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Abstract

Data-driven modeling increasingly requires to
find a Nash equilibrium in multi-player games, e.g.
when training GANSs. In this paper, we analyse a
new extra-gradient method for Nash equilibrium
finding, that performs gradient extrapolations and
updates on a random subset of players at each
iteration. This approach provably exhibits a better
rate of convergence than full extra-gradient for
non-smooth convex games with noisy gradient
oracle. We propose an additional variance reduc-
tion mechanism to obtain speed-ups in smooth
convex games. Our approach makes extrapolation
amenable to massive multiplayer settings, and
brings empirical speed-ups, in particular when
using a heuristic cyclic sampling scheme. Most
importantly, it allows to train faster and better
GANs and mixtures of GANs.

A growing number of models in machine learning require
to optimize over multiple interacting objectives. This is
the case of generative adversarial networks (Goodfellow
et al., 2014), imaginative agents (Racaniere et al., 2017), hi-
erarchical reinforcement learning (Wayne & Abbott, 2014)
and multi-agent reinforcement learning (Bu et al., 2008).
Solving saddle-point problems (see e.g., Rockafellar, 1970),
that is key in robust learning (Kim et al., 2006) and image
reconstruction (Chambolle & Pock, 2011), also falls in this
category. These examples can be cast as games where play-
ers are parametrized modules that compete or cooperate to
minimize their own objective functions.

To define a principled solution to a multi-objective optimiza-
tion problem, we may rely on the notion of Nash equilib-
rium (Nash, 1951). At a Nash equilibrium, no player can im-
prove its objective by unilaterally changing its strategy. The
theoretical section of this paper considers the class of con-
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vex n-player games, for which Nash equilibria exist (Rosen,
1965). Finding a Nash equilibrium in this setting is equiv-
alent to solving a variational inequality problem (VI) with
a monotone operator (Rosen, 1965; Harker & Pang, 1990).
This VI can be solved using first-order methods, that are
prevalent in single-objective optimization for machine learn-
ing. Stochastic gradient descent (the simplest first-order
method) is indeed known to converge to local minima under
mild conditions met by ML problems (Bottou & Bousquet,
2008). Yet, while gradient descent can be applied simulta-
neously to different objectives, it may fail in finding a Nash
equilibrium in very simple settings (see e.g., Letcher et al.,
2019; Gidel et al., 2019). Two alternative modifications of
gradient descent are necessary to solve the VI (hence Nash)
problem: averaging (Magnanti & Perakis, 1997; Nedi¢ &
Ozdaglar, 2009) or extrapolation with averaging. The later
was introduced as the extra-gradient (EG) method by Ko-
rpelevich (1976)); it is faster (Nemirovski, 2004) and can
handle noisy gradients (Juditsky et al., 2011). Extrapola-
tion corresponds to an opponent shaping step: each player
anticipates its opponents’ next moves to update its strategy.

In n-player games, extra-gradient computes 2n single player
gradients before performing a parameter update. Whether
in massive or simple two-players games, this may be an
inefficient update strategy: early gradient information, com-
puted at the beginning of each iteration, could be used to
perform eager updates or extrapolations, similar to how al-
ternated update of each player would behave. Therefore, we
introduce and analyse new extra-gradient algorithms that
extrapolate and update random or carefully selected subsets
of players at each iteration (Fig. 1).

— We review the extra-gradient algorithm for differentiable
games and outline its shortcomings (§3.1). We propose
a doubly-stochastic extra-gradient (DSEG) algorithm
(§3.2) that updates the strategies of a subset of players,
thus performing player sampling. DSEG performs faster
but noisier updates than the original full extra-gradient
method (full EG, (Juditsky et al., 2011)), that uses a
(once) stochastic gradient oracle. We introduce a vari-
ance reduction method to attenuate the noise added by
player sampling in smooth games.

— We derive convergence rates for DSEG in the convex
setting (§4), as summarized in Table 1. Proofs strongly
relies on the specific structure of the noise introduced by
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Figure 1. Left: We compute masked gradient during the extrapolation and update steps of the extra-gradient algorithm, to perform faster
updates. Right: Optimization trajectories for doubly stochastic extra-gradient and full-update extra-gradient, on a convex single-parameter
two-player convex game. Player sampling improves the expected rate of convergence toward the Nash equilibrium (0, 0).

