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Supplementary Materials

A. Further Details on Policy Gradient

This paper considers the policy gradient algorithms that can adopt the following two types of trajectory gradients, namely
REINFORCE (Williams, 1992) and G(PO)MDP (Baxter & Bartlett, 2001). We note that

VI0)=V_E [R@)]=_E [R()Viesp(ri).

where p(7|0) = p(so)mo(ao|so) Hf:_ol P(sit+1]8i, ai)mo(a;+1|8i+1). REINFORCE constructs the trajectory gradient as

o(710) = (3" R(see00) — o)) (32 Vlogmofaclsn).

R(1)V log p(710)

where b : S x A — R is a bias. G(PO)MDP enhances the trajectory gradient of REINFORCE by further utilizing the fact
that the reward at time ¢ does not depend on the action implemented after time ¢. Thus, G(PO)MDP constructs the trajectory
gradient as

H t
g(7]0) = Z (’th(st, az) — b(st, at)) Z Vlog mg(ai|si).
t=0 i=0

Note that REINFORCE and G(PO)MDP are both unbiased gradient estimators, i.e., E,.19)[9(7]0)] = V.J(0).

B. Further Specification of Experiments and Additional Results
B.1. Hyper-parameter Configuration of Algorithms for Nonconvex Optimization

To implement HSGD, we follow Zhou et al. 2018b and choose the linearly increasing mini-batch size at the ¢'" iteration
to be ¢;(t + 1), and tune ¢, to the best. We set the epoch length m = 10 for all variance-reduced algorithms, because
m = 10 works best for all variance-reduced algorithms for a fair comparison. € is the target accuracy predetermined by users,
typically dependent on specific applications. Specifically, we choose € = 1e~2 for the logistic regression and € = 1e~2 for
the neural network training, respectively. We choose the batch size to be min{n, c;e =1} for SVRG+ and SpiderBoost, and
min{n, cie~!, co8; '} for AbaSPIDER and AbaSVRG, where 3, = L 3" | [[v;~}'[|? as given in Subsection 2.1.

B.2. Additional Results for Nonconvex Logistic Regression

For logistic regression, we use four datasets: a8a (n = 22696,d = 123), a%a (n = 32561,d = 123), w8a (n =
43793,d = 300) and ijennl (n = 49990, d = 22). We select the stepsize n from {0.1k,k = 1,2, ...,15} and the mini-
batch size B from {10, 28, 64, 128,256, 512, 1024} for all algorithms, and we present the best performance among these
parameters. For all variance-reduced algorithms, we select constants ¢; and ¢y from {1,2, 3, ..., 10}, and present the best
performance among these parameters. For HSGD algorithm, we select ¢; in its linearly increasing batch size ¢, (¢t + 1) from
{1, 5,10, 40, 100, 400, 1000}, and present the best performance among these parameters. For AbaSGD, we set its batch size

as min { n}, and select the best ¢g and ¢, from {1, 2,3, ..., 10}.
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As shown in Fig. 4, AbaSVRG and AbaSPIDER converge much faster than all other algorithms in terms of the total number
of gradient evaluations on all four datasets. It can be seen that both of them take the advantage of sample-efficient SGD-like

updates (due to the small batch size) at the initial stage and attain high accuracy provided by variance-reduced methods at
the final stage. This is consistent with the choice of our batch-size adaptation scheme.

B.3. Results for Training Multi-Layer Neural Networks

In this subsection, we compare our proposed algorithms with other competitive algorithms as specified in Section 4.1 for
training a three-layer ReLU neural network with a cross entropy loss on the dataset of MNIST (n = 60000, d = 780). The
neural network has a size of (dj,, 100, 100, doy ), Where d;, and dgy are the input and output dimensions and 100 is the
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Figure 4. Comparison of different algorithms for logistic regression problem on four datasets. All figures plot gradient norm v.s. # of
gradient evaluations.

number of neurons in the two hidden layers. We select the stepsize 7 from {10~*k, k = 1,2, ..., 15} and the mini-batch size
B from {64, 96, 128, 256, 512} for all algorithms, and we present the best performance among these parameters. For all
variance-reduced algorithms, we set ¢; = 1 and select the best c; from {103, 5 x 103, 10*}. For HSGD algorithm, we select
¢p from {1, 10, 50, 100, 500, 1000}, and present the best performance among these parameters.
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Figure 5. Comparison of various algorithms for training a three-layer neural network on MNIST.

As shown in Fig. 5, our AbaSVRG achieves the best performance among all competing algorithms, and AbaSPIDER performs
similarly to mini-batch SGD for decreasing training loss, but converges faster in terms of gradient norm. Interestingly,
the batch-size adaptation used by AbaSVRG increases the batch size slower than both exponential and linear increase of
the batch size, and its scaling is close to the logarithmical increase as shown in the right-most plot in Figure 5. Such an
observation further demonstrates that our gradient-based batch-size adaptation scheme can also adapt to the neural network
landscape with a differently (i.e., more slowly) increased batch size from that for nonconvex regression problem over a9a
and w8a datasets.

B.4. Experimental Details for Reinforcement Learning

The hyper-parameters listed in Table 1 are the same among all methods on each task. For the proposed AbaSVRPG and
AbaSPIDER-PG, we adopt the same hyper-parameter of ac? = 1 and 3 = 1000 in all experiments.

Table 1. Parameters used in the RL experiments

Task InvertedPendulum | InvertedDoublePendulum | Swimmer | Hopper
Horizon 500 500 500 500
Discount Factor 0.99 0.99 0.99 0.99

q 10 10 10 10

N 100 100 50 50

B 20 20 20 20

€ 0.01 0.01 0.01 0.01
Step Size 0.001 0.001 0.0001 0.001
NN Hidden Weights || 16 x 16 16 x 16 32 x 32 64 x 64
NN Activation tanh tanh tanh tanh
Baseline No No Yes Yes
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Figure 6. Task Environments.

Figure 6 illustrates all task environments. The problem setup regarding each task is summarized as follows:

1. InvertedPendulum: A cart is moving along a track with zero friction and a pole is attached through an un-actuated joint.
The pendulum is balanced by controlling the velocity of the cart. The action space is continuous with a € [—1, 1] (with
—1 for pushing cart to the left and 1 for pushing cart to the right). For a single episode with time step h enumerated
from 1 to 500, the episode is terminated when the pole angle 8, > 0.2rad, and otherwise a reward of value 1 is
awarded.

2. InvertedDoublePendulum: The setup of this task is similar to that at the InvertedPendulum. The only difference is that
another pendulum is added to the end of the previous pendulum through an unactuated rotational joint.

3. Swimmer: The agent is a 3-link robot defined in Mujoco with the state-space dimension of 13. It is actuated by two
joints to swim in a viscous fluid. For a single episode with time step h enumerated from 1 to 500, the reward function
encourages the agent to move forward as fast as possible while maintaining energy efficiency. That is, given forward
velocity v, and joint action a, r(v,, a) = v2 — 1074||al|3.

4. Hopper: A two-dimensional single-legged robot is trained to hop forward. The system has the state-space dimension of
11 and action space dimension of 3. For a single episode with time step h enumerated from 1 to 600, we have forward
velocity v, and commanded action a. The episode terminates early (before h reaches 500) when the tilting angle
of upper body or the height position for center of mass drops below a certain preset threshold. The reward function
encourages the agent to move forward as fast as possible in an energy efficient manner. It also gets one alive bonus for
every step it survives without triggering any of the termination threshold.

For the tasks of Swimmer and Hopper, we also include the linear baseline for value function approximation (Duan et al.,
2016).

C. Convergence of AbaSVRG and AbaSPIDER under Local PL. Geometry

Many nonconvex machine learning problems (e.g., phase retrieval (Zhou et al., 2016)) and deep learning (e.g., neural
networks (Zhong et al., 2017; Zhou & Liang, 2017)) problems have been shown to satisfy the following Polyak-FL.ojasiewicz
(PL) (i.e., gradient dominance) condition in local regions near local or global minimizers.

Definition 4 ((Polyak, 1963; Nesterov & Polyak, 2006)). Let x* = argmingcga f(z). Then, the function f is said to be
7-gradient dominated if for any x € RY, f(x) — f(z*) < 7|V f(2)||%.

In this section, we explore whether our proposed AbaSVRG and AbaSPIDER with batch size adaptation can attain a faster
linear convergence rate if the iterate enters the local PL regions. All the proofs are provided in Appendix H.

C.1. AbaSVRG: Convergence under PL. Geometry without Restart

The following theorem provides the convergence and complexity for AbaSVRG under the PL condition.
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Theorem 5. Letn = o L, B = m? with SLT <m<A4Lt, p; < (7)7n(s_1)r and cg = cc = (27+ 277—4) \

1 cxp(m)
, where constants ¢, > 4 and v = 1 — g7— < 1. Then under the PL condition, the final iterate % of AbaSVRG
satisfies

16¢c, LT
m

E(f(&%) = f(z*) <7 (f(w0) — f(=)) +

DN ™

To obtain an e-accurate solution &°, the total number of SFO calls is given by

Zm G ot m +KB<0((Z/\n)1og1+T3log1) 3)
Dty llviz L2 /m’ 7 N € € e/’

s=1

Our proof of Theorem 5 is different from and more challenging than the previous techniques developed in Reddi et al.
2016a;b; Li & Li 2018 for SVRG-type algorithms, because we need to handle the adaptive batch size N, with the
dependencies on the iterations at the previous epoch. In addition, we do not need extra assumptions for proving the
convergence under PL condition, whereas Reddi et al. 2016b and Li & Li 2018 require 7 > n'/% and 7 > n'/2, respectively.
As a result, Theorem 5 can be applied to any condition number regime. For the small condition number regime where
1<t < @(nl/ 3), the worst-case complexity of AbaSVRG outperforms the result achieved by SVRG (Reddi et al., 2016b).
Furthermore, the actual complexity of our AbaSVRG can be much lower than the worst-case complexity due to the adaptive
batch size.

