆
,

where the expectation is over the randomness in the gradient estimates, and C = O
�
KL

�
�
�
G+ L

�2

�
+ �2

��
.

While the above theorem prescribes a specific learning rate ⌘ for the projected gradient descent, in our experiments, we tune
⌘ using a held-out validation set.

The proof proceeds in two parts. In Section A.3.1, we first show that the algorithm converges to an approximate stationary
point of over U . In Section A.3.2, we then translate this a guarantee in ✓, i.e. we show that the algorithm converges to an
approximate stationary point of (`(·)) over ✓.

A.3.1. CONVERGENCE IN U -SPACE

Lemma 6. Define the gradient mapping at u 2 U for a vector g 2 RK as P (u, g) := 1
⌘ (u � ⇧U (u � ⌘ · g)), where

⇧U (z) denotes the projection of z onto U . Then under the assumptions of Theorem 2,

min
1tT

E
⇥
kP (ut,r (ut))k2

⇤
 O

✓
�2

T
+ ✏ + L

p
✏

◆
.

Before we prove this result, we will find it useful to state the following lemma.

Lemma 7 (Properties of inexact projection). Fix u 2 U where U is a convex set and arbitrary vectors g1, g2 2 RK . Let

✓+1 2 argmin
✓2Rd

1

2
k(`(✓) � (u � ⌘g1))+k

2 and ✓+2 2 argmin
✓2Rd

1

2
k(`(✓) � (u � ⌘g2))+k

2,

and let u+
1 = max{`(✓+1), u�⌘g1} and u+

2 = max{`(✓+2), u�⌘g2}. Define the gradient mapping P (u, g1) :=
1
⌘ (u�u

+
1)

and P (u, g2) :=
1
⌘ (u� u

+
2). Denote ✓̃+1 , ✓̃

+
2 as approximate minimizers such that

1

2
k(`(✓̃+1) � (u� ⌘g1))+k

2


1

2
k(`(✓+1) � (u� ⌘g1))+k

2 + ↵ (6)

Optimizing Black-box Metrics with Adaptive Surrogates

and
1

2
k(`(✓̃+2) � (u� ⌘g2))+k

2


1

2
k(`(✓+2) � (u� ⌘g2))+k

2 + ↵, (7)

and let eu+
1 = max{`(✓̃+1), u � ⌘g1} and eu+

2 = max{`(✓̃+2), u � ⌘g2}. Define the corresponding gradient mapping
P̃ (u, g1) :=

1
⌘ (u� eu+

1) and P̃ (u, g2) :=
1
⌘ (u� eu+

2). Then the following holds:

1. kP̃ (u, g1) � P (u, g1)k 

p
2↵
⌘ .

2. hg1, P̃ (u, g1)i �
3
4kP̃ (u, g1)k2 �

2↵
⌘2 .

3. kP̃ (u, g1)k  kg1k +
p
2↵
⌘ .

4. kP (u, g1)� P (u, g2)k  kg1 � g2k.

5. kP̃ (u, g1)� P̃ (u, g2)k  kg1 � g2k + 2
p
2↵
⌘ .

Proof. We have:

1

2
kũ

+
1 � (u� ⌘g1)k

2 =
1

2
kmax{u� ⌘g1, `(✓̃

+
1)} � (u� ⌘g1)k

2

=
1

2
k(`(✓̃+1) � (u� ⌘g1))+k

2


1

2
k(`(✓+1) � (u� ⌘g1))+k

2 + ↵ (Assumption (6))

=
1

2
kmax{u� ⌘g1, `(✓

+
1)} � (u� ⌘g1)k

2 + ↵

=
1

2
ku

+
1 � (u� ⌘g1)k

2 + ↵,

which implies that

g>1 ũ
+
1 +

1

2⌘
kũ

+
1 � uk

2
� g>1 u

+
1 �

1

2⌘
ku

+
1 � uk

2

↵

⌘
. (8)

Part (1) now follows from

kP̃ (u, g1) � P (u, g1)k =
1

⌘
ku

+
1 � ũ

+
1 k



p
2⌘

⌘

q
Fg1(ũ

+
1)� Fg1(u

+
1)�rFg1(u

+
1)

>(ũ+
1 � u

+
1)



p
2⌘

⌘

r
↵

⌘


p
2↵

⌘
,

where we used 1
⌘ -strong convexity of the objective Fg1(z) := g>1 z+

1
2⌘kz� uk

2 for z,u 2 U and the fact that u+
1 is the

exact minimizer over the convex set U , implying rFg1(u
+
1)

>(z� u
+
1) � 0 8z 2 U .

For part (4), since u
+
1 and u

+
2 are optimal points of function Fg1(·) and Fg2(·) over convex set U respectively, from

optimality condition we have

⇣
g1 +

1

⌘
(u+

1 � u)
⌘>

(z� u
+
1) � 0 and

⇣
g2 +

1

⌘
(u+

2 � u)
⌘>

(z� u
+
2) � 0 for all z 2 U . (9)

Setting z = u
+
2 in the first and z = u

+
1 in the second equation and summing up we have

(g1 � g2)
>(u+

2 � u
+
1) �

1

⌘
ku

+
2 � u

+
1 k

2 .

Optimizing Black-box Metrics with Adaptive Surrogates

Therefore using Cauchy-Schwarz

kP (u, g1)� P (u, g2)k =
1

⌘
ku

+
2 � u

+
1 k  kg1 � g2k .

Part (5) now follows immediately from part (1) and (4) by

kP̃ (u, g1)� P̃ (u, g2)k  kP (u, g1)� P (u, g2)k+ kP̃ (u, g1)� P (u, g1) + P (u, g2)� P̃ (u, g2)k

 kg1 � g2k+ 2kP̃ (u, g1)� P (u, g1)k

 kg1 � g2k+
2
p
2↵

⌘
.

To see part (2), we plug in z = u in the first equation of display (9), giving g>1 (u� u
+
1) �

1
⌘ku� u

+
1 k

2. Moreover from
equation (8) we know

g>1 (u
+
1 � ũ

+
1) � �

↵

⌘
+

1

2⌘
kũ

+
1 � uk

2
�

1

2⌘
ku

+
1 � uk

2 .

Consequently,

g>1 (u� ũ
+
1) = g>1 (u� u

+
1) + g>1 (u

+
1 � ũ

+
1) �

1

⌘
ku� u

+
1 k

2
�
↵

⌘
+

1

2⌘
kũ

+
1 � uk

2
�

1

2⌘
ku

+
1 � uk

2 .

Now to relate ku� u
+
1 k to ku

+
1 � ũ

+
1 k, we have

1

2⌘
ku� ũ

+
1 k

2


1

⌘
ku� u

+
1 k

2 +
1

⌘
ku

+
1 � ũ

+
1 k

2


1

⌘
ku� u

+
1 k

2 + 2[Fg1(ũ
+
1)� Fg1(u

+
1)�rFg1(u

+
1)

>(ũ+
1 � u

+
1)]


1

⌘
ku� u

+
1 k

2 +
2↵

⌘
.

Putting things together g>1 P̃ (u, g1) =
1
⌘ g

>
1 (u� ũ

+
1) �

3
4kP̃ (u, g1)k2 �

2↵
⌘2 , as claimed.

Finally, for part (3) since kg1k · ku� u
+
1 k � g>1 (u� u

+
1) �

1
⌘ku� u

+
1 k

2 and using part (2),

kP̃ (u, g1)k =
1

⌘
ku� ũ

+
1 k 

1

⌘
ku� u

+
1 k+

1

⌘
ku

+
1 � ũ

+
1 k

 kg1k+

p
2↵

⌘
,

where we used part (1) for the last step. This concludes the proof of the lemma.