Table 1. New and existing (Juditsky et al., 2011) convergence rates
for convex games, w.r.t. the number of gradient computations k.
Doubly-stochastic extra-gradient (DSEG) multiplies the noise con-
tribution by a factor o = /b/n, where b is the number of sampled
players among n. G bounds the gradient norm. L: Lip. constant
of losses’ gradient. o bounds the gradient estimation noise. {2
diameter of the param. space. K: function of G, L, 0%

Non-smooth Smooth

NG

player sampling. Our rates exhibit a better dependency
on gradient noise compared to stochastic extra-gradient,
and are thus interesting in the high-noise regime com-
mon in machine learning.

— Empirically, we first validate that DSEG is faster in
massive differentiable convex games with noisy gradi-
ent oracles. We further show that non-random player
selection improves convergence speed, and provide ex-
planations for this phenomenon. In practical non-convex
settings, we find that cyclic player sampling improves
the speed and performance of GAN training (CIFAR10,
ResNet architecture). The positive effects of extrapola-
tion and alternation combine: DSEG should be used to
train GANSs, and even more to train mixtures of GANs.

2. Related work

Extra-gradient method. In this paper, we focus on find-
ing the Nash equilibrium in convex n-player games, or
equivalently the Variational Inequality problem (Harker &
Pang, 1990; Nemirovski et al., 2010). This can be done us-
ing extrapolated gradient (Korpelevich, 1976), a “cautious”
gradient descent approach that was promoted by Nemirovski
(2004) and Nesterov (2007), under the name mirror-prox—

we review this work in §3.1. Juditsky et al. (2011) propose
a stochastic variant of mirror-prox, that assumes access to
a noisy gradient oracle. In the convex setting, their results
guarantees the convergence of the algorithm we propose,
albeit with very slack rates. Our theoretical analysis re-
fines these rates to show the usefulness of player sampling.
Recently, Bach & Levy (2019) described a smoothness-
adaptive variant of this algorithm similar to AdaGrad (Duchi
et al., 2011), an approach that can be combined with ours.
Yousefian et al. (2018) consider multi-agent games on net-
works and analyze a stochastic variant of extra-gradient that
consists in randomly extrapolating and updating a single
player. Compared to them, we analyse more general player
sampling strategies. Moreover, our analysis holds for non-
smooth losses, and provides better rates for smooth losses,
through variance reduction. We also analyse precisely the
reasons why player sampling is useful (see discussion in
§4), an original endeavor.

Extra-gradient in non-convex settings. Extra-gradient
has been applied in non-convex settings. Mertikopoulos
et al. (2019) proves asymptotic convergence results for extra-
gradient without averaging in a slightly non-convex case.
Gidel et al. (2019) demonstrate the effectiveness of extra-
gradient for GANs. They argue that it allows to escape the
potentially chaotic behavior of simultaneous gradient up-
dates (examplified by e.g. Cheung & Piliouras (2019)). Ear-
lier work on GANs propose to replace simultaneous updates
with alternated updates, with a comparable improvement
(Gulrajani et al., 2017). In §5, we show that alternating
player updates while performing opponent extrapolation
improves the training speed and quality of GANs.

Opponent shaping and gradient adjustment. Extra-
gradient can also be understood as an opponent shaping
method: in the extrapolation step, the player looks one step
in the future and anticipates the next moves of his opponents.
Several recent works proposed algorithms that make use of
the opponents’ information to converge to an equilibrium
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(Zhang & Lesser, 2010; Foerster et al., 2018; Letcher et al.,
2019). In particular, the “Learning with opponent-learning
awareness” (LOLA) algorithm is known for encouraging
cooperation in cooperative games (Foerster et al., 2018).
Lastly, some recent works proposed algorithms to modify
the dynamics of simultaneous gradient descent by adding
an adjustment term in order to converge to the Nash equilib-
rium (Mazumdar et al., 2019) and avoid oscillations (Bal-
duzzi et al., 2018; Mescheder et al., 2017). One caveat
of these works is that they need to estimate the Jacobian
of the simultaneous gradient, which may be expensive in
large-scale systems or even impossible when dealing with
non-smooth losses as we consider in our setting. This is or-
thogonal to our approach that finds solutions of the original
VI problem (4).