C.2. AbaSPIDER: Convergence under PL. Geometry without Restart

The following theorem shows that AbaSPIDER achieves a linear convergence rate under the PL condition without restart.
Our analysis can be of independent interest for other SPIDER-type methods.

Theorem 6. Letn = B = m with chf <m<A4Lt, 1 < e(%)m(s_l), and cg = ¢ = (27’ + 2774) V

1 —exp( cn (;) —2) )

, Where constants ¢, > 4 and v = 1 — g7=. Then under the PL condition, the final iterate T S of AbaSPIDER satisfies

1
cyL’
16¢c, LT

m

To obtain an e-accurate solution ¥°, the total number of SFO calls is given by

cpo’ 2 _1 T 1 o, 1
me e ,co0¢€ ,n,+KB<O <f/\n)logf+7' log— | .
= 2= lvi =1 (12 /m ) ) €

As shown in Theorem 6, AbaSPIDER achieves a lower worst-case SFO complexity than AbaSVRG by a factor of O(7), and
matches the best result provided by Prox-SpiderBoost-gd (Wang et al., 2019). However, Prox-SpiderBoost-gd is a variant of
Prox-SpiderBoost with algorithmic modification, and has not been shown to achieve the near-optimal complexity for general
nonconvex optimization. In addition, AbaSPIDER has a much lower complexity in practice due to the adaptive batch size.

D. An analysis for SGD with Adaptive Mini-Batch Size

Recently, Sievert & Charles 2019 proposed an improved SGD algorithm by adapting the batch size to the gradient norms
in preceding steps. However, they do not show performance guarantee for their proposed algorithm. In this section, we
aim to fill this gap by providing an analysis for adaptive batch size SGD (AbaSGD) with mini-batch size depending on the
stochastic gradients in the preceding m steps. as shown in Algorithm 5. To simplify notations, we set norms of the stochastic
gradients before the algorithm starts to be ||[v_1|| = [[v_a|| = -+ = ||[v_m| = ap and let E,(-) = E(- | %0, ..., Xy).
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Algorithm 5 AbaSGD

1: Input: xo, stepsize n, m > 0, ag > 0.
2: fort =0,1,...,7 do

3:  Set|By| :min{WM,@,n}.

4:  if |B¢| =n then

5: Compute v¢ = V f(x¢)

6: else

7: Sample B, from [n] with replacement, and compute v, = V fp, (x¢)
8:  endif

9: X¢+1 = Xt — NV

10: end for

11: Output: choose x¢ from {x; };=o,...,r uniformly at random

Theorem 7. Let Assumption 1 hold, € > 0 and choose a stepsize 1 such that

L2
¢=n—777>0.

Then, the output x; returned by AbaSGD satisfies

2(f(x0) = f*) +nmag | n
2T¢ + @6,

E[Vf(xo)l* <

where f* = infycpa f(x), and T is the total number of iterations.

Theorem 7 shows that AbaSGD achieves a O(%) convergence rate for nonconvex optimization by using the adaptive

mini-batch size. In the following corollary, we derive the SFO complexity of AbaSGD.

Corollary 5. Under the setting of Theorem 7, we choose the constant stepsize n = ﬁ Then, to obtain an e-accurate

solution x¢, the total number of iterations required by AbaSGD

_16L (f(x0) = f*) + 4mad

)

T

€

and the total number of SFO calls required by AbaSGD is given by

T T

202 2402 2452 1
Z|Bt|=Zmin - 7 , 7 ,n ¢ < Tmin g ny=0[=A
t=0 t—0 Yoict Iveil?/m” e € €2

complexity of vanilla SGD

complexity of AbaSGD

Corollary 5 shows that the worst-case complexity of AbaSGD is O (}2 A g), which is at least as good as those of SGD and
GD. More importantly, the actual complexity of AbaSGD can be much lower than those of GD and SGD due to the adaptive

batch size.



History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms

Technical Proofs

E. Proofs for Results in Section 2
E.1. Proof of Theorem 1

To prove Theorem 1, we first establish the following lemma to upper-bound the estimation variance Eq s ||V f (z5_;) —v;_, ||
for 1 <t < m, where E; ;(-) denotes E(-|z, z3, ..., x3, ..., z5).

Lemma 1. Let Assumption I hold. Then, for 1 <t < m, we have
2 5112 4 (N <n) o2
Eo,s [V f(@{_1) —viall” < EOSZIIU °+ 4)

where I 4y = 1 if the event A occurs and 0 otherwise, and Z:O log||? =

Proof of Lemma 1. Based on line 10 in Algorithm 1, we have, for 1 <t < m,
lv; 1=V (@i ) = IV f(i_1) = V(@) = Vf(2i_,) + V@) +¢° = V@ >
Taking the expectation Eq ,(-) over the above equality yields
Eosllviy = V(@i )P = Eos|Vs(ai 1) = Vi@ ™) = V(i) + V@I
+ 2B, (Vfs(ai_y) = VIs(@*™") = Vf(zi_y) + V@), ¢° = VE))

(*)
+Eosllg® = V(@Y (5)

which, in conjunction with the fact that
(%) = Eay s B o(Vs(2i1) = V(@) = Vf(e;_) + V@), 9" = V(@ 1)) =0
and letting F; := Vf;(z5_,) — Vfi(#*™1) = Vf(zi_,) + Vf(2°1), implies that

Eosllvi_y — Vf(qu)Hz
=Eos||Vfs(xi_1) = Vs(@ ) = Vf(xi_1) + V@ DI? +Eosllg® - VFE I

Z%Eo,s YOIV Silaioy) = V@) = Vi(@i) + VAEIP +Eosllg® = ViE)?

ieB
2
+ 52 > Eou(Fi Fy)
1<j,4,jEB

i

1 55— s ~S8— s ~S5—
=SB0l Vi(wioy) = VAE ) = VI(@ii) + VIE I + Bosllg® = V@I
(ii)l

—~
a2

(27_1) = V@I +Eosllg® = V@I

(111)

U I(N.<n
< BEaalVilai ) - V@ + ety (©)

where (1) follows from the fact that
Bo,s(Fi, Fj) = Eog, o, (Bem1,s(Fi, F)) = Eag g, (Bem1,s(F3), Bim1,5(F))) = 0,
(i) follows from the fact that E||y — E(y)||?> < E|jy||? for any y € R, and (iii) follows by combining Lemma B.2 in Lei

etal. 2017 and the fact that Ny is fixed given z}, ..., 5. Then, we obtain from (6) that

2

. s L s o -I.l\fg <n
Eosllvi s = V(@i DI <FEoslleiy — a7 + =50

N
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L2 = s 2 I Ns<n
:§E075 Z(%’H - 7) ‘ + %02
i=0 s
2L2 t—2 2 I
:nB EO,S 'Uf + 7(1\]]\5[57” 0'2
=0

@) n2L%( t -1 . 2 IiN.<n

< )EosZ‘U + e, ()
where (i) follows from the Cauchy—Schwartz inequality that || Zle ail|* <k Zle llas]|?. O

Proof of Theorem 1. Based on Lemma 1, we next prove Theorem 1.
Since the objective function f(-) has a L-Lipschitz continuous gradient, we obtain that for 1 < ¢t < m,
2

F(@) < Flagy) + (V@) o) —ap ) + 2L

iy 12

S S S S S LT]Q S
=f(xi1) +(Vf(@i 1) — vy, —mviy) — nllvi_ |I” + 7”%—1”2
@, 1 ; s U Ln?
2 et 1)+ DIV i) = vl + ot = (1= 2 2

where (i) follows from the inequality that (a,b) < 1(||la]|® + ||b]|?). Then, taking expectation Eq s(-) over the above
inequality yields

E 5) <, s nE \v4 s s 2 n L772 E s 2 8
o0 (@) <Boof(23_1) + DBo IV f(z_1) = vis 12 = (B = =5 VEoslloi_a . ®)
Combining (8) and Lemma 1 yields, for 1 <t <m
, , LAt —1) o S 2 MN.<n) o
Eo,s f(27) <Eosf(27_1) + 2B Eo,s ; o7 I* + 27]\750
n_ Ly’ s
— (5= = )Eoslviil®
Telescoping the above inequality over ¢ from 1 to m yields
s L s 770' ml Ns<n
Eo.f(25,) <Eo.f(z5) + zf7 EMEZMHQ A
n
(f———)Ejmgmw
(1) s 2m?2 s no’ml, (N.<n
<Eosf(z5) + —5—Eo,s Z [oF 1% + 7“
m—1