Equipped with the above results, we move on to prove Lemma 6, i.e. to show that the algorithm converges to an approximate
stationary point of over U .

Proof of Lemma 6. We will assume that the gradient estimates ĝt satsify E
⇥
kĝ

t
� r (`(✓t))k2

⇤
 ✏, 8t 2 [T] and the

projection step satisfies 1
2k(`(✓

t+1) � ũ
t)+k2  min✓2Rd

1
2k(`(✓) � ũ

t)+k2 + ↵, 8t 2 [T].

Let ut+1 = `(✓t+1) and ũ
t+1 = max{ut+1, ut

� ⌘ĝt
} be the next iterate had we executed step (ii) of the projection

given Lemma 1. Define �t := ĝ
t
�r (ut). For any g 2 RK , let the gradient mapping P (u, g) and approximate gradient

Optimizing Black-box Metrics with Adaptive Surrogates

mapping P̃ (u, g) be defined as in Lemma 7. Note that ũt+1 = u
t
� ⌘P̃ (ut, ĝt).

 (ut+1)  (ũt+1) (from monotonicity of)

 (ut) � ⌘ hr (ut), P̃ (ut, ĝt)i +
�2

2
⌘2kP̃ (ut, ĝt)k2 (using smoothness of)

= (ut) � ⌘ hĝt, P̃ (ut, ĝt)i + ⌘ hĝt
� r (ut), P̃ (ut, ĝt)i +

�2

2
⌘2kP̃ (ut, ĝt)k2

= (ut) � ⌘ hĝt, P̃ (ut, ĝt)i + ⌘ h�t, P̃ (ut, ĝt)i +
�2

2
⌘2kP̃ (ut, ĝt)k2

 (ut) �

✓
3

4
⌘ �

�2

2
⌘2
◆
kP̃ (ut, ĝt)k2 + ⌘ h�t, P̃ (ut, ĝt)i+

2↵

⌘
(from Lemma 7, statement 2)

= (ut) �

✓
3

4
⌘ �

�2

2
⌘2
◆
kP̃ (ut, ĝt)k2 + ⌘ h�t, P̃ (ut,r (ut))i + ⌘ h�t, P̃ (ut, ĝt) � P̃ (ut,r (ut))i+

2↵

⌘

 (ut) �

✓
3

4
⌘ �

�2

2
⌘2
◆
kP̃ (ut, ĝt)k2 + ⌘ h�t, P̃ (ut,r (ut))i + ⌘k�tk2 + 2

p
2↵ k�tk+

2↵

⌘

 (ut) �

✓
3

4
⌘ �

�2

2
⌘2
◆
kP̃ (ut, ĝt)k2 + ⌘k�tk

⇣
kr (ut)k+

p
2↵

⌘

⌘
+ ⌘k�tk2 + 2

p
2↵ k�tk+

2↵

⌘

 (ut) �

✓
3

4
⌘ �

�2

2
⌘2
◆
kP̃ (ut, ĝt)k2 + (⌘L +

p
2↵)k�tk + ⌘k�tk2 + 2

p
2↵ k�tk+

2↵

⌘
,

where the third-last inequality uses Lemma 7, statement 5 together with Cauchy-Schwarz and the second-last inequality uses
Lemma 7, statement 3, and the fact that is L-Lipschitz. Summing up over t = 1, . . . , T ,

✓
3

4
⌘ �

�2

2
⌘2
◆ TX

t=1

kP̃ (ut, ĝt)k2  (u1) � (ut+1) +
TX

t=1

✓
(⌘L + 3

p
2↵)k�tk + ⌘k�tk2 +

2↵

⌘

◆
.

Taking expectations on both sides and using the assumption 0  (u)  1 8u 2 U ,
✓
3

4
⌘ �

�2

2
⌘2
◆ TX

t=1

E

h
kP̃ (ut, ĝt)k2

i
 1 +

TX

t=1

✓
(⌘L + 3

p
2↵)E

⇥
k�tk

⇤
+ ⌘E

⇥
k�tk2

⇤
+

2↵

⌘

◆

 1 +
TX

t=1

✓
(⌘L + 3

p
2↵)
p
E [k�tk2] + ⌘E

⇥
k�tk2

⇤
+

2↵

⌘

◆

 1 + T

✓
(⌘L + 3

p
2↵)

p
✏ + ⌘✏ +

2↵

⌘

◆
,

where we used the assumption on the gradient estimate error E
⇥
k�tk2

⇤
in the last step. Rearranging we have

1

T

TX

t=1

E

h
kP̃ (ut, ĝt)k2

i


1/T + (⌘L + 3
p
2↵)

p
✏ + ⌘✏ +

2↵
⌘

3
4⌘ �

�2

2 ⌘
2

.

Using Lemma 7, statement 1,

1

T

TX

t=1

E
⇥
kP (ut, ĝt)k2

⇤


2

T

TX

t=1

E

h
kP̃ (ut, ĝt)k2

i
+

2

T

TX

t=1

E

h
kP̃ (ut, ĝt) � P (ut, ĝt)k2

i


2/T + 2(⌘L + 3

p
2↵)

p
✏ + 2⌘✏ +

4↵
⌘

3
4⌘ �

�2

2 ⌘
2

+
4↵

⌘2
.

Setting stepsize ⌘ = 1
�2 :

1

T

TX

t=1

E
⇥
kP (ut, ĝt)k2

⇤


8�2

T
+ 8L

p
✏ + 8✏ + 24�2

p
2↵✏ + 20↵�4 .

Optimizing Black-box Metrics with Adaptive Surrogates

We can now bound the average gradient map norm across iterations:

1

T

TX

t=1

E
⇥
kP (ut,r (ut))k2

⇤


2

T

TX

t=1

E
⇥
kP (ut, ĝt)k2

⇤
+

2

T

TX

t=1

E
⇥
kP (ut,r (ut)) � P (ut, ĝt)k2

⇤


2

T

TX

t=1

E
⇥
kP (ut, ĝt)k2

⇤
+

2

T

TX

t=1

E
⇥
kr (ut) � ĝ

t
k
2
⇤


16�2

T
+ 16L

p
✏ + 16✏ + 48�2

p
2↵✏ + 40↵�4 + 2✏

where we used Lemma 7, statement 4 for the second inequality and the assumption on the gradient estimation error for the
last inequality. Thus:

min
1tT

E
⇥
kP (ut,r (ut))k2

⇤


16�2

T
+ 16L

p
✏ + 18✏ + 48�2

p
2↵✏ + 40↵�4.

Now picking ↵ = 1
�2T completes the proof.

A.3.2. CONVERGENCE IN ✓-SPACE

We are now ready to prove Theorem 2. We translate the near-stationarity result in Lemma from u-space to ✓-space.

Proof of Theorem 2. For a given T , let t⇤ 2 argmin1tT kP (ut,r (ut))k2. Pick iterates ✓t
⇤

and ✓t
⇤+1 of Algorithm 1.

The corresponding iterates in the U -space are u
t⇤ = `(✓t

⇤
) and u

t⇤+1 = `(✓t
⇤+1).

Further, let ũt⇤+1 = u
t⇤
� ⌘r (ut⇤) be the un-projected next iterate, and û

t⇤+1 = u
t⇤
� ⌘ · P (ut⇤ ,r (ut⇤)) be the one

obtained after an exact projection, both using exact gradient r (ut⇤).