3. Solving convex games with partial
first-order information

We review the framework of Cartesian convex games and
the extra-gradient method in §3.1. Building on these, we
propose to augment extra-gradient with player sampling and
variance reduction in §3.2.

3.1. Solving convex games with gradients

In a game, each player observes a loss that depends on the
independent parameters of all other players.

Definition 1. A standard n-player game is given by a set
of n players with parameters 0 = (6*,... ") € © C R?
where © decomposes into a Cartesian product HZ’:l ol
Each player’s parameter 6 lives in ©° C R%. Each player
is given a loss function ¢;: © — R.

For example, generative adversarial network (GAN) training
is a standard game between a generator and discriminator
that do not share parameters. We make the following as-
sumption over the geometry of losses and constraints, that
is the counterpart of the convexity assumption in single-
objective optimization.

Assumption 1. The parameter spaces ©1, . .., ©,, are com-
pact, convex and non-empty. Each player’s loss £;(0*,07")

is convex in its parameter 0* and concave in 07", where

0~ contains all other players’ parameters. Moreover,
i, 4i(0) is convex in 6.

Ass. 1 implies that © has a diameter Q 2
maxy .co |u — z||,. Note that the losses may be
non-differentiable. A simple example of Cartesian convex
games satisfying Ass. 1, that we will empirically study in
§5, are matrix games (e.g., rock-paper-scissors) defined
by a positive payoff matrix A € RX9, with parameters
0 corresponding to n mixed strategies 6; lying in the
probability simplex A%

Nash equilibria. Joint solutions to minimizing losses
(¢;), are naturally defined as the set of Nash equilibria (Nash,
1951) of the game. In this setting, we look for equilibria
0, € © such that

Vien], £i(6.,67") = min 6(6°,6,7). (1)

0ico!
A Nash equilibrium is a point where no player can bene-
fit by changing his strategy while the other players keep
theirs unchanged. Ass. 1 implies the existence of a Nash
equilibrium (Rosen, 1965). We quantify the inaccuracy of a
solution 6 by the functional Nash error, also known as the
Nikaido & Isoda (1955) function:

Erry(0) £ Z {ei(e) — min £;(z,07%)] . )

€ 2€0;
=1

This error, computable through convex optimization, quan-
tifies the gain that each player can obtain when deviating
alone from the current strategy. In particular, Erry (0) = 0
if and only if 0 is a Nash equilibrium; thus Erry (0) consti-
tutes a propose indication of convergence for sequence of
iterates seeking a Nash equilibrium. We bound this value in
our convergence analysis (see §4).

First-order methods and extrapolation. In convex
games, as the losses ¢; are (sub)differentiable, we may
solve (1) using first-order methods. We assume access to
the simultaneous gradient of the game

F2(Vily,...,Vul,)" €RY,

where we write V;¢; £ V:/;. It corresponds to the con-
catenation of the gradients of each player’s loss with respect
to its own parameters, and may be noisy. The losses ¢;
may be non-smooth, in which case the gradients V;¢; can
be replaced by any subgradients. Simultaneous gradient
descent, that explicitly discretizes the flow of the simultane-
ous gradient may converge slowly—e.g., in matrix games
with skew-symmetric payoff and noiseless gradient oracle,
convergence of the average iterate demands decreasing step-
sizes. The extra-gradient method (Korpelevich, 1976) pro-
vides better guarantees (Nemirovski, 2004; Juditsky et al.,
2011)—e.g., in the previous example, the step-size can re-
main constant. We build upon this method.