(ﬂ——f)§jm4mn 2

where (i) follows from the fact that LMIEQSE ollvs]? < ’73L < Bos S [[of]|%. Recall that N, =
2

Hlln{CﬁO'Q,BS ,CcO“€™ ,n} and cg, c. > «. Then, we have

IiN.<n) 1 Bs € Bs €
> - < = T o9y o < ) ) 10
Ny = min{cpo?B5 !, cco2e 1} ax cpgo?’ cco? | T T G002 ao? (10)
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To explain the first inequality in (10), we denote Ny = min(n;,ns,n) for simplicty. If Ny > n, then the indicator
function [,y = 0 and hence I(.)/N, = 0 < 1/min(ny,nz). If Ny < n, then I,y = 1 and N, = min(ny,n2) and hence
Iy/Ns = 1/min(n,n2). Combining the above two cases yields the first inequality in (10). Combining (10) and (9) yields

(1) n3L2m2 m—1 /8
s < s =R §2 S N
o () <Bouf(ai) + L55—Eos 3 | +”m(2 +2a)

-(2- f) Z Eos|[v7 1> (an

where (i) follows from the fact that max(a, b) < a + b. Taking the expectation of (11) over x(l), ..., X3, we obtain

s oy, M nme _(m _ Ln? 77 °L?m? 2
Ef(},) <Ef (}) + 3Ef, + 2 — (1 - 2L - 122 Z o>
Recall that 3; < €S and B, = L 37 [lof=]||? for s = 2, ..., S. Then, telescoping the above inequality over s from 1 to S
and noting that x3, = 2!, we obtain
S m—1
n Ln* n3L?m? 5 nmSe
E <E (2= - ) E
Flam) <Ef(20) = (5 — =5 — 55 ) 22 2 Bl +
s=1 t=0
+nmS€+ZmE ii“ 571”2
2a 2a m =1
—2 t=1
S m—1
n Ln* nL?m? g 2 nmSe
<E _(,_7_7_7) E . 12
<Ef(x0) = (53~ "5 ~ 55~ 34 ;tzo o7 I1* + = (12)
Dividing the both sides of (12) by 1Sm and rearranging the terms, we obtain
S m—1
11 Iy (O A
- - E|v; —— 4 — 13
(2 200 2 ) X;tz; lozl” < nSm +a’ (13)

where f* = inf cga f(x) > —o0. Since the output = is chosen from {z} };,—o,... m—1,s=1,... 5 uniformly at random, we
have
S m-—1

SmE|Vf(zc)|? =" D BV

s=1 t=0

S m—1 S m—1
<2 N RV —vilIP+2) ) Ellvy|?
s=1 t=0 s=1 t=0
S m-—1 S m—1
=2 Z Ex},,...,mg (lEo,SIIVf(It — vg| JF 22 Z E|lv;|?
s=1 t=0 s=1 t=0
() S m-—1 n L m . /8‘; c S m-—1 .
<2> > Eu ( 5o Z 12+ =2+ — ) +2) 0 > Eli])®
s=1 t=0 1=0 s=1 t=0
S 272 92 m—1 S m-—1
n“L*m s mpBs  me s
<QZ< B EZ|U¢||2+Q+Q>+QZ El|v7|”
s=1 i=0 s=1 t=0
(i) (2n2L%m? 2 Sl 4Sme
< (=442 E|lv$ )% + 14
_< Z +a+>;§ o7 ]1% + (14)

where (i) follows from Lemma 1 and (10), and (ii) follows from the definition of 3, for s = 1,...,.5. Combining (13)
272 2 272 2
and (14) and letting ¢ =  — -~ — % -1 é’Bm and ) = w + 2 42, we have
(f (o) = ), ve
onSm da

4
B[V f(xo)|l* < += (1s)
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which finishes the proof. O

E.2. Proof of Corollary 1

Recall that n = E’ B =m? and cg, c. > 16. Then, we have a = 16, ¢ > E > 7 Landy < 2 7 in Theorem 1, and thus
36L(f(xo) — f*) , 13
E P T e
IV @l < ST 4 o

Thus, to achieve E||V f(z¢)||* < €, AbaSVRG requires at most 192L(f(zo) — f*)e ' = O(e ') iterations. Then, the total
number of SFO calls is given by

> min{cgo® B! }+ KB <S( LA )+KB<O(€1A”+B>
min{czo?B; 1, cco?etn ccole A < — 4+ = .
> 50° B, 75 T

Furthermore, if we choose B = n?/3 A e2/3, then SFO complexity of AbaSVRG becomes

—2/3 2/3 2/3
0<66/\”)<O<1(rm1> ) (16)

Corollary 6. Let stepsize n = ﬁ, mini-batch size B = m and cg, cc > 16. Then, to obtain an e-accurate solution x,
the total number of SFO calls required by AbaSVRG is given by

S 2 2 -1 3/2
. [cpo? ceo nAe B )
E min ¢ ——, ,ne+KB<O + .
{ Bs € } ( v Be €

If we specially choose B = n'/? A €=1/2, then the worst-case complexity is O (%(n A )3/4)

E.3. Complexity under B = m

Proof. Since n = ﬁ, B =m and cg, c. > 16, we obtain o = 16, ¢ = 1—76 >

> — >3
and thus

9 .
and ¢ < 7 in Theorem 1,

Sl
i

£

B[V f(x)|? < XV 2T 13

To achieve E||V f(z¢)|* < €, AbaSVRG requires at most 192L+/m(f(zo) — f*)e~! = ©(y/me?!) iterations. Then, the
total number of SFO calls is given by

5
Zmin{cBagﬁs ,ceo?etn} + KB <S(c.o%e™ /\n)—i—KBSO(

e 'An B3/2 )
+ .
evVB €
Furthermore, if we choose B = n'/2 A ¢=1/2, then the SFO complexity is O (%(n A )3/4) O
E.4. Proof of Theorem 2

In order to prove Theorem 2, we first use the following lemma to provide an upper bound on the estimation variance
Eo 5|V f(xf) —vi||* for 0 <t < m — 1, where E, 4(-) denotes E(-|z{, 23, ..., z3, ..., x).

Lemma 2 (Adapted from Fang et al. 2018). Let Assumption I hold. Then, for0 <t < m — 1,

77 2L? Né<n>

(@f) —vi]* <

a7)

where we define the stochastic gradients before the algorithm starts to satisfy Zz_:lo Eo,s

= 0 for easy presentation.
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Proof of Lemma 2. Combining A.3 and A.4 in Fang et al. 2018 yields, for 1 <7 < m — 1,

S L2 S S S S
E; s[|Vf(z]) —v; ||2 ||$ - m1‘71”2 +[IVf(ziy) - ”1'71”2
2L

i l* + 1V f (25 1) — v 1%

Taking the expectation of the above inequality over J:f, ..., T7, we have

Lo

2
S S ,’7 L S S S
Eos[|Vf(2]) — v ||2 < B ]EO,sHUi—l”2 +Eosl| V(i) - Ui—1||2‘

Then, telescoping the above inequality over ¢ from 1 to ¢ yields

2L2 t—1
EolIV () —uill* < T2 3 Boollofl1* + Eo oIV £ () — w1 (18)
1=0

Based on Lemma B.2 in Lei et al. 2017, we have

s INS n
Eo,o||V S (@5) = vll” < =0,

which, combined with (18), finishes the proof. L]

Proof of Theorem 2. Based on Lemma 2, we now prove Theorem 2.

Since the objective function f(-) has a L-Lipschitz continuous gradient, we obtain that for 1 < ¢ < m,
s s L772 s 2
Jlxf) <f(xi_) + (Vi 1), xf —xf_q) + 7”%71”
s s s s s 2 an s 2
=f(wi_1) +(Vf(@i_1) —viq, —nvi_q) —nllvi_4 " + TIIUHII

G s U s s N s s Lp?
<f@a) + 5lIVI@) - vy |I” + 5||vt_1||2 —nllvg_I* + TIIvHII2

, " ; ; no L\
<1 + BI9G) — ol - (3= 50 )il

where (i) follows from the inequality that (a,b) < 1(||a[|? + [|b[|?). Then, taking expectation Eq , over the above inequality
and applying Lemma 2, we have, for 1 <t < m,

2
S S 77 S S 77 S
B f(0f) B, (ai ) + TEaull VS0t ) — vl = (3= 5 ) Bl al?

s 3L2 s Ns< 170 n L772 s
<Eo,f(ziy) + ZEOSII R e (T W I

@ ; 3L2 s nBs ne n Ly’ ;
By ey + T Z Eq o[ + max { et - (35 ) Boaletal?

where (i) follows from t — 2 < m — 1 and (10). Telescoping the above inequality over ¢ from 1 to m and using
max(a,b) < a+ byield

nmﬁé L Tme
20 2a0

2 3 2
B fah) < Bouflo) - (3 - 5 - Ty ) Z Eo.sllv

Taking the expectation of the above inequality over z{, ..., 25, we obtain

Ef(z7,) <Ef(zg) — (77_ Lo® L m) Z]EH wil? + TR, + 7777;6.
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Recall that 81 < €S and B, = - 37" "losTY? for s = 2, ..., S. Then, telescoping the above inequality over s from 1 to