We start with the assumption that (as promised by Lemma 6):

E[kP (ut⇤ ,r (ut⇤))k2] =
1

⌘2
E[kut⇤

� ⌘ · P (ut⇤ ,r (ut⇤))� u
t⇤
k
2] =

1

⌘2
E[kût⇤+1

� u
t⇤
k
2]  ✏2

or equivalently,
E[kût⇤+1

� u
t⇤
k
2]  ⌘2✏2 (10)

and would like to bound the gradient norm of (`(·)) at ✓t
⇤
.

We start by translating (10) to a guarantee in the ✓-space. We know that

û
t⇤+1

2 argmin
u2U

ku� ũ
t⇤+1

k
2. (11)

Put together (10) and (11), and take expectation over randomness in u
t⇤ ,

E[kut⇤
� ũ

t⇤+1
k
2]  E[kût⇤+1

� ũ
t⇤+1

k
2] + E[kût⇤+1

� u
t⇤
k
2] + 2E[kût⇤+1

� ũ
t⇤+1

kkû
t⇤+1

� u
t⇤
k]

 E[kût⇤+1
� ũ

t⇤+1
k
2] + ⌘2✏2 + 2⌘✏

p
E[kût⇤+1 � ũt⇤+1k2]

 E[kût⇤+1
� ũ

t⇤+1
k
2] + ⌘2✏2 + 2⌘✏

p
E[kut⇤ � ũt⇤+1k2]

= E[kût⇤+1
� ũ

t⇤+1
k
2] + ⌘2✏2 + 2⌘2✏

p
E[kr (ut⇤)k2],

where we used Cauchy-Schwarz for the second step. Using the fact that is L-Lipschitz:

E[kut⇤
� ũ

t⇤+1
k
2]  E[kût⇤+1

� ũ
t⇤+1

k
2] + ✏0, (12)

where ✏0 = ⌘2(✏2 + 2L✏).

We also know that ût⇤+1 can be equivalently obtained by performing an optimization in the ✓-space as follows:

✓̂t
⇤+1

2 arg min
✓2Rd

kmax{`(✓), ũt⇤+1
} � ũ

t⇤+1
k
2

Optimizing Black-box Metrics with Adaptive Surrogates

and setting û
t⇤+1 = max{`(✓̂t

⇤+1), ũt⇤+1
}. So (12) translates to the following guarantee in the ✓-space:

E[k`(✓t
⇤
) � ũ

t⇤+1
k
2]  E[min

✓2Rd
kmax{`(✓), ũt⇤+1

} � ũ
t⇤+1

k
2] + ✏0, (13)

where we have used u
t⇤ = `(✓t

⇤
). Now since

kmax{`(✓t
⇤
), ũt⇤+1

} � ũ
t⇤+1

k
2 = k(`(✓t

⇤
) � ũ

t⇤+1)+k
2
 k`(✓t

⇤
) � ũ

t⇤+1
k
2,

together with (13) we have

E[kmax{`(✓t
⇤
), ũt⇤+1

} � ũ
t⇤+1

k
2]  E[min

✓2Rd
kmax{`(✓), ũt⇤+1

} � ũ
t⇤+1

k
2] + ✏0 . (14)

Having translated our initial assumption on the gradient mapping to ✓-space, we can now provide a guarantee on the gradient
of (`(·)). Let Q(✓) := kmax{`(✓), ũt⇤+1

} � ũ
t⇤+1

k
2 = k(`(✓) � ũ

t⇤+1)+k2.

Taking as given that Q is smooth in ✓ with smoothness parameter ! for now, by standard properties of smooth functions, we
have for any ✓0:

krQ(✓0)k2  2! · (Q(✓0) � min
✓2Rd

Q(✓)).

Using the above property and (14), taking expectation on both sides, we have:

E[krQ(✓t
⇤
)k2]  2!✏0,

or equivalently,

E

 �����2
KX

k=1

(`k(✓
t⇤)� ũt⇤+1

k)+r✓`k(✓
t⇤)

�����

2 �
 2!✏0,

therefore

4⌘2E

 �����

KX

k=1

(r k(`
t⇤))+r✓`k(✓

t⇤)

�����

2 �
 2!✏0,

where we use the short-hand `t
⇤
= `(✓t

⇤
). By monotonicity of , the gradient of is always non-negative, and the above

becomes:

4⌘2E

 �����

KX

k=1

r k(`
t⇤)r✓`k(✓

t⇤)

�����

2 �
 2!✏0,

and we have:
E[kr✓ (`(✓

t⇤))k2]  !✏0/2⌘2 = !(✏2 + 2L✏)/2,

as desired. It remains to justify the smoothness of Q(✓). For any ✓1, ✓2 2 Rd,

krQ(✓1)�rQ(✓2)k

=
���2

KX

k=1

(`k(✓1)� ũt⇤+1
k)+ ·r✓`k(✓1)� 2

KX

k=1

(`k(✓2)� ũt⇤+1
k)+ ·r✓`k(✓2)

���

 2
KX

k=1

���(`k(✓1)� ũt⇤+1
k)+ · (r✓`k(✓1)�r✓`k(✓2))

���+
���
⇥
(`k(✓1)� ũt⇤+1

k)+ � (`k(✓2)� ũt⇤+1
k)+

⇤
·r✓`k(✓2)

���

 2
KX

k=1

|`k(✓1)� ũt⇤+1
k | · �k✓1 � ✓2k+ |`k(✓1)� `k(✓2)| · kr✓`k(✓2)k

= 2
KX

k=1

|`k(✓1)� `k(✓
t⇤) + ⌘r k(u

t⇤)| · �k✓1 � ✓2k+ �2
k✓1 � ✓2k

 2K
⇥
(G+ ⌘L) · � + �2

⇤
· k✓1 � ✓2k = 2K

h
(G+

L

�2
) · � + �2

i
· k✓1 � ✓2k

where we used �-smoothness and �-lipschitz property of `k and k`(✓)k  G, together with (a)+� (b)+  |a� b|, therefore
! = 2K

⇥
(G+ L

�2) · � + �2
⇤
.

Optimizing Black-box Metrics with Adaptive Surrogates

A.4. Proof of Lemma 3

Recall from Algorithm 2 that the finite difference estimate of the gradient of at ✓0 is given by:

ĝ =
1

m

mX

j=1

M(f✓0 + �j ,y) � M(f✓0 ,y)

�
Zj .

Lemma 3 (Restated). Let M be as defined in Theorem 2 and |✏(✓)|  ✏̄, 8✓. Let ĝ be returned by Algorithm 2 for a given
✓0, m perturbations and � =

p
✏̄p

K�2
.

E
⇥
kĝ � r (`(✓0))k2

⇤
 O

✓
L2K

m
+ ✏̄K2�2

◆
,

where the expectation is over the random perturbations.

We will find it useful to re-state results from Nesterov and Spokoiny (2017), extended to our setting.
Lemma 8. Suppose is L-Lipschitz and �-smooth. Define �(u) := EZ⇠N (0,IK) [(u + �Z)]. Let ĝ1 =
1
m

Pm
j=1

 (`(f✓ +�j ,y))� (`(f✓,y))
� Zj , where �j is as defined in Algorithm 2. Then:

1. ĝ1 is an unbiased estimate of the gradient of � at `(✓), i.e., E[ĝ1] = r �(`(✓)).