Extra-gradient consists in two steps: first, take a gradient
step to go to an extrapolated point. Then use the gradient at
the extrapolated point to perform a gradient step from the
original point: at iteration T,

(extrapolation) 0.11/2 = pelf, — v+ F(0;)],

(3)
HTJrl = Ppe [97' - ’YTF(97+1/2)]a

(update)

where pg|-] is the Euclidean projection onto the constraint
set O, i.e. polz] = argmingcq ||0 — z||3. This "cautious"
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approach allows to escape cycling orbits of the simultaneous
gradient flow, that may arise around equilibrium points with
skew-symmetric Hessians (see Fig. 1). The generalization
of extra-gradient to general Banach spaces equipped by
a Bregman divergence was introduced as the mirror-prox
algorithm (Nemirovski, 2004). The new convergence results
of §4 extend to the mirror setting (see §A.1). As recalled in
Table 1, Juditsky et al. (2011) provide rates of convergence
for the average iterate 0, = % Zf—:l 0. Those rates are
introduced for the equivalent variational inequality (VI)
problem, finding

6, € ©suchthat F(,) (A —6,) >0V O, (4)

where Ass. 1 ensures that the simultaneous gradient F' is a
monotone operator (see §A.2 for a review).

3.2. DSEG: Partial extrapolation and update for
extra-gradient

The proposed algorithms are theoretically analyzed in the
convex setting §4, and empirically validated in convex and
non-convex setting in §5.

Caveats of extra-gradient. In systems with large number
of players, an extra-gradient step may be computationally
expensive due to the high number of backward passes nec-
essary for gradient computations. Namely, at each iteration,
we are required to compute 2n gradients before performing
a first update. This is likely to be inefficient, as we could
use the first computed gradients to perform a first extrap-
olation or update. This remains true for games down to
two players. In a different setting, stochastic gradient de-
scent (Robbins & Monro, 1951) updates model parameters
before observing the whole data, assuming that partial ob-
servation is sufficient for progress in the optimization loop.
Similarly, in our setting, partial gradient observation should
be sufficient to perform extrapolation and updates toward
the Nash equilibrium.

Player sampling. While standard extra-gradient performs
at each iteration two passes of player’s gradient computa-
tion, we therefore compute doubly-stochastic simultaneous
gradient estimates, where only the gradients of a random
subset of players are evaluated. This corresponds to evaluat-
ing a simultaneous gradient that is affected by two sources
of noise. We sample a mini-batch P of players of size b < n,
and compute the gradients for this mini-batch only. Further-
more, we assume that the gradients are noisy estimates, e.g.,
with noise coming from data sampling. We then compute
a doubly-stochastic simultaneous gradient estimate F as

F2((FD, . F)T ¢ RY where
’ 0g, otherwise ’

Algorithm 1 Doubly-stochastic extra-gradient.

1: Input: initial point 6 € RY, stepsizes (v )¢[y), mini-
batch size over the players b € [n].
2: With variance reduction (VR), R « F (6, [1,n]) as
in (5), i.e. the full simultaneous gradient.
3: forr=0,...,tdo
Sample mini-batches of players P, P’.
Compute FTJr% = F(6,,P) using (5) or VR
(Alg. 2).
Extrapolation step: 0,1 < pel[f- — v F, 1)
Compute F, | = F(HTJF% ,P’) using (5) or VR

A

Gradient step: 011 < po[0r — v+ Fri1].
Return 0; = >0 _ v 7' S0 .6,

A

Algorithm 2 Variance reduced estimate of the simultaneous
gradient with doubly-stochastic sampling

1: Input: point # € R?, mini-batch P, table of previous
gradient estimates R € R,
Compute F (6, P) as specified in equation (5).
for i € P do

Compute F@ « F@(9) + (1 — 2)RD

Update R « 2FO)(9) = g,(0)
Fori ¢ P,set F) « R,
Return estimate F = (F(1),

AR O Sl

...,F(”)),table R.

and g;(0) is a noisy unbiased estimate of V,¢;(6). The factor
n/b in (5) ensures that the doubly-stochastic simultaneous
gradient estimate is an unbiased estimator of the simulta-
neous gradient. Doubly-stochastic extra-gradient (DSEG)
replaces the full gradients in the update (3) by the oracle (5),
as detailed in Alg. 1.