S and noting that x5, = xS'H = 2%, we have

S m-—1
. n Ln?> n3L?m nmSe
Ef(#°) <Ef(xo) = | 5 — 5~ — oD Elil*+
2 2 2B s=1 t=0
n S—1m—1
- LS S B
s=1 t=0
n n Ly 3L2 5o 2 nmSe
<E —(z—-==-—=- El|v; .
<Efeo) - (3- g - 20 -T2 S Y Bl + 2o
s=1 t=0
Dividing the both sides of the above inequality by 77.5m and rearranging the terms, we obtain
S m-—1
1 1 Ln n?L’m 2 o ) r* €
—————— E —. 19
(2 %0 2 2B SletE% lotll™ < o (19)
Since the output ¢ is chosen from {«§ }+=0.... m—1,s=1,...s uniformly at random, we have
S m—1
SmE|VF(z)I* =) > EIVFE)I?
s=1 t=0
S m-—1 S m-—1
<2 ) E|Ve) - vflP+2) ] > Ellvl?
s=1 t=0 s=1 t=0
S m-—1 S m-—1
:22 Epi s (EO,S (zf) — vf|l "‘22 E[jvg|?
s=1 t=0 s=1 t=0
) S m-—1 77 L2 m—1 2 ¢ S m-—1 )
<220 Eapy | T Fos LI+ T 122D Bl
s=1 t=0 s=1 t=
S 272 - S m—1
n“L*m R mBs  me
Yy (Thre S ||vi||2++) 23 S B
: o «
s=1 s=1 t=0
(1) 2772L2m 5o 4Sme
—_—+—+4+2 E|vg|]? + —— 20
(e ) S o Er @0)

where (i) follows from Lemma 2 and (10) and (ii) follows from the definition of 3, for s = 1,..., 5. Let ¢ = % — i —
Ly _ 1 L2 L = 2n” L moy 2 = +2and K = Sm. Then, combining (20) and (19), we finish the proof

2

E.5. Proof of Corollary 2

Recall that 1 < B < nl/2 A 6*1/2, m = (n A l)Bfl, n = ﬁ,/ﬁ and cg,cc > 16. Then, we have oo = 16,
m >n'/2 Ae71/2 > Band n < ;. Thus, we obtain

1 1 Ly  n*L?m 5 1 9
0= 9 2 2B~ 16 4 v sg
which, in conjunction with Theorem 2, implies that
36 L\/m(f(xo) — f*) 17
E||V 2 < —e.
Vs < BRI =1,
Thus, to achieve E||V f(x¢)||?> < ¢, AbaSPIDER requires at most %\fﬁ(?)” © (%) iterations. Then, the total

number of SFO calls is given by

S -1
An  VmB
min{cgo? secole b ny + KB <S(co?c ' An)+ KB<O ¢ + ,
>_min{cso” 67 } ( JTRBSO\ g5+
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which, in conjunction with mB = n A %, finishes the proof. O

F. Proofs for Results in Section 3
F.1. Useful Lemmas

In this section, we provide some useful lemmas. The following two lemmas follow directly from Assumptions in Subsec-
tion 3.4.

Lemma 3 ((Papini et al., 2018)). Under Assumptions 2 and 3, the following holds:
(i) VJ is L- Lipschitz, i.e., for any 01,05 € R [|[VJ(01) — VJ(02)|| < L |01 — 02]|.
(ii) g(7|0) is Lipschitz continuous with Lipschitz constant Lg, i.e., for any trajectory T € T :
l9(7101) — g(7162)[| < Lg |62 — b2]| -
(iii) g(7|0) and V log(p(7|0)) are bounded, i.e., there exist positive constants 0 < I', M < oo such that for any 7 € T and
URSECH
IV log(p(r|0))||* < M and  |g(r]6)|* <T.

Lemma 4 ((Xu et al., 2019b;a) Lemma A.1). For any 01,0, € R%, let w(7|01,602) = p(7161)/p(7|02). Under Assumptions
3 and 4, it holds that

p(r]62) ||’ 2
1-— =V 01.05)) < «llf; — 6
’ NETS) ar (w(7| 1 2)) < a6y 215,

T~p(:01)

where o is a positive constant.

The following lemma captures an important property for the trajectory gradients, and its proof follows directly from
Lemma 4.

Lemma 5. Under Assumptions 2, 3, and 4 the following inequality holds for any 61,6, € R?,

e ||9(T|91) —w(rlf1,02)9(7162)” < Q1I61 - 62]%,

where the importance sampling function w(7|01,02) := p(7]62)/p(7|01), and the constant Q := 2(L2 +T'cx) with constants
Ly, T and o given in Lemmas 3 and 4.

F.2. Proof of Theorem 3

In this section, we provide the convergence analysis for AbaSVRPG. To simplify notations, we use E[-] to denote the
expectation operation conditioned on all the randomness before 0y, i.e., E[-|0, - - - ,0x] and n, = | k/m| x m.

To prove the convergence of AbaSVRPG, we first present a general iteration analysis for an algorithm with the update rule
taking the form of 01 = 0i + nvg, for k = 0,1, - - - . The proof of Lemma 6 can be found in Appendix G.
Lemma 6. Let V.J be L-Lipschitz, and 0,11 = 011 + nug. Then, the following inequality holds:

Ly
BJ(0) - B0 2 (L~ ZE) B o - LEflo - 001

Since, we do not specify the exact form of v, Lemma 6 is applicable to various algorithms such as AbaSVRPG and
AbaSPIDER-PG with the same type of update rules.

We next present the variance bound of AbaSVRPG.

Proposition 1. Let Assuptions 2, 3, and 4 hold. Then, for k = 0,--- K, the variance of the gradient estimator vy, of
AbaSVRPG can be bounded as

Qn
E [[og — VJ(0)]* <(k — n) Z E [[0i]* + E |lvn, — VI (@)l

’Lnk
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where ||v;|| = 0 fori = —1,--- , —m for simple notations.

Proof of Proposition 1. To bound the variance E |[vy, — V.J(6)?, it is sufficient to bound Ej, |[vx — V.J(6x)]” since
by the tower property of expectation we have K |lvy, — VJ(0;)||> = EEy |Jox — VJ(0))|]>. Thus, we first bound
Ey |[ox — V.J(03)|]? for the case with mod (k,m) # 0, and then generalize it to the case with mod (k,m) = 0.

Ey, [[ox — VI (61)]|”

B B
@M 1 1 = ~ _
= Ex E;Q(Tﬂak)—E;W(Ti|9k79)g(ﬁ|9)+’U—VJ(‘9k)
1 & 1 & . - Tk
=B |5 2 9(0l0) = 5 3 w(rilte O)g(rlé) + V() = VI 0) +9 - VI 9)
B B 2
1 1 . - - 3 I
=By | ;gmwk) -z ;wmwk, 0)g(rild) + VI(8) ~ VIO +Ex |5 - VIO
1 & 1< . - -
+2Ek<BZg(ﬂ'|0k)BZw<7i|9k79)9(7i|6)+v=](9)v‘](ek>vﬁv<](9)>
=1 =1
(i) 1 B 1 B - . - 2 ~ 112
2R, EZ;g(T,;Wk)—E;w(m&k,@)g(m&+VJ(9)7VJ(0;¢) + Ex vfw(o)H
(iif) 1 - ~ ~ 2 ~ ~ 12
< B = |lg(Tl0k) — w(T|0k, 0)g(710) + VJ(0) = VI (k) || +Ex||0—VJI(0)
Trp(:10x) B
@iv) 1 - ~ 2 ~ - N2
< By [lor16n) - w(rln, 0g(r1f)|| + B |5 - V@)
T~p(-|6k)
(v) ~112 ~ 112 ~ 12
Lo —al] v 5 vI@| = L0 — s+ O |2 B |5 - V@)
B B
. k—1
v Q N 2
< Slk=m) 3 101 — 0 +E o - VU@,
=Nk

where (i) follows from the definition of wv; in Algorithm 3, (ii) follows from the fact that
Ex [% Zil 9(7il0k) — & Zil w(7;|0k, 0)g(7]0) + VJI() — VJ(G;C)} = 0, and thus given 0y, - - - , 6, the expectation
of the inner product is 0, (iii) follows from Lemma 7, (iv) follows from the fact that Var(X) < E || X 2, (v) follows from
Lemma 5 we provide in Appendix G, and (vi) follows from the vector inequality that ||/~ 6; H2 <m> ", 6 2.