2. E
⇥
kĝ1 �E[ĝ1]k

2
⇤


�2�2

m
(K + 6)3 +

4L2

m
(K + 4).

3. kr �(`(✓)) � r (`(✓))k 
��2

2
(K + 3)3/2.

Proof. See Eq. (21) in Nesterov et al. (2017) for part 1. Theorem 4 of Nesterov et al. together with the fact that Var(X) 
E[X2] implies part 2. See Lemma 3 of Nesterov et al. for part 3.

Proof of Lemma 3. We can write out the gradient estimate as:

ĝ =
1

m

mX

j=1

M(f✓ + �j ,y) � M(f✓,y)

�
Zj

=
1

m

mX

j=1

 (`(f✓ + �j ,y)) � (`(f✓,y))

�
Zj +

1

m

mX

j=1

✏(f✓ + �j , y) � ✏(f✓, y)

�
Zj

=
1

m

mX

j=1

 (`(✓) + �Zj) � (`(✓))

�
Zj +

1

m

mX

j=1

✏(f✓ + �j , y) � ✏(f✓, y)

�
Zj

:= ĝ1 + ĝ2,

where ✏(f✓, y) is the unknown slack function in Section 3.1, re-written in terms of the scores f✓ and labels y.

Let � be defined as in Lemma 8. Then the gradient estimate error can be expanded as:

E
⇥
kĝ � r (`(✓))k2

⇤
 2E

⇥
kĝ � r �(`(✓))k

2
⇤
+ 2kr �(`(✓)) � r (`(✓))k2

 4E
⇥
kĝ1 � r �(`(✓))k

2
⇤
+ 4E

⇥
kĝ2k

2
⇤
+ 2kr �(`(✓)) � r (`(✓))k2

 4E
⇥
kĝ1 � r �(`(✓))k

2
⇤
+

16✏̄2

�2m

mX

j=1

E
⇥
kZj

k
2
⇤
+ 2kr �(`(✓)) � r (`(✓))k2


4�2

m
�2(K + 6)3 +

16

m
L2(K + 4) +

16✏̄2K

�2
+
�2

2
�4(K + 3)3,

where we used the fact that (1) ĝ1 is an unbiased estimate of r �(`(✓)) (see part 1 of Lemma 8); (2) the assumption that
|✏(✓)|  ✏̄; (3) ka1 + · · ·+ amk

2
 m(ka1k2 + · · ·+ kamk

2), and the last step follows from Parts 2–3 of Lemma 8.

Setting � =
p
✏̄p

K�2
completes the proof.

Optimizing Black-box Metrics with Adaptive Surrogates

A.5. Proofs and Discussion for Linear Interpolation Gradient Estimates

Lemma 4 (Restated). Let M be defined as in Theorem 2 and |✏(✓)|  ✏̄, 8✓. Assume each `k is �-Lipschitz in ✓ w.r.t. the
L1-norm, and k`(✓)k  G 8✓. Suppose for a given ✓0, � and perturbation count m, the expected covariance matrix for
the left-hand-side of the linear system H is well-conditioned with the smallest singlular value �min(

Pm
i=1 E[HiH

>
i]) �

µmin = O(m�2�2). Then for any � > 0, setting � = G1/3 ✏̄1/3

�K3/2 log(d)2/3�1/3 and m = G4K9 log(d)4�2 log(K/�)
✏̄2 , Algorithm 3

returns w.p. � 1� � (over draws of random perturbations) a gradient estimate ĝ that satisfies:

kĝ � r (`(✓0))k2  Õ

⇣
G1/3✏̄1/3K3�2/3

⌘
.

We first discuss the assumptions in Lemma 4 in Section A.5.1. We then provide the proof for the high probability statement
in the lemma in Section A.5.2. We then show how this can be translated to a bound on the expected gradient error via
truncation in Section A.5.3.

A.5.1. ASSUMPTIONS IN LEMMA 4

We discuss example settings where the assumptions in the lemma hold.

Correlation Assumption on H. One of the key assumptions we make is that the matrix H is well-conditioned. Recall
that H is a m⇥K matrix, where each row corresponds to a perturbation of the surrogates, and contains differences in the
K surrogates `1, . . . , `K at two independent perturbations to the model parameters ✓. We assume that the smallest singular
value of H’s covariance matrix

Pm
i=1 E[HiH

>
i] scales as m�2�2. This assumption essentially states that the perturbations

on the K surrogates are weakly correlated. The scaling factors � and � come from the fact that Gaussian perturbations on
the model parameters ✓ have standard deviation � and the surrogates `k are �-Lipschitz.

As an example scenario where this assumption holds, consider a ML fairness task where the instances belong to K non-
overlapping protected groups. Further, assume that the group membership attribute is included in the feature vector, i.e., the
d-dimensional feature vector x = [g1, . . . , gK , x̃1, . . . , x̃d�K], where gk is a Boolean indicating if the instance belongs to
group k, and x̃1, . . . , x̃d�K are group-independent features. A natural choice of surrogates for this application would be
average losses computed on the K individual groups. For example, with a linear model ✓, we could choose `k to be the
average squared loss conditioned on examples from group k, i.e., `k(✓) = E(x,y)|xk=1[(✓

>x� y)2].

Note that the first K coordinates of the model vector ✓ correspond to weights on the K Boolean group attributes. So adding
noise Zk 2 R to the k-th coordinate of ✓ only affects scores on examples from the k-th group (i.e., examples for which
xk = 1), and hence only perturbs surrogate `k. Specifically, adding Zk 2 R to the k-th coordinate of ✓ would perturb `k(✓)
to `k(✓) + CkZk + Z2

k , where Ck = 2E(x,y)|xk=1[✓
>x� y], and leave the other surrogates `j , j 6= k unchanged.

Now suppose we add independent �-Gaussian noise to only the first K coordinates of ✓. The expected covariance matrix as
defined in the lemma statement then takes the form:

mX

i=1

E[HiH
>
i] =

2

64
O(m(C2

1�
2 + �4)) 0 . . . 0

...
...

...
...

0 0 . . . O(m(C2
K�

2 + �4))

3

75 =

2

64
⌦(m�2) 0 . . . 0

...
...

...
...

0 0 . . . ⌦(m�2)

3

75 ,

where recall that the k-th column of H contains the differences of `k(✓) at two different �-Gaussian perturbations on the
first K coordinates of ✓, and Ck’s are constants that are independent of the random perturbations.

In the more general case, where we perturb all coordinates of ✓, the assumption on H would still hold if there exists a subset
of coordinates for each surrogate `k that when perturbed produce larger changes to `k than to the other surrogates.

Lipschitz Assumption on `(✓) Another key assumption we make is that the surrogates `k are �-Lipschitz w.r.t. the
L1-norm. This allows us to produce perturbations in the K surrogates by perturbing the model parameters ✓, and do so
without a strong dependence on the dimension of ✓ in the error bound. Note that the choice of the infinity norm results in
a mild logarithmic dependence on the dimension d in the bound. When the surrogates the are not L1-Lipschitz, but are
instead Lipschitz w.r.t. the L2-norm, we prescribe perturbing only a small number of d0 ⌧ d coordinates of ✓ that are most
closely related to the surrogate (such as e.g. the group attribute coordinates in the fairness example above), and this would
result in a bound that has a polynomial dependence on d0.

Optimizing Black-box Metrics with Adaptive Surrogates

A.5.2. PROOF OF LEMMA 4

We will make use of the fact that because we perturb the model parameters ✓ with Gaussian random noise, the resulting
perturbations on the surrogates ` follow a sub-Gaussian distribution. We first state a few well-known facts about sub-Gaussian
random vectors.
Lemma 9 (Properties of sub-Gaussian distribution).