Variance reduction for player noise. To obtain faster
rates in convex games with smooth losses, we propose to
compute a variance-reduced estimate of the gradient ora-
cle (5). This mitigates the noise due to player sampling.
Variance reduction is a technique known to accelerate con-
vergence under smoothness assumptions in similar settings.
While Palaniappan & Bach (2016); Iusem et al. (2017);
Chavdarova et al. (2019) apply variance reduction on the
noise coming from the gradient estimates, we apply it to the
noise coming from the sampling over the players. We im-
plement this idea in Alg. 2. We keep an estimate of V;¢; for
each player in a table R, which we use to compute unbiased
gradient estimates with lower variance, akin to the approach
of SAGA (Defazio et al., 2014) to reduce the variance of
data noise.

Player sampling strategies. For convergence guarantees
to hold, each player must have an equal probability of being
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sampled (equiprobable player sampling condition). Sam-
pling uniformly over b-subsets of [n] is a reasonable way to
fulfill this condition as all players have probability p = b/n
of being chosen.

As a strategy to accelerate convergence, we propose to cycle
over the n(n — 1) pairs of different players (with b = 1).
At each iteration, we extrapolate the first player of the pair
and update the second one. We shuffle the order of pairs
once the block has been entirely seen. This scheme bridges
extrapolation and alternated gradient descent: for GANS,
it corresponds to extrapolate the generator before updating
the discriminator, and vice-versa, cyclically. Although its
convergence is not guaranteed, cyclic sampling over players
is powerful for convex quadratic games (§5.1) and GANs

(85.2).

4. Convergence for convex games

We derive new rates for DSEG with random player sampling,
improving the analysis of Juditsky et al. (2011). Player sam-
pling can be seen as an extra source of noise in the gradient
oracle. Hence the results of Juditsky et al. on stochastic
extra-gradient guarantees the convergence of DSEG, as we
detail in Corollary 1. Unfortunately, the convergence rates
in this corollary do not predict any improvement of DSEG
over full extra-gradient. Our main theoretical contribution
is therefore a refinement of these rates for player-sampling
noise. Improvements are obtained both for non-smooth and
smooth losses, the latter using the proposed variance reduc-
tion approach. Our results predict better performance for
DSEG in the high-noise regime. Results are stated here
in Euclidean spaces for simplicity; they are proven in the
more general mirror setting in App. B. In the analysis, we
separately consider the two following assumptions on the
losses.

Assumption 2a (Non-smoothness). For each i €
[n], the loss ¢; has a bounded subgradient, namely
maxyeg, e, (o) |hlly < Giforall 0 € ©. In this case, we
also define the quantity G = /> ., G7/n.

Assumption 2b (Smoothness). For each i € |[n],

the loss {; is once-differentiable and L-smooth, Ii.e.
HVZEZ(G) — Vz&(&’)HQ < LH@ — 9’||2,f0r 9,0/ € 0.

Similar to Juditsky et al. (2011); Robbins & Monro (1951),
we assume unbiasedness of the gradient estimate and bound-
edness of the variance.
Assumption 3. For each player 1, the noisy gradient g; is
unbiased and has bounded variance:

Vo e o, Elgi(0)]=Vli0),

6
Ellgi(0) - Vit: @) < o®.

To compare DSEG to simple stochastic EG, we must take
into account the cost of a single iteration, that we assume

proportional to the number b of gradients to estimate at
each step. We therefore set k £ 2bt to be the number of
gradients estimates computed up to iteration ¢, and re-index
the sequence of iterate (ét)teN as (ék))keng. We give rates
with respect to k in the following propositions.

4.1. Slack rates derived from Juditsky et al.

Let us first recall the rates obtained by Juditsky et al. (2011)
with noisy gradients but no player sampling.

Theorem 1 (Adapted from Juditsky et al. (2011)). We con-
sider a convex n-player game where Ass. 2a and Ass. 3 hold.
We run Alg. 1 for t iterations without player sampling, thus
performing k = 2nt gradient evaluations. With optimal
constant stepsize, the expected Nash error verifies

E[Erra (1) < 14”%‘ o)

Assuming smoothness (Ass. 2b) and optimal stepsize,

. 3/2 2
E {ErrN(Qk)} < max {7(2[;:, 14ny/ 220 } . (B

Player sampling fits within the framework of noisy gradient
oracle (6), replacing the gradient estimates (g;);c[,) With
the estimates (F(%) )ic[n) from (5), and updating the variance
o2 accordingly. We thus derive the following corollary.