Therefore, we have

E [|loy, — VI (Ok)||* = EEy, ox — VI (0k)]*

k—1
< %(k —m) Y0 E[lfir 0] + E Hv - VJ(é)H2
Q kk 9 . |12
< =k —my) ; E|0;r1 — 0;]]° + E Hv . w(e)H
< Q2 i E v + E Hu - VJ(é)H2
B

i=ny
k
0 Qn?
© (k=)= S E il + Ellow, — V6]

=N
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where (i) follows from the fact that at iteration k, ¥ = v,,, and 0=0, .- It is also straightforward to check that the above
inequality holds for any k£ with mod (k,m) = 0. O

Proof of Theorem 3

Since in Algorithm 3, VJ is L-Lipschitz, and 041 = 6;41 + nvg, we obtain the following inequality directly from
Lemma 6:

L
B (00) ~ EJ(00) > (1 - ”) E uul? ~ VB v, - V(00 @
By Proposition 1, we have following variance bound:
E ok = VJ(0)]” < (k — ) Qn Z E ;] +E [[on, — VI (6n,)]” (22)
1= =Nk

Moreover, for mod (k,m) = 0, we obtain

2
Ellvy — V f(zx)|* =

N

1

& 2 Vo(rlon) = VI (6,)
i=1

(1) 1 2(”) o?
Vg(r|0,) — VJ(O <
NTM)H 9(rl6x) = VI (6:)

uz) ng—1

< >l + = (23)

znkm

where (i) follows from Lemma 7, (ii) follows from Assumption 4, and (iii) follows from the fact that

2

ao
S ST T s
where « > 0and 5 > 0
Plugging (23) into (22), we obtain
ng—1
Elloe - VIO < (- m) 2 S B+ L 3 a4 £ 4)
i=ng i=ng—m
Plugging (24) into (21), we obtain
n_ Ly’ > Qn’ - 2 8 RS e e
J(Or41) —EJ(Ok) > (5 - T) E flokl|” - ﬁ(k— nk) Z E Jvill” — Sam > will* - %0
— i=ng—m

We note that for a given k, any iteration n; < ¢ < k shares the same é, and all their corresponding n; satisfies n; = ng.
Thus, take the summation of the above inequality over k from ny, to k, we obtain

EJ(0g+1) —EJ(0n,)

n Lt v > Q i RN A o R
> (- 5) LBl - 3 >0 nk);:EII%H }jm]‘}j gl = 3 5
K3 k =Nk =Ny =Nk =MNr—m =Nk

k} nkfl k‘

k
n_ Ln? s Qpf 2 en
> (120 ST Efe)? - L —n) S E o § ) P-3 2

i=ng i=ny J=nk 1=ng j=nr—m 1=ng
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k k k np—1 k
_(n Ly o Qui(k—ng)(k—ng+1) 2 np 2 €n
—(2- ) S Eput - ) > o _.ZM. > -2
1=Nk J=ng 1=Nk J=NnEp—m 1=Nk
S\ 2 2 zB £~ 2am i
1=nk 1=np j=nr—m i= ”k
W /n L2 QnPm?\ < =y R
L8] > [T DR ST o=
1=Nk 1= Nk j NE—m =Nk

i ( —np 1) S e
ii 2

o3 B - BE ) Ry 5 e

1=ng i=np—m i=ny

k ng—1
(iii) 7]5
> ¢ Eloil’—5- > luill’ - Z (25)

1=ny 1=nr—m 1=ny
where (i) follows from the fact that k — ni < k — ng + 1 < m, (ii) follows from the fact that ¢ := (7 - =L —
and (iii) follows because (k — n; + 1)/m <
Now, we are ready to bound J(0x 1) — J(6p).

EJ(0x11) — E J(6)
:IEJ(GKH)—IEJ(@ ) +EJ0, )---+IEJ(9 )—]EJ(GO)

. K ng—1 m

(1) 2

>¢ Y Elul - Z lvs|* — Z +¢>ZEII vill* - Z lvs |* Z*
1=ng I=ng—m 1=NnK =0 i=—m 1=0

TLK1

(i>D¢§:]E||v12 ZHZII Z
> (e B) 3 -2

where (i) follows from (25), and (ii) follows from the fact that we define |[v_1|| = - - - = ||v_n|| = 0.

Thus, we obtain

np X X €n
( _20()ZEHU1|2<EJ(9K+1)_EJ(90)+ZQQ

i=0 =0
) K €n
J(O7) = J(00) + > o+

L~ 20’
1=0

where (i) follows because 0* := arg ma;g] (0). Here, we assume ((,25 — %) > 0 to continue our proof. Such an assumption
OcRd ]

can be satisfied by parameter tuning as shown in (32). Therefore, we obtain

: o
ZEan (e-2) <J<0*>—J<ao>+222>. 26)
=0

With (26), we next bound the gradient norm, i.e., ||V J(6¢)||, of the output of AbaSVRPG. Observe that

E[VI(0)]* = El|VJ(6¢) — ve + vell> < 2E[V.(6) — ve> + 2B g% @7)

Therefore, it is sufficient to bound the two terms on the right hand side of the above inequality. First, note that

K .. 1
p 1 () np J(07) — J(6o) | en
Elloe|22 — ST E|ul? < (¢ - 2 =~ 7 4L 2
[logl K1 ;:0 vl (¢ 2@) ( 7 90 )’ (28)
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where (i) follows from the fact that ¢ is selected uniformly at random from {0, ..., K}, and (ii) follows from (26). On the
other hand, we observe that

E(VJ(0¢) — ve|?
v 1w
:THZ IV J(0k) — vi]|®
k=0
.. K k ng—1
@ 1 Qn? 2 B 2, €
< k—np)—— E |jv; — i —
_KH;OQ w2 S B+ L5 e £
= =Nk 1=Nk—m
(i) Qngm el
b g ZZEH«JZH S
k=01= k 0i=nr—m

w _Qnm ffjmv Pt 3 S Eful? Z Sl
- B(K +1) A ! ! a

k=0 k=ng i=ng k 0i=ni—m
Q772m m—1m—1 K K ng—1
< s E flui]® + - E [lui] P+
ey (5 S e 3 S ”) Z 2 e
™ Q’f] m K nE—1
E v, v; _|_f
—B(K+1)§ lvi|* + K+1 kZOz gmll I?
. K m—1 -1 ng—1
o Qn*m? 2
< Y22 E i 1 K3
* e 5™ D s (g e 3 B
(Vu) Qﬂ m . ng—1 ) c
< BK LD Z el + )nguvzn +2

i) 1 Qn2m2 B 9 €
< — — E ||v; —
_K—i-l( B +oz Z ”U'HJroz
(viiii) 1

<
i

() o 9 2))

where (i) follows from the fact that ¢ is selected uniformly at random from {0, ..., K}, (ii) follows from (24), (iii) follows
from the fact that k — ny < m, (iv) follows from the fact that for ny < k < np + m — 1, n; = ng. (v) follows from

Z:*:Z;nfl Z?k:{:n*l E ||lv; H2 =m Z?’“:km*l E ||v; ||2 (vi) follows from the same reasoning as in (iv), (vii) follows from

ZZSZ:L_l Y mE [og]|> = m S o ' E g%, (viii) follows from [[u_y || = - - - = [[v_,,|| = 0, and (viiii) follows

from eq. (26).
Substituting (28), (29) into (27), we obtain

E[VJ(6)]* <

K+1 B

2¢ " ‘m? B nB\ "

(1 L Qrm? B)
«
Q
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F.3. Proof of Corollary 3

Based on the parameter setting in Theorem 3 that

1 1
1 202\ 3 ch4 3
’7:2L’m:<Qe) ’B:<L262> ;o =48, and 8 = 6, BD
we obtain
s (1t 1 1y 11
¢ 2a_<4L 8L 16L 32L_32L>0' 52)

Plugging (31) and (32) into (30), we obtain

8L
E|[VJ(6)|* <

S K11 (J(0") — J(6o)) + 3

Hence, AbaSVRPG converges at a rate of O(1/K). Next, we bound the STO complexity. To acheive e accuracy, we need

88L N €
T_H(J(G ) = J(60)) < >

which gives

o 1T6L(J(07) = T (0)

. 2 2
We note that for mod (k,m) = 0, the outer loop batch size N = 5 an_‘i“’ T < O“E’ . Hence, the overall STO
m 2ui=ng—mllVi €

complexity is given by

nK 2 K 2 K 2
Kx2B+) il <K><QB+ZM<K><2B+[W><M
k=0 % D imkem—m lill” + € —o € m €

K ac? ao?

()
<2KB+ ——  —
m € €

@ ((L(J(e*) —J(eo))> ((1?203 Lo <L§62>§> ) a2>
o ((L(J(H*)e— J(ao))) (22;;) N Oj)

=0 <6_5/3 + 6_1) ,

where (i) follows from the fact that [%W x N < % + N, and (ii) follows from the parameters setting of K, B, and m in
3D.

F.4. Proof of Theorem 4

In this section, we provide the proof of AbaSPIDER-PG. We first bound the variance of AbaSPIDER-PG given in the
following proposition.

Proposition 2. Let Assumptions 2, 3, and 4 hold. For k = 0, ...K, gradient estimator vy, of AbaSPIDER-PG satisfies

o k
E ok~ VI <95 37 B ol + Ellvn, — V0.,

1=Nk
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Comparing Proposition 2 and Proposition 1, one can clearly see that AbaSPIDER-PG has a much smaller variance bound
than AbaSVRPG, particularly as the inner loop iteration goes further (i.e., as k increases). This is because AbaSVRPG uses
the initial outer loop batch gradient to construct the gradient estimator in all inner loop iterations, so that the variance in the
inner loop accumulates up as the iteration goes further. In contrast, AbaSPIDER-PG avoids such a variance accumulation
problem by continuously using the gradient information from the immediate preceding step, and hence has less variance
during the inner loop iteration.

Proof of Proposition 2. To bound the variance E vy, — VJ(0y) ||2,

it is sufficient to bound Ey, [|vx — V.J(6;)]|?, and then

the tower property of expectation yields the desired result. Thus, we first bound Ej, [|vy, — V.J(6;) || for mod (k,m) # 0,
and then generalize it to mod (k,m) = 0.