(i) Let (Z1, · · · , Zd) be a vector of i.i.d standard gaussian variables and f : RN
! R be �-Lipschitz w.r.t. L2-norm.

Then the random variable f(�Z)�E[f(�Z)] is sub-Gaussian with parameter at most ��.

(ii) Let Z1, · · · , ZK be K (not necessarily independent) sub-Gaussian random variables with parameters at most �. Then
the random vector (Z1, · · · , ZK) is a sub-Gaussian random vector with parameter �K.

(iii) For a sub-Gaussian random vector Z 2 RK with parameter at most �, we have for any p 2 N:

(E[kZ � E[Z]kp2])
1/p

 2
p
2�

p

K
p
p.

Proof. For a proof of (1), see e.g. Wainwright (2019), Chapter 2. For a proof of (3), see Jin et al. (2019). We now prove (2).

For a random vector (Z1, . . . , ZK) where the coordinates Zk’s are �-sub-Gaussian and not necessarily independent, we
have that for any v 2 SK�1 and � 2 R,

E[exp(�v>(Z �E[Z]))] = E

h KY

k=1

exp
⇣
�vk(Zk �E[Zk])

⌘i



KY

k=1

E

h⇣
exp(�vk(Zk �E[Zk]))

⌘Ki1/K



KY

k=1

exp

✓
1

2
�2K2�2

◆1/K

=
KY

k=1

exp

✓
1

2
�2�2K

◆
 exp

✓
1

2
�2�2K2

◆
,

where we have used Hölder’s inequality for the second step.

We can write the optimization problem in Algorithm 3 as solving the following linear system
2

64
h0
11 � h00

11 · · · h0
1K � h00

1K
... · · ·

...
h0
m1 � h00

m1 · · · h0
mK � h00

mK

3

75 · ĝ =

2

64
 (`(✓0) + h

0
1)� (`(✓0) + h

00
1) + ✏11 � ✏12

...
 (`(✓0) + h

0
m)� (`(✓0) + h

00
m) + ✏m1 � ✏m1

3

75 ,

and use the resulting ĝ 2 RK as the gradient estimate, where we denote h
0
j := `(✓0 + �Zj

1) � `(✓0) 2 RK and
h
00
j := `(✓0 + �Zj

2) � `(✓0) 2 RK for j 2 [m], and ✏j1 = ✏(✓0 + �Zj
1) and ✏j2 = ✏(✓0 + �Zj

2). We further denote

L = [`(✓0); . . . ; `(✓0)] 2 Rm⇥K

H
0 = [h0

1; · · · ;h
0
m] 2 Rm⇥K , H

00 = [h00
1 ; · · ·h

00
m] 2 Rm⇥K

✏1 = [✏11; . . . ; ✏m1] 2 Rm, ✏2 = [✏12; . . . ; ✏m2] 2 Rm,

and equivalently re-write the above linear system as:

(H0
�H

00) · ĝ = (L+H
0) � (L+H

00) + ✏1 � ✏2, (15)

where the matrix H that we defined in the lemma statement is the same as H0
�H

00.

Below we state a lemma involving implications of our assumptions on the left-hand-side perturbation matrices H0 and H
00.

Lemma 10 (Properties of H0 and H
00). Suppose each `k(✓) is �-Lipschitz w.r.t. the L1-norm and k`(✓)k  G, 8✓. Then

each h
0
i and each h

00
i is a sub-Gaussian vector with parameter at most ��K. The differences h0

i�h
00
i are also sub-Gaussian

random vectors with parameter at most 2��K, and have mean zero. Moreover, kh0
ik  2G, kh00

i k  2G, kh0
i � h

00
i k 

2G, 8i.

Optimizing Black-box Metrics with Adaptive Surrogates

The proof follows directly from Lemma 9(i)–(ii) and the fact that a function `k that is �-Lipschitz w.r.t. the L1-norm is
also �-Lipschitz w.r.t. the L2-norm. We also have from the smoothness of that

�� (`(✓0) + h
0
i)� [(`(✓0)) +r (`(✓0))>h0

i]
��  �

2
kh

0
ik

2
2. (16)

With this in hand, we are ready to bound the error in the gradient estimate ĝ compared to r (`(✓)).

Proof of Lemma 4. The least squares estimate for the linear system in (15) is given by:

ĝ =
⇣
(H0

�H
00)>(H0

�H
00)
⌘�1

(H0
�H

00)>[(L+H
0) + ✏1 � (L+H

00)� ✏2]

=
⇣
(H0

�H
00)>(H0

�H
00)
⌘�1

(H0
�H

00)>
h
(H0

�H
00)r (`) + (L+H

0)� (L+H
00)

� (H0
�H

00)r (`) + ✏1 � ✏2
i

= r (`(✓0)) +
⇣
(H0

�H
00)>(H0

�H
00)
⌘�1

(H0
�H

00)>
h
 (L+H

0)� (L+H
00)

� (H0
�H

00)r (`) + ✏1 � ✏2
i
.

The error in the least squares based gradient estimate is then:

kĝ �r (`(✓0))k



���
⇣
(H0

�H
00)>(H0

�H
00)
⌘�1���

op| {z }
term1

���(H0
�H

00)>
h
 (L+H

0)� (L+H
00)� (H0

�H
00)r (`) + ✏1 � ✏2

i���
2| {z }

term2

.

(17)

Bounding the second term in (17). We first bound the second term in (17). We have:

k (L+H
0)� (L+H

00)� (H0
�H

00)r (`) + ✏1 � ✏2k2

=
��� (L+H

0)�H
0
r (`)� (L) + (L) +H

00
r (`)� (L+H

00) + ✏1 � ✏2
���
2



��� (L+H
0)�H

0
r (`)� (L)

���
2
+
��� (L) +H

00
r (`)� (L+H

00)
���
2
+ k✏1k2 + k✏2k2


�

2
kH

0
k
2
F +

�

2
kH

00
k
2
F + 2

p
m✏̄,

where we used (16) and the the assumption |✏(✓)|  ✏̄ 8✓. This in turn gives

term2 =
���(H0

�H
00)>
h
 (L+H

0)� (L+H
00)� (H0

�H
00)r (`) + ✏1 � ✏2

i���
2



mX

j=1

kh
0
j � h

00
j k ·

�

2
(kh0

jk
2
2 + kh

00
j k

2
2) + 2

p
mG

p
m✏̄

where each h
0
j is of length K with (correlated) subgaussian coordinates. Therefore using Cauchy-Schwarz,

E[kh0
j � h

00
j k · kh

0
jk

2
2] 

q
E[kh0

j � h
00
j k

2
2] ·
q
E[kh0

jk
4
2] .

Note that E[h0
ij] = E[`j(✓0 + �Zi)] � `j(✓0)  ��E[kZi

k1]  O(��
p
log(d)),where we’ve used that the max of d

independent standard normal random variables scales as
p
log(d). Similarly, E[h00

ij]  O(��
p

log(d)). Together with
these facts and Lemma 10 and Lemma 9(iii) we have

q
E[kh0

jk
4
2] 

q
8(4

p
2��K3/2)4 +O(�2�2 log(d)K)2  O(�2�2K3(log(d))2)

Optimizing Black-box Metrics with Adaptive Surrogates

where we used triangle inequality and (a+ b)p  2p�1(ap + bp). Similarly, we have:
q
E[kh0

j � h
00
j k

2
2]  4��K3/2 .