Corollary 1. We consider a convex n-player game where
Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with
equiprobable player sampling, thus performing k = 2bt
gradient evaluations. With optimal constant stepsize, the

expected Nash error verifies
Q/n
il LYe? 2) .
k (b o )

Assuming smoothness (Ass. 2b) and optimal stepsize,

~ QLn3/2 \/Q n
< 20)2 2
E[EY‘VN(QIC)}\O< k +n k'(bLQ +0’)).

E [ErrN(ék)] <O (n

The proof is in §B.1. The notation O(-) hides numerical
constants. Whether in the smooth or non-smooth case, the
upper-bounds from Corollary 1 do not predict any improve-
ment due to player sampling, as the factor before the gra-
dient size G or L) is increased, and the factor before the
noise variance ¢ remains constant.

4.2. Tighter rates using noise structure

Fortunately, a more cautious analysis allows to improve
these bounds, by taking into account the noise structure
induced by sampling in (5). We provide a new result in the
non-smooth case, proven in §B.3.
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Theorem 2. We consider a convex n-player game where
Ass. 2a and Ass. 3 hold. We run Alg. 1 for t iterations with
equiprobable player sampling, thus performing k = 2bt
gradient evaluations. With optimal constant stepsize, the
expected Nash error verifies

E [ErrN(ék)} <O (n % (G2 + z(,r?)) )]

Compared to Corollary 1, we obtain a factor \/% in front
of the noise term ﬁ, without changing the constant before
the gradient size G. We can thus expect faster convergence
with noisy gradients. (9) is tightest when sampling a single
player, i.e. when b = 1.

A similar improvement can be obtained with smooth losses
thanks to the variance reduction technique proposed in
Alg. 2. This is made clear in the following result, proven in
§B.4.

Theorem 3. We consider a convex n-player game where
Ass. 2a, Ass. 2b and Ass. 3 hold. We run Alg. 1 for t it-
erations with equiprobable player sampling (Alg. 2), thus
performing k = 2bt gradient evaluations. With optimal

constant stepsize, the expected Nash E [ErrN (ék)} error is
upper-bounded by

b [Q02 o o o[ n \?
O(\/;n T—FL(G +0°)n =y

(10)

The upper-bound (10) should be compared with the bound
of full extra-gradient (8). With player sampling, the constant
before the noise term (first term) is smaller by a factor \/% .
On the other hand, the gradient-size term scales as factor
(2)3/2. Since the noise term is O(ﬁ) and the gradient size

term is O( 37z ), for large k choosing low b is better. For
k — oo, the bound (10) is once again tightest by sampling
a random single player.

To sum up, doubly-stochastic extra-gradient convergence is
controlled with a better rate than stochastic extra-gradient
(EG) with non-smooth losses; with smooth losses, DSEG
exhibits a better dependency on the noise but worse de-
pendency on the gradient size. In the high noise regime,
asymptotically DSEG brings the same improvement of a

o

factor = for both smooth and

% before the constant
non-smooth problems.

Step-sizes. The stepsizes of the previous propositions are
assumed to be constant and are optimized knowing the ge-
ometry of the problem. They are explicit in App. B. As in
full extra-gradient, convergence can be guaranteed without
such knowledge using decreasing step-sizes. In experiments,

we perform a grid-search over stepsizes to obtain the best
results given a computational budget k.

5. Convex and non-convex applications

We show the performance of doubly-stochastic extra-
gradient in the setting of quadratic games, comparing dif-
ferent sampling schemes. We assess the speed and final
performance of DSEG in the practical context of GAN train-
ing. A PyTorch/Numpy package is attached.

5.1. Random convex quadratic games

We consider a game where n players can play d actions, with
payoffs provided by a matrix A € R"¥*"? an horizontal
stack of matrices A; € R(?*"?) (one for each player). The
loss function ¢; of each player is defined as its expected
payoff given the n mixed strategies (91,...,0"),i.e. Vi €
[n], V€ © = Ah x ... x Adn

, | o
00T, 0_) =01 A0+ N0 — Tl

where A is a regularization parameter that introduces non-
smoothness and pushes strategies to snap to the simplex
center. The positivity of A,i.e. #T A9 > 0 forall § € ©, is
equivalent to the convexity of the game.