Ey, [[ox — VI (61)]|°

0} 1

= Eg Ezg(”w’“) - éz

:Ek

w(n|0k, 0k—1)9(7i|9k—1) + Vp—1 — VJ(Gk)

w(n|0k, Hk—l)g(TiWk—l) + VJ(Gk_l) — VJ(@k) + V1 — VJ(@k_l)

2

B B
1 1
=Ex| 5 ;g(ﬂm) -3 ;W(Tﬂ@m Ok—1)9(7il0k—1) + VI (Or—1) — VI(O)|| +Ex |lve—1 — VI (Or—1)]*
B B
+ 2K, <B Zl 9(7:|0k) — Z w(7i|0k, Ok—1)g(1i|0k—1) + VI (0r—1) — VJI(0r), vk—1 — VJ(9k—1)>
D, 5 ;g(nwk) -5 ;w(nwk, 0r—1)9(Ti|0k—1) + VI(Or_1) — VIO)|| + Eg [|vi_r — VI (Or_1)|”
(i) 1
< E, — Hg(T|9k) — w(7|0k, Ok—1)g(T|0k—1) + VJ(Or—_1) — VJ((%)HQ + Eg [|Jvg—1 — VJ(kal)H2
T~P(~|9k)
(@iv) 1
< E(kw B I9(710%) — w(T|0k, Or—1)g(T10k—1)[|* + B lve—1 — VI (Or-1)]?
TP |Vk

(v)

o Qn

[ok—1]1* + Ex lve—1 — VI (O—1)||”

L Q00— 0+ B s — VIO

(33)

where (i) follows from the definition of vy in Algorithm 3, (ii) follows from the fact that

thus given 0y, - - -

that Var(X) < E || X||?

Therefore, we have

Zg (7:l6x) — = Zw (73l 0k O5—1)g(7:|0k—1) + VI (Ox—1) — VI (6;)| =0,
z:l

, 0o, the expectation of the inner product equals 0, (iii) follows from Lemma 7, (iv) follows from the fact
, (v) follows from Lemma 5, and (vi) follows because 6 = 0,1 + nug_1.

E |lor — VIO)* L EEy, ox — VI(O)]

(i)
2 0 o |+ E ks — VIO, (34)

where (i) follows from the tower property of expectation, and (ii) follows from (33).

Telescoping (34) over k from ny + 1 to k, we obtain

k 2
E o~ V017 = Y DB o +E o, — (00,
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k
<3 D 4 E o, — V6,
> B 4 Nk ng .

i:nk

It is straightforward to check that the above inequality also holds for any k£ with mod (k, m) = 0. O

Proof of Theorem 4

Since in Algorithm 4, VJ is L-Lipschitz, and 041 = 6;41 + nvi, we obtain the following inequality directly from
Lemma 6:
Ln?

S ~EI0) > (3 -5

) Elol? - 22l - VS0 65)
By Proposition 2, we obtain

E o, — VI (00)] Z g o2+ E [y — VT (00, (36)

=Ny

Moreover, for mod (k, m) = 0, we obtain

N

Z 9(7il0k) — VJ (61)

Ellop — V f(zi)|? =

0] 1 o (1) g2
_ i < 2
N o p( o) Vg(T|0x) — VJ(Or)|I" < N

(ii) el

i B
<= > il +f 37)

i=np—m

where (i) follows from Lemma 7, (ii) follows from Assumption 4, and (iii) follows from the fact that

2

Qo
N = ,
Lyl il + €
where « > 0and 5 > 0
Plugging (37) into (36), we obtain
Qn = €
E|lve — VJ(0r)|* < ZEII vl?+— 3wl + = (38)
i= Nk Z =Nk—m a
Plugging (38) into (35), we obtain
n 1
n _ Ln Qn nﬁ —
B0~ BI0) > (1 2 B o - 9 SEpr- 2 5
i=ng i=np—m

We note that for a given k, any iteration ng < ¢ < k, all their corresponding n; satisfies n; = ny. Thus, telescoping the
above inequality over k from ny to k, we obtain

EJ(Ok+1) — EJ ()

’I’Lkl

S ER D LTINS o) DTS DI ST o

1=ng i=ng J=Nk 1=ng i=np—m i=ng
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3 kK k ny—1
n Qn° 2 ng
> (2-42) SEF-L Y SEpE-Y L ¥ -y 2
1=ng i=ng j=ng 1=ng i=np—m =Ny
n 2 nk +1) ¢ I =
2 -
=(2—2)2En S SR S
1=ng J=nk 1=nk i=np—m i=n
k np—1 k
n  Ln*  Qn*(k— nk +1) nps 2 €n
(2L _ X\ E ||v; e 112 = =
(2-% DL DA S T
1= Nk =Nk J=nr—m =Nk
O (n Ly’ Qnm E S RS 2 e @)
(12 Swier- 3 22 S -y g
i=ng i=ng j=ng—m i=ng
(i np(k nk+1) £y 2 N~ )
63 Bt - BEm A R e S
=N i=ng—m i=ny
(111) k 9 ne— 1 k 677
> ¢ Y Elvi* - Z ~ D 5 (39)
i=ny i=nr—m 1=ng
where (i) follows from the fact that &k — n; + 1 < m, (ii) follows from the fact that ¢ := (% - LTUQ — sz, ) and (iii)
follows because (k —ny +1)/m < 1
Now, we are ready to bound J(0x 1) — J(6p).
EJ(0x41) — E J(6)
=EJ(Ok41) — IEJ(G,LK) +EJ(On,) - +EJ(O) — ]EJ(HO)
(].) K nK— 1 K
2
S S T O ML ST o
i=ng i=ng—m 1=nK i=-m
(11) K nK 1
2
Lo3 mhult - 25 -3 51
i=0 i=0
8 v €1
2
> (o= 2) Y wlul o
i=0 i=0
where (i) follows from (39), and (ii) follows from the fact that we define ||jv_1|| = - - - = ||v_p,|| = 0. Thus, we obtain
np = X €n
2
( - 2a) ;EHWH <EJ(0x+1) —EJ(6o) +;%
2 10"y — J(0 )+§K:ﬂ
= 0 g 2067

where (i) follows because 0* := arg gna}i.] (0). Here, we assume (qb ”ﬁ ) > 0 to continue our proof. Such an assumption
€R

will be satisfied by parameter tuning as shown in (32). Therefore, we obtam
. np = e
E|v]* < (¢ — 2= J(*) - J(® — . 40
>l < (¢ ) ( CORE(OEDY 2a> (40)

With (40), we are now able to bound the gradient norm, i.e., || V.J(6¢)||, of the output of AbaSPIDER-PG. Observe that

E[[V.J (6| = B[V (6e) — ve + vel]* < 2E[[V.J(6) — ve > + 2E ] |*. @1



History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms

Therefore, it is sufficient to bound the two terms on the right hand side of the above inequality. First, note that

0) ns (0%) —J(o) | en
Ellve)* = K+ 1 ZEH z||2 ( ) <K+1 + 204) . 42)

where (i) follows from the fact that ¢ is selected uniformly at random from {0, . .., K}, and (ii) follows from (40). On the
other hand, we observe that

EIIVJ(%) — ve)?

o 1 2
= E|VJ(0k) —
K1l E IVJ(0r) — vk
.. n 1
G 1 Qn? L
< E: § E ||v; §
K +1 k=0 ( 1=nk HU H i=nr—m )

ng—1

i) Qe v
Q=S Y Bl + s S5 e o

k=01i=ng k 0i=nr—m

(iv) Qng m—; k ) K , —
= B(K+1)< ZEHWH I Z Z E |lvg]| ) Z Z [ vi|® +,
i k=ng i=nk

k()lnkm

an — K K 9 ne—1
<B(K+1)< E [|lvi|)* + .+kz ZEmn) Z 3o il +7

£

k=0 i=0 =ng i=nk k 0i=nr—m
?%gmn e kszmn +e
A iE ol + Q(Kil)_z ol
(. )ZEH wl+ £
<v%ni>K1+1<Qn;m B) <¢_’75> (J( J(60) +§£§Z>+;

_ (Q”;m i) <¢ - 7275) h —(J(Q?(;i(eo)) +< (1 +7 (Q";m2 B) (¢ - W) ) (43)

where (i) follows from the fact that ¢ is selected uniformly at random from {0, ..., K}, (i) follows from (38), (iii) follows
from the fact that k — ny < m, (iv) follows from the fact that for ny, < &k < ny + m — 1, n; = ny. (v) follows from

ZZQZZL_l Z?k::n_l E ||lv; H2 =m Z?"I}:n_l E ||v;]|%, (vi) follows from the same reasoning as in (iv), (vii) follows from

Sty U EulP = m S E (v, (viii) follows from [lu_y || = -+ = |[v_p|| = 0, and (viiii) follows
from eq. (40).