Now since kh
0
jk2  G, we can apply Hoeffding’s inequality to these bounded random variables to get

P

0

@
mX

j=1

kh
0
j � h

00
j k2 · kh

0
jk

2
2 � O(�3�3K9/2(log(d))2m) + mt

1

A  2 exp

✓
�
2mt2

G6

◆
,

which further gives us:

P

⇣
term2 � O(�3�3K9/2(log(d))2m�) + m�t + 2mG✏̄

⌘
 2 exp

✓
�
2mt2

G6

◆
, (18)

Bounding the first term in (17). Now the first term in (17) is simply

term1 =
���
⇣
(H0

�H
00)>(H0

�H
00)
⌘�1���

op
= ��1

min

⇣
(H0

�H
00)>(H0

�H
00)
⌘
.

Let us denote ⌃̂ :=
Pm

i=1(h
0
i � h

00
i)(h

0
i � h

00
i)

> as the empirical covariance matrix. We now apply a matrix Chernoff
inequality (see e.g. Tropp (2015)) to lower bound the smallest eigenvalue of ⌃̂. We first note that the largest eigenvalue of
this matrix is bounded above:

�max(⌃̂) = max
kuk=1

1

m

mX

i=1

�
(h0

i � h
00
i)

>u
�2

 4G2 ,

This together with the matrix Chernoff bound gives us for µmin  �min(⌃̂), we have

P

⇣
�min(⌃̂) 

µmin

2

⌘
 K · exp

⇣
�

µmin

32G2

⌘
.

The assumption µmin = O(m�2�2) then yields:

P
�
term1  O(m�2�2)

�
 K · exp

⇣
�

m�2�2

G2

⌘
. (19)

Combining the above bound (19) with the bound on the second term (18) (picking t = �3�3), we get the following tail
bound:

P

✓
kĝ �r (`(✓0))k � O

✓
��K9/2 log(d)2� +

G✏̄

�2�2

◆◆
 K · exp

⇣
�

m�2�2

G2

⌘
+ 4 exp

⇣
�

2m�6�6

G6

⌘
.

Then for any � > 0, setting � =
G1/3✏̄1/3

�K3/2 log(d)2/3�1/3
and m =

G4K9 log(d)4�2 log(K/�)

✏̄2
, Algorithm 3 returns w.p.

� 1� � (over draws of random perturbations) a gradient estimate ĝ that satisfies:

kĝ � r (`(✓0))k2  O

⇣
G1/3✏̄1/3K3(log(d))4/3�2/3

⌘
,

which completes the proof.

A.5.3. TRANSLATING TO A BOUND ON THE EXPECTED ERROR

Lemma 4 provides a high probability bound on the gradient estimation error. This means that with a small probability the
gradient estimation error may not be bounded. To translate this high probability bound into a bound on the expected gradient
error, we first truncate the estimated gradients to be in a bounded range:

trunc(ĝ) =

(
ĝ if kĝk  2

p
KL

0 otherwise
,

where L is the Lipschitz constant for .

Optimizing Black-box Metrics with Adaptive Surrogates

Corollary 1. Under the assumptions in Lemma 4, for any � 2 (0, 1), setting � = G1/3 ✏̄1/3

�K3/2 log(d)2/3�1/3 and m =
G4K9 log(d)4�2 log(K/�)

✏̄2 , Algorithm 3 returns a gradient estimate ĝ that satisfies:

E
⇥
ktrunc(ĝ) � r (`(✓0))k2

⇤
 Õ

⇣
G1/3✏̄1/3K3�2/3

⌘
+ 10KL2�.

Proof. Because both the truncated gradient estimates and the true gradients are bounded, the gradient error is trivially
bounded by:

ktrunc(ĝ) � r (`(✓0))k2  2(ktrunc(ĝ)k2 + kr (`(✓0))k2)  2(4KL2 + L2)  10KL2. (20)

In the case where kĝk  2
p
KL, the gradient error for the truncated ĝ is the same as that for ĝ:

ktrunc(ĝ) � r (`(✓0))k2 = kĝ � r (`(✓0))k2. (21)

When kĝk > 2
p
KL, the gradient error for the truncated estimates trunc(ĝ) is upper bounded by:

ktrunc(ĝ) � r (`(✓0))k2 = kr (`(✓0))k2  L2,

whereas the the gradient error for the original estimates ĝ is lower bounded by:

kĝ � r (`(✓0))k2 � max
k2[K]

(ĝk � rk (`(✓
0)))

2
�

✓
max
k2[K]

|ĝk| � max
k2[K]

|rk (`(✓
0))|

◆2

�

✓
1

p
K

(2
p

KL) � L

◆2

= L2 .

Therefore even in this case, the gradient error for trunc(ĝ) is bounded by that for ĝ:

ktrunc(ĝ) � r (`(✓0))k2  L2
 kĝ � r (`(✓0))k2. (22)

Combining (21) and (22) with the trivial upper bound in (20) allows us to convert the high probability result in Lemma 4 to the
following bound on the expected error. For any � 2 (0, 1), setting � = G1/3 ✏̄1/3

�K3/2 log(d)2/3�1/3 and m = G4K9 log(d)4�2 log(K/�)
✏̄2 ,

we have:
E
⇥
ktrunc(ĝ) � r (`(✓0))k2

⇤
 Õ

⇣
(1� �)G1/3✏̄1/3K3�2/3

⌘
+ 10�KL2,

as desired.

B. Handling Non-smooth Metrics
For that is only L-Lipschitz and non-smooth, we extend the finite difference gradient estimate in Section 5.1 with a
two-step perturbation method, as detailed in Algorithm 4. This approach can be seen as computing a finite-difference gradient
estimate for a smooth approximation to the original , given by �1(u) := E [(u + �1Z1)], where Z1 ⇠ N (0, IK).
Since �1 is a convolution of with a Gaussian density kernel, it is always smooth. For this setting, we build on recent
work by Duchi et al. (2015), and show that the two-step perturbation approach provides a gradient estimate for �1 .

Lemma 11 (Two-step finite difference gradient estimate). Let M(✓) = (`(✓)) + ✏(✓), for a that is L-Lipschitz, and the
worst-case slack max✓2Rd |✏(✓)| is the minimum among all such decompositions of M . Suppose |✏(✓)|  ✏̄, 8✓. Let ĝ be
returned by Algorithm 4 for a fixed �1 > 0 and �2 =

p �1

K3/2L
. Then:

E
⇥
kĝ � r �1(`(✓))k

2
⇤
 Õ

L7/4K13/8

m�1/4
1

+
LK5/2✏̄2

�1

!
.

Drawing upon the result of Theorem 2, we can repeat the analysis on the smooth function �1(·) to get the following
convergence guarantee for Algorithm 1.

Optimizing Black-box Metrics with Adaptive Surrogates

Algorithm 4 Two-step Finite-difference Gradient Estimate

1: Input: ✓ 2 Rd,M, `1, · · · , `k, estimation accuracy ✏
2: Draw Z1

1 , . . . , Z
m
1 , Z1

2 , . . . , Z
m
2 ⇠ N (0, IK)

3: Find �j
1 2 Rn s.t. `(f✓ + �j

1,y) = `(f✓,y) + �1Z
j
1 for j = 1, . . . ,m

4: Find �j
2 2 Rn s.t. `(f✓ + �j

2,y) = `(f✓,y) + �1Z
j
1 + �2Z

j
2 for j = 1, . . . ,m

5: ĝ =
1

m

mX

j=1

M(f✓ + �j
2, y) � M(f✓ + �j

1, y)

�2
Zj
2

6: Output: ĝ

Corollary 2 (Convergence of Algorithm 1 for non-smooth). Let M(✓) = (`(✓)) + ✏(✓), for a that is monotonic, and
L-Lipschitz, and the worst-case slack max✓2Rd |✏(✓)| is the minimum among all such decompositions of M .

Suppose each `k is �-smooth and �-Lipschitz in ✓ with k`(✓)k  G, 8✓. Suppose the gradient ĝt are estimated with
Algorithm 1 for a choice �1 > 0, number of perturbation m, and �2 =

p �1

K3/2L
. Suppose the projection step satisfies

k(`(✓t+1)� ũ
t)+k2  min✓2Rd k(`(✓)� ũ

t)+k2 + O(�2
1

TKL2), 8t 2 [T]. Set stepsize ⌘ = �2
1

KL2 .

Then Algorithm 1 converges to an approximate stationary point of the smooth approximation �1(`(·)):

min
1tT

E
⇥
kr �1(`(✓

t))k2
⇤
 C

✓p
KL

�1
p
T

+
p
+

p

L1/4
◆
,

where the expectation is over the randomness in the gradient estimates, and C = O
�
KL

�
�
�
G + �2

1
KL

�
+ �2

��
and

 = Õ

⇣
L7/4K13/8

m�1/4
1

+ LK5/2 ✏̄2

�1

⌘
.

The above result guarantees convergence to the stationary point of the smoothed metric �1(`(·)) and not the original metric
 (`(·)). However, as long as the surrogate functions ` are continuously differentiable, by taking �1 ! 0 and allowing T to
increase as �1 decreases, the algorithm can be made to converge to a stationary point of the original metric (`(·)), in the
sense of Clark-subdifferential (see e.g. Garmanjani and Vicente (2013)).

B.1. Proof of Lemma 11

We will find it useful to re-state results from Duchi et al. (2015) and Nesterov and Spokoiny (2017), extended to our setting.
Lemma 12. Suppose is L-Lipschitz. Define �1(u) := EZ1⇠N (0,IK) [(u + �1Z1)] and �1,�2(u) :=

EZ2⇠N (0,IK) [�1(u + �2Z2)]. Let ĝ1 = 1
m

Pm
j=1

 (`(f✓ +�j
2,y))� (`(f✓ +�j

1,y))
�2

Zj
2 , where �j

1,�
j
2 are as defined in

Algorithm 4. Then:

1. ĝ1 is an unbiased estimate of the gradient of �1,�2 at `(✓), i.e., E[ĝ1] = r �1,�2(`(✓)).

2. �1(·) is smooth with smoothness parameter
p
KL

�1
and Lipschitz with constant L.

3. E
⇥
kĝ1 �E[ĝ1]k

2
⇤


CL2K

m

✓r
�2
�1

K + logK + 1

◆
for some constant C.

4. kr �1,�2(`(✓)) � r �1(`(✓))k 
�2
2

p
KL

�1
(K + 3)

3
2 .

Proof. Part 1 follows by trivially observing

EZ1,Z2 [ĝ1] = EZ2

h �1(u+ �2Z2)� �1(u)

�2
Z2

i
= r �1,�2(u)

where we invoked part 1 of Lemma 8. See Lemma 2 of Nesterov and Spokoiny (2017) for part 2. Part 2 together with
Lemma 2 in Duchi et al. (2015) give the result in part 3. See Lemma 3 of Nesterov and Spokoiny (2017) for part 4.

Optimizing Black-box Metrics with Adaptive Surrogates

Now we are ready to bound the MSE in gradient estimate.

Proof of Lemma 11. We can write out the gradient estimate as:

ĝ =
1

m

mX

j=1

M(f✓ + �j
2, y) � M(f✓ + �j

1, y)

�2
Zj
2

=
1

m

mX

j=1

 (`(f✓ + �j
2, y)) � (`(f✓ + �j

1, y))

�2
Zj
2 +

1

m

mX

j=1

✏(f✓ + �j
2, y) � ✏(f✓ + �j

1, y)

�2
Zj
2

=
1

m

mX

j=1

 (`(✓) + �1Z
j
1 + �2Z

j
2) � (`(✓) + �1Z

j
1)

�2
Zj
2 +

1

m

mX

j=1

✏(f✓ + �j
2, y) � ✏(f✓ + �j

1, y)

�2
Zj
2

:= ĝ1 + ĝ2,

where ✏(f✓, y) is the unknown slack function in Section 3.1, re-written in terms of the scores f✓ and labels y.

Let �1 and �1,�2 be defined as in Lemma 12. Then the gradient estimate error can be expanded as:

E
⇥
kĝ � r �1(`(✓))k

2
⇤

 2E
⇥
kĝ � r �1,�2(`(✓))k

2
⇤
+ 2kr �1,�2(`(✓)) � r �1(`(✓))k

2

 4E
⇥
kĝ1 � r �1,�2(`(✓))k

2
⇤
+ 4E

⇥
kĝ2k

2
⇤
+ 2kr �1,�2(`(✓)) � r �1(`(✓))k

2

 4E
⇥
kĝ1 � r �1,�2(`(✓))k

2
⇤
+

16✏̄2

m�2
2

mX

j=1

E

h
kZj

2k
2
i
+ 2kr �1,�2(`(✓)) � r �1(`(✓))k

2


CL2K

m

✓r
�2
�1

K + logK + 1

◆
+

16✏̄2K

�2
2

+
�2
2

2

KL2

�2
1

(K + 3)3,

where we used that (1) ĝ1 is an unbiased estimate of r �1,�2(`(✓)) (see part 1 of Lemma 12); (2) boundness assumption
|✏(✓)|  ✏̄; (3) ka1 + · · ·+ amk

2
 m(ka1k2 + · · ·+ kamk

2), and the last step follows from Parts 3–4 of Lemma 12.

Setting �2 =
p �1

K3/2L
completes the proof.

B.2. Proof of Corollary 2

Proof. We begin by observing that convolution operation preserves monotonicity, convexity, and range of the function. Let
g�1(·) denotes Gaussian density function with variance �2

1 , since �1(u) is a positively-weighted linear combination of
shifted (·), i.e.,

 �1(u) =

Z

RK

 (u� z) · g�1(z) dz =

Z

RK

 (z) · g�1(u� z) dz ,

Lipschitz property and convexity follows immediately from those on (·). Moreover, since g�1 is a probability distribution,
we always have max | �1(u)|  max | (u)|. Taking derivatives, we have if (·) is monotonic,

@ �1(u)

@ui
= r �1(u)

>
ei =

Z

RK

r (z)>ei · g�1(u� z) dz > 0

therefore �1(·) is also monotonic. Moreover, from Lemma 12 we know �1(·) is smooth with parameter � =
p
KL
�1

and is

L-Lipschitz, and that the mean-squared-error in gradient estimate ĝ is bounded by  = Õ

⇣
L7/4K13/8

m�1/4
1

+ LK5/2 ✏̄2

�1

⌘
from

Lemma 11. Applying Theorem 2 on the smoothed metric �1(·) with ⌘ = 1
�2 = �2

1
KL2 then completes the proof.

C. Surrogate PGD as Optimizing a Linear Combination of Surrogates
In this section, we provide an interpretation of Algorithm 1 as optimizing an adaptively chosen linear combination of the
surrogates `(✓) with an additional proximal penalty like term. Recall that Step 6 of the surrogate projected gradient descent
algorithm in Algorithm 1 solves the following optimization problem:

✓t+1
2 argmin

✓2Rd

k
�
`(✓) � ũ

t+1
�
+
k
2. (23)

Optimizing Black-box Metrics with Adaptive Surrogates

Lemma 13. The optimization problem in (23) is equivalent to:

✓t+1
2 argmin

✓2Rd

⌦
ĝ
t, `(✓)

↵
+ D(✓, ✓t),

where D(✓, ✓t) = 1
2⌘

��`(✓)� `(✓t)
��2 + 1

2⌘

��(`(✓) � `(✓t) + ⌘ ĝt)+
��2 � 1

2⌘

��(`(✓t) � ⌘ ĝt
� `(✓))+

��2.