Substituting (42), (43) into (41), we obtain

2
K+1

E[VJ(6)]* <

D) (- 2) ey )

Heg)
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F.5. Proof of Corollary 4

Based on the parameter setting in Theorem 4 that

57 e B= L\/g,a:48and5216, (45)

we obtain

() oo )

Plugging (45) and (46) into (44), we obtain

E|[VJ(6) <

To obtain € accuracy, we need

88L

e (T(07) = T (60) <

€
2 )
which gives

_ 1T6L(J(6%) — J(60))

K
€
We note that for mod (k, m) = 0, the outer loop batch size N = 3 Z,Lk,‘f"2 T < ‘122. Hence, the overall STO
complexity is given by o
nK 2 K 2 K 2
Kx2B+Y ngZB+ZM<Kx2B+{-‘><M
=0 Diekem—m Vill” 4 € =0 © m €

K ac? ao?

(i)
<2KB+4 —— + —
m € €

Cof(1E) (024 )

o(1101-1) (2))

=0 (6_3/2 + 6_1) .

where (i) follows from the fact that [%W x N < K—nfbv + N, and (ii) follows from the parameters setting of K, B, and m in
(45).

G. Proof of Technical Lemmas

G.1. Proof of Lemma 3

(1), (ii), (iii) follow from Lemma B.2, Lemma B.3 and Lemma B.4 in Papini et al. 2018, respectively.

G.2. Proof of Lemma 5

Note that
E - |g(r]6) — w(r]61,02)g(r|02)*
Tp(-|61)

= e lg(7101) = g(7]62) + g(7102) — w(r0r, 02)g(r]02)|”
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()
= B 2|g(r6) —g(710) >+ E  2]lg(r|62) — w(r|6r,02)g(7102)]?
T~p(-]01) T~p(:101)

(i)
< 2L§H91 — 6’ + E )2||g(7'\92)||2||1—w(7'|t91,92)||2
T~ 1

p(-|0
(iii) iv
< 2L2 |01 — 0| + 2T |6y — 02° = 2(L2 + Ta) |01 — a]> 2 Q 162 — 02,

where (i) follows from the fact that ||z + y||* < 2|z||> + 2|y||°, (ii) follows from item (ii) in Lemma 3, and (iii) follows
from item (iii) in Lemma 3 and Lemma 4. Then, the proof is complete.

G.3. Proof of Lemma 6

We derive the following lower bound
@ L 2
JOr+1) = J(Ok) 2 (VI (0k), 01 = Ok) = 5 (1641 — Ok
i L 2
© (VIO ) = = ol
L 2
=0 (VI(0r) = v + vy ) = = e
L 2
= nlonll® + 1 (V1 (60) = vr, o) — = [loel”
(@) [ve = VIO) 1> + [lowl®  Ln?

2 2
= okl —n 5 5 el
Ln2

_(h_ 2_ 1 — 0.2
— (255 hot® - 219900 - ol

where (i) follows from the fact that V.J is L-Lipschitz, (ii) follows from the update rule ;41 = x) + nvg, and (iii) follows
from Young’s inequality. Taking the expectation over the entire random process on both sides, we obtain the desired result.

G.4. Proof of Lemma 7

Lemma 7. Let X, X1, -, X, be independent and identically distributed (i.i.d.) random variables with mean E[ X, then,
the following equation holds:

E

2
1 & E|X —EX|?
=3 XZ-—]EXH _Elx-EX|"
ni:l n

Proof. Standard calculation yields

2 2 2

n n

1 & 1 1
E ﬁ;XFEX =E ﬁ;(XFEX) = —E ;(XFEX)
:%ZZE(Xi—EX,Xj—EX>
i=1 j=1

@

1 n
EZEQQ ~EX,X;, -EX)
=1

1 & 2
EZEHXZ’ -EX||
=1

i E|X —EX|?
o BIX-EAL
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where (i) follows from the fact that X, - - - , X, are i.i.d. random variables such thatif i # j, E(X;, —EX, X, —EX) =0,
and (ii) follows from the fact that for i.i.d. random variables E | X —EX|* =E || X, —EX|*--- =E| X, —EX|? O

H. Proofs for Results in Appendix C
H.1. Proof for Theorem 5

To simplify notations, we let cg = c. = o = (2 2r ) 16¢, LT
pary s Cp =C = T+1*GXP(CW(C7W4_2)) V po

Since the objective function f(-) has a L-Lipschitz continuous gradient, we obtain that for 1 < ¢ < m,

s s s s s L772 s 2
f(@f) <f(@i_q) +(Vf(xi_1), 28 —xiq) + ——[lviq|l

2
sy s s U s e Lp®,
=F(@ia) + PV @) — v | = DIV F @I — Tl + 2 o
which, in conjunction with the PL condition that ||V f (z§_)||* > L(f(z5_;) — f(2*)), implies that

) - 16 < (1= ) (et = ) - (3= B ) et + 2097 — ol

Recall that E; 4(-) denotes E(-|x{, 23, ..., 23, ..., x7). Then, taking expectation Eq s(-) over the above inequality yields, for
1<t<m,

L 2
Eoo(F(z7) = f(@") < (1= 3 ) Bos(f(w50) = (7)) - <g ~ ;7)
+ 2 (xi_1) — UtS—IHZa 47)
which, in conjunction with Lemma 1, implies that
L 2
Eo.(f(af) — f") < (1- 2—) Bo.(fef 1)~ ) - (3= 55 ) Bos
n3L2
L EOSZ” z5“2 T] (N <n) 2.

Let v := 1 — 5L. Then, telescoping the above inequality over ¢ from 1 to 1 and using the fact that t — 1 < m, we have

2\ m—1
B ) —F0) 97 Boul o)~ = (3 = 5 ) vl

2
3L2 i 77]1\1 n
Z m—2— tEOgZ”US”z (ZV> ( s< )(7 . (48)
t=0
Note that 7"~ 17* > 4™ for0 <t <m —1land ) -, 7 =1 jﬁ{ < 1= ﬂ = 277 Then, we obtain from (48) that

Eou(F(ah) — £(2)) <y Bo(f(a) — f(a*)) - (

%\3

m—1
;7) S 3
t=0

n m—1 m —1 m—2
2 S N | O Eo,s Z [of || (Z vm_z_t>
t=0 =0 t=0
v
(Ns<n) 0_2
N
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N — ! n LQmT 71 (N
m— s <n)
=23 R o 2 + T B, Z sl + o
t=0
m ; . n_ L'\ . _ n*LPmr LQmT N ’
< Baa(f(25) — (a) - ((4—2)7 ZEO,SHW
=0
’TIN nm !
< m—1— s
s Al Dl Ly X [ (49)
t=0

Recall n = - (¢, > 4), 225 <'m < 4L7 and B = m?. Then, we have
n n

AP S S A N RS BN S SR A N R
1”2 )7 AT 2, 2,7L T4 2, 2m

- , (50)

where (i) follows from the fact that (1 - ﬁ)m % form > 1. Recall g = ¢ = aand Ny = min{cgo?B; !, cco?e 1, n}.
Then, combining (10), (49) and (50) yields

TI(N,<n
Eo.(f(eh) — £(2)) <y Baa(f(a) — f(z) + 82 TS itmy g
S —0

(0%

m—1
< Bou(f(a) ~ fla) 47 (24 £) = TS gt

Further taking expectation of the above inequality over z},, ..., 25, we obtain

H

E(f(a) - F@") < v E(f(z3) - F@) + TS, + 10— 13" yn it
=0

&

Recall that 3 < ¢( ’Y)m(s Y and By = L3 [lvf=1||? for s > 2. Then, telescoping the above inequality over s from 1
to S yields

S—1 m—1
B(f(rp) = £(a") <™ (o) = F@) + 3 ym(s-ime > Ellvil?

m—1
T TE
+ m(S—1) "FP1 ﬂl +Z m(S— s) nz,ym(s Z"/m_l_t]E”’Uf”Q
=1 =0

B (o) - £a) - (U 2m—am)z m(s1-9 ZEWH?

1
+ (1 + ; )”, (51)
1- exp(—icn(cnd)) o

where (i) follows from the fact that v~ 1=t > 4™ for 0 < t < m — 1, 45~ < 1, Zle Am(5=8) < ﬁ and

m=11- 1 m< 1—$ m<eX 4
T 2¢,TL - enlen —2)m = oxp eplen —2))

. 16¢, L
Since o = (27 + 2r ) vV 226127 e have
1—exp(= =) ™

1 Te 1 n 5,® 1 T
1 e Dam > 52
< * 1 —exp(—cn(c‘iz))> a =2 4’ 16¢,L — am (52)
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where (i) follows from (50) that ™ > (1 — —) >

2m

1. Note that z3), = #°. Then, combining (52) and (51) yields

E((3%) = f(a") <7 (F(x0) = f@") + 5.

Let K = (2¢,7L — 1) log (w) Then, we have

S

@)

IN
rio

3 (an) = %) =exp | (2ey7L = Do g (5 )| (a0 - 70

where (i) follows from the fact that log % = log ( + 2c,771L 1) < 2c,771L 7. Thus, the total number of SFO calls is

e 1 1
E mm{ }+KB<O ((C/\n)Tlog—i—BTlog)
Bs’ € m € €
(4) 1 1
<O ((T /\n) log — +T3log) ,
€ € €

where (i) follows from the fact that m = O(7) and ¢, = O(7).

H.2. Proof of Theorem 6
To simplify notations, we let cg = cc = o = (2T + - p(QT —5 )) v 20 lT
EXPl e en —2) m
Using an approach similar to (47), we have, for 1 <t <m
; s ) n_ Lnp? 5
Bo.(af) = ) < (1= 4L ) Boulflot ) = £ = (3 = 50 ) Baalofal?
n s s
+ iEO,sHVf(fthl) —op_q|1%,
which, in conjunction with Lemma 2, implies that
) s ) n Ly
o (o) — 1(a") < (1 - ;) Bo.(f(ot0) — 16) - (2= 5 ) B

Qt 2
ZEO ” 5”2 77 (N <n) 2
s .

Let v := 1 — L. Then, telescoping the above inequality over ¢ from 1 to m yields
E s\ _ *)) < /MR s\ _ *\) Q_Li m—1— tE 5112
0.s(f(zm) = f(27)) < 7" Eos(f(25) — f(27)) = | 5 Z gl 0.7l
LS e 2 (N o) Mevem o
m— S s<N
+ 55 7 ZE sllvfll® + Z 27]\[50 )
=0 t=0
which, in conjunction with >} 1 = 117_7:1 < ﬁ = 277 and Y17t > 4™ for 0 < t < m — 1, implies that
n L772 m—1
Bo. () = £2") " Bouf(a) — 1) = (1= 55 ) 32 4t Ea, g
t=0
m—1 3792 [/Mm—2 m
—1-— s L —2— s
— 1Y AT Bl + < g2 ) Eo.s Y [I1
t=0 t=0 i=
71, n
+ (Ns<n) 2

(53)
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<A™ Eoa(f(x]) — F(2%)) (” - ) Z Eo o[}

nm 1 m—1 I
m— s s Ny<n)
— 1 AT Bl + Eobznv 1P+ =50’
t=0
m—1
m o ] n_ Ly 2L2
< Ba( () — (@) - ((4—2% Eo ol
t=0
TIN — m—1— s
R A D DE L [ (54)
t=0

Recall that ) = ﬁ with ¢;, > 4 and B = m with % < m < 4L7. Then, we have

0 L2\ 11 1 \" 11 1\™
a4 _ = —nl—-—— (1= ) (1= =
<4 2 >7 ”(4 2, serL) ~T\17 3, om

(1_1)>T]2L2T 772L2T

= (55)

which, combined with (54) and (10) , implies that
s * m S * 68 € n — m—1—t s|12
Eo,s(f(zm) = f(27) < 7" Bos(f(2) = fla™) +7{ -+ ) =52 7 Eo,s[lvf]]”

Taking the expectation of the above inequality xy, ..., 7§, we obtain

m—1
TE

E(f(a},) — f(z*) < 7"E(f(x5) = f&*) + BB, + = — 2 >~ " E o
t=0

Recall 51 < e( )m(S Y and Bs = Z |fut |2 for s = 2, ..., S. Then, telescoping the above inequality over s from
1 to S and using an approach similar to (51) we have
. 5—
E(f(a) — f(@") <y E(f(w0) — (=) = (17*" = ) S s Z Elo;]
s=1
TE

1
+(1+ ),
< 1-— exp(—icn(ciim) «

which, in conjunction with (52), yields

E(f(xp) = f(@) < vFE(f(z0) — f(z")) + (56)

N

. Thus, the total number of SFO calls

[N

Let K = (2¢,7L — 1) log (M) Then, we have v* (f(zo) — f(z*)) <
is given by

me{ b Le }+KB<(9<< );logiJrBrlogi)

“o((7n

where (i) follows from the fact that B = m = ©(7) and ¢ = O(7).

|/\~
mH

1 1
)1og—|—7'210g),
€ €
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L. Proofs for Results in Appendix D
L.1. Proof of Theorem 7

Since the gradient V f is L-Lipschitz, we obtain that, for ¢ > 0,

L
F@err) <f2e) +{VF(@0), 2e41 = 20) + S llzes — ?
i Ln?
L @) = (Vo) ve) + - o]
Li? 2
=f(ze) =V f(xe) —ve + v, 0) + THWH
2 Lnp? 2
=f(@e) =V F(@e) = ve, ve) = nffoe]]” + —=lvel
L 2
=F(@e) = (VS () = vy v = V(@) + V() = (= 5 ) el
L 2
=F(@e) = (VS (20) = viy v = VF(@e)) = 0V f(20) = 00, V() = (= =5 ) o]
L 2
=F (@) + [V (w0) = vl = n(V flae) = v, Vflae)) = (n= 5 ) el
where (i) follows from the fact that x;.1 = x; — nv;. Then, taking expectation E(-) over the above inequality yields
L 2
Ef(ve41) SEf(00) + nEV S (w0) = il = nE(V S (20) = w0, V() = (n = S )Elloe]
i Ln?
CES(w0) + IV f(2) = vel® = (n— == )Elloe]®

L 2
=Ef(z:) — (1 — = )Ellvel® + nE|[V £ (@) = vil[%, (57)

where (i) follows from E(V f(z;) — v, Vf(x1)) = Egy....xy BV f(x) — v, V(1)) =0.

Next, we upper-bound E||V f(z;) — v;||%. For the case when | B;| < n, we have

E|Vf(z:) — Ut||2 =E(|Vf(x:) - ﬁ Z Vii(zy)|| =E % Z (Vf(ze) = Vfiz))
i€B; i€B;
2
- E|Blt|2 > (Vi) = Vi)
1€EDBy
S S (9(a) - VA0S - V)
i€B; jEB,

By (Bige 3 3 (VF0) = Ve Vi) - V(e

i€By JEBy

—E,, ﬁ SO S E (VS () - Vi) V@) — V()

i€By jEBy
Op, o SRV ) - Vi) © B
TO,ye--y xt‘Bt|2 = t t ) t = IBt|’

where (i) follows from E,V f;(x;) = Vf(z:), and E, (Vf(z¢) — V fi(ze), Vf(xe) — Vfi(x)) = 0 for ¢ # 7, and (ii)
follows from item (3) in Assumption 1. For the case when |B;| = n, we have v; = V f(x;), and thus E||V f (z;) — v;||? = 0.
Combining the above two cases, we have

I n
E|Vf(z:) —v|><E (ﬁ;ﬁ%ﬂ) . (58)
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Plugging (58) into (57), we obtain

Ln? Jl<n
(1= =5 )Ellvel® < Ef () — Ef (v04) +E “f;‘j L=t o,

Telescoping the above inequality over ¢ from 0 to 7" yields

T I 2 l<n
>~ (1= 55 )Ellvel < Ef(2o) ~ Ef (vr41) Z famd<n o2 (59)

t=0 =0 | Bt

LBi<n)

Next, we upper-bound ZLO ( A ) in the above inequality through the following steps.

lypny | 2 Oy (Ela ol e
E t < E 1=1 G 2
Z | B - ; 2mo? * 2402 ) 17

T m
%;ZEHW 1||2+Z

t i=1
1 T min{m,t} 0 min{m—-1,T} m ne
2 2
L3S et S S Ehe Yk
t=1 =1 t= 1=t+1
@) p T min{m,t} 0 m—1 m T ne
< %Z > Elvel? + o > Elvoa|® + o
t=1 =1 t=0 i=t+1 t=0
7 T min{m,t}
= LS Bl + D+ Y
t=1 =1
0 T—1 min{i+m,T} —- T ne
=) E|uv|? 1+ ‘o1 -
LS Bl Y 1+ B e+
=0 t=1+1 t=0
<Q2T: Ello:]|? + 2 o+ e (60)
— 24 2 24
=0
where (i) follows from the definition of | By|, (ii) follows from the fact that ||v_1|| = ||v_2|| = -+ = ||[v_m || = ao.

Plugging (60) into (59), we obtain

T L
>~ (1= =5 )Elluil? < Ef(wo) ~ Ef (er+1) ZEH P+ Lra O+Z

t=0
which further yields
a nm L ne
S (2= BB 2 < Bfao) — Bf ) + had + 30 2
2 2
t=0 t=0
nm a ne
< _px 2 . 1
< flzo) = f7 4+ Sap + ;:0 2 (61)

Recall that ¢) := (n — Lf) > 0. Then, we obtain from (61) that

iE||vt||2 < 2(f(zo) — f*) + nmad N (T + 1)776.

26 246 62)
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Recall that the output z is chosen from {:z:t}t:()’.__?T uniformly at random. Then, based on (62), we have

E[Vf(zc)l ZEHVf )| ZEHEtth < *ZE Eq [lve]|*)
2 O )2(f(33o) f*) +nmag (T +1)ne
*;E”” el 27T Y
_ 2(f(o) — /) +nmod e

where (i) follows from the Jensen’s inequality, and (ii) follows from (62).

L.2. Proof of Corollary 5

Since n = have

ﬁ’

Then, plugging ) = 5-,¢ = 8% and T' = (16L (f(z0) — [*) + 4mad) e * in Theorem 7, we have

2 BL(f(@o) = f) +2mad < _
T 3

A
o

[a)

IN

E(Vf(z)l

Thus, the total SFO calls required by AbaSGD is given by

T T
202 240> 2402 1 n
By = i <(T+1 A =0|=A—].
t§:0| | ;_Omln{zm 2 m e 771} <(T'+1) ( p n) <e2 E)

izt loe—il|?/m