Thus (23) can be seen as minimizing a sum of linear combination of the surrogates and (roughly speaking) a term penalizing
some form of distance between the current iterate ✓t+1 and the previous iterate ✓t.

Proof. Expanding the optimization problem in (23):

✓t+1
2 argmin

✓2Rd

k
�
`(✓) � (`(✓t) � ⌘ ĝt)

�
+
k
2.

Using the identity (x)+ = x+|x|
2 , we can write the objective in the above problem as

1

4

���`(✓) � `(✓t) + ⌘ ĝt + |`(✓) � `(✓t) + ⌘ ĝt
|

���
2

=
1

2

���`(✓) � `(✓t) + ⌘ ĝt
���
2
+

1

2

D
`(✓) � `(✓t) + ⌘ ĝt, |`(✓) � `(✓t) + ⌘ ĝt

|

E

which by ignoring constant terms and noticing that the second term is positive for the coordinates for which `k(✓) >
`k(✓t) � ⌘ ĝt

k and negative otherwise, we have that

✓t+1
2 argmin

✓2Rd

D
ĝ
t, `(✓)

E
+

1

2⌘

���`(✓)� `(✓t)
���
2
+

1

2⌘

���(`(✓) � `(✓t) + ⌘ ĝt)+
���
2
�

1

2⌘

���(`(✓t) � ⌘ ĝt
� `(✓))+

���
2
,

as desired.

D. Additional Experimental Details
D.1. Choice of Hyper-parameters

For the inner projection step in Algorithm 1, we run Adagrad with a fixed step-size of 1.0 for 100 iterations. We used
Adagrad as the optimization method for each of the baselines (including logistic regression, and the Relaxed F-measure
approach and the Generalized Rates approach in Section 6.2). We tuned the hyper-parameters such as the step size ⌘ for
the proposed surrogate PGD algorithm and for the baseline Adagrad solvers, and the perturbation parameter � for gradient
estimation in Algorithm 3 using a held-out validation set.

For the F-measure experiments in Section 6.2, we chose the step sizes from the range {0.05, 0.1, 0.5, 1.0, 5.0} and � from
the range {0.05, 0.1, 0.5}. For the ranking experiments in Section 6.3, we chose the step sizes from {0.001, 0.005, 0.01}
and found a fixed � of 1.5 to work well across all runs. For the proxy label experiments in Section 6.4, we chose the
step sizes from the range {0.01, 0.05, 0.1, 0.5, 1.0} and � from the range {0.01, 0.05, 0.1, 0.5, 1.0}. For the label noise
experiments in Section 6.5, we find a step size of 0.1 and perturbation parameter � of 1.0 to work well across experiments.
For this experiment, we run the projected gradient descent with 300 outer iterations and 100 perturbations.

We implement the metric-optimized example weights approach of Zhao et al. (2019b) in Section 6.5 using the exhaustive
search strategy prescribed in their paper. MOEW optimizes a black-box metric by learning a weighted training objective,
where the weights on the individual examples are trained to minimize a given metric on the validation set. For a training
example (x, y), we compute the weights as a linear function of a 2-dimensional feature embedding g(x) 2 R2 and the
labels y, i.e. w(x, y) = �1g1(x) + �2g2(x) + �3y + �4, and tune the parameters � 2 R4 using an exhaustive search
over the 4-dimensional grid {1/9, . . . , 8/9}4. The lower-dimensional feature embedding g(x) is computed with principal
components analysis. For each choice of candidate weighting function, we train a linear model by minimizing the resulting
weighted training objective with 500 steps of Adagrad with step size 0.1, and among the 4096 trained models, pick the one
with the least G-mean on the validation set.

Optimizing Black-box Metrics with Adaptive Surrogates

Table 7. Additional label noise experiment. Test F-measure on simulated dataset with noisy training labels, averaged over 5 trials. The
proposed method was run with sigmoid surrogates. Higher is better.

LogReg PostShift MOEW Proposed
Simulated 0.000 0.172 0.244 0.287

Table 8. Average test macro F-measure across groups with clean features. Higher is better. We compare the results for the proposed
method with 10 and 1000 perturbations to estimate gradients.

#perturbations = 10 #perturbations = 1000
Business 0.796 0.796
COMPAS 0.630 0.629
Adult 0.661 0.665
Default 0.532 0.533

Figure 5. Mean squared estimation error for gradients estimated by the local linear interpolation approach in Algorithm 3 for a synthetic
K-dimensional gradient estimation problem, as K varies.

D.2. Additional Label Noise Experiment on Simulated Data

We include an additional experiment for the classification with label noise setting in Section 6.5. We use the simulated
data in Section 6.1, and flip a randomly chosen 30% of the positive labels in the training set to negative, and use a clean
validation set of size 100. We seek to maximize the F-measure metric. We train linear models and report the test F-measure
averaged over 5 trials in Table 7. We again compare with the MOEW approach of Zhao et al. (2019b) and implement it
with an exhaustive grid search to tune the weighting function parameters. For this experiment, we directly use the two
training features to compute the weighting function instead of a lower-dimensional embedding of the features. The proposed
approach is able to adapt better to the noise in the training set and outperforms the other methods.

D.3. Choice of Number of Perturbations

In our experiments in Sections 6.1–6.4, we chose to use 1000 perturbations to estimate gradients as this was a sufficiently
large number that worked well for all experiments. But for many experiments, we could get comparable results with fewer
perturbations. For example for the experiments in Section 6.1, with as few as 10 perturbations, our approach achieved a
test G-mean of 0.801, a comparable value to what we report in Table 2 for the proposed method (0.803). Similarly, for the
macro F-measure experiments in Table 3, we got comparable results with 10 perturbations, as shown in Table 8. For the
larger KDD Cup 2008 dataset in the ranking experiments in Section 6.3, we used minibatches of size 100 and only perturb
examples within each batch to estimate the gradients.

D.4. Dependence of the Gradient Estimation Error on K

While the error bound for the linear interpolation based gradient estimation approach in Lemma 4 has a strong dependence
on the number of surrogates K, we find that in our simulations, than the dependence to is less severe. This is evident from the

plot shown in Figure 5, where we consider the toy problem of estimating the gradient of the function f(z) =
⇣QK

k=1 zk
⌘1/K

,

where z 2 RK
+ , and we draw each coordinate zk from 0.1+Unif(0, 0.9), We use the local linear interpolation based approach

in Algorithm 3 to estimate gradients for f and evaluate the mean squared error for the gradient estimates w.r.t. the true
gradient of f as K varies. We use 100 perturbations, and report the average estimation errors over 100 random draws of z
and over 100 random trials for each draw of z.