Experiments. We sample A as the weighted sum of a ran-
dom symmetric positive definite matrix and a skew matrix.
We compare the convergence speeds of extra-gradient algo-
rithms, with or without player sampling. We vary three
parameters: the variance o of the noise in the gradient
oracle (we add a Gaussian noise on each gradient coor-
dinate), the non-smoothness A of the loss, and the skewness
of the matrix. We consider small games and large games
(n € {5,50}). We use the (simplex-adapted) mirror variant
of doubly-stochastic extra-gradient, and a constant stepsize,
selected among a grid (see App. D). We use variance reduc-
tion when A = 0 (smooth case). We also consider cyclic
sampling in our benchmarks, as described in §3.2.

Results. Fig. 2 compares the convergence speed of player-
sampled extra-gradient for the various settings and sampling
schemes. As predicted by Theorem 2 and 3, the regime of
convergence in 1/ vk in the presence of noise is unchanged
with player sampling. DSEG always brings a benefit in the
convergence constants (Fig. 2a-b), in particular for smooth
noisy problems (Fig. 2a center, Fig. 2b left). Most interest-
ingly, cyclic player selection improves upon random sam-
pling for small number of players (Fig. 2a).

Fig. 2¢ highlights the trade-offs in Theorem 3: as the noise
increase, the size of player batches should be reduced. Not
that for skew-games with many players (Fig. 2b col. 3), our
approach only becomes beneficial in the high-noise regime.
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Figure 2. Player sampled extra-gradient outperform vanilla extra-gradient for small noisy/non-noisy smooth/non-smooth games. Cyclic
sampling performs better than random sampling, especially for 5 players (a). Higher sampling ratio is beneficial in high noise regime (c),

Curves averaged over 5 games and 5 runs.
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Figure 3. Left: Spectral radii of operators for random 2-player
matrix games. Right: each radius is compared to the median radius
obtained for full extra-gradient, within each category of skewness
and conditioning of random payoff matrices. Cyclic sampling
lowers spectral radii and improve convergence rates.

As predicted in §4, full EG should be favored with noiseless
oracles (see App. D).

Spectral study of sampling schemes. The benefit of
cyclic sampling can be explained for simple quadratic
games. We consider a two-player quadratic game where
0;(0) = 00 A0 fori = 1,2, 6 = (6',62) is an uncon-
strained vector of R2*¢_ and gradients are noiseless. In this
setting, full EG and DSEG expected iterates follows a linear
recursion E[0y14] = A(E[0k]), where k is the number of
gradient evaluation and A is a linear “algorithm operator”,
computable in closed form. A lower spectral radius for A

yields a better convergence rate for (E[f]),, in light of
Gelfand (1941) formula—we compare spectral radii across
methods.

We sample random payoff matrices A of varying skewness
and condition number, and compare the spectral radius .4
associated to full EG, and DSEG with cyclic and random
player selection. As summarized in Fig. 3, player sam-
pling reduces the spectral radius of .4 on average; most
interestingly, the reduction is more important using cyclic
sampling. Spectral radii are not always in the same order
across methods, hinting that sampling can be harmful in the
worst cases. Yet cyclic sampling will perform best on av-
erage in this (simple) setting. We report details and further
figures in App. C.

5.2. Generative adversarial networks (GANs)

We evaluate the performance of the player sampling ap-
proach to train a generative model on CIFAR10 (Krizhevsky
& Hinton, 2009). We use the WGAN-GP loss (Gulrajani
et al., 2017), that defines a non-convex two-player game.
Our theoretical analysis indeed shows a 1/+/2 speed-up for
noisy monotonous 2-player games—the following suggests
that speed-up also arises in a non-convex setting. We com-
pare the full stochastic extra-gradient (SEG) approach advo-
cated by Gidel et al. (2019) to the cyclic sampling scheme
proposed in §3.2 (i.e. extra. D, upd. G, extra. G, upd. D).
We use the ResNet (He et al., 2016) architecture from Gidel
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Figure 4. Training curves and samples using doubly-stochastic extragradient on CIFAR10 with WGAN-GP losses, for the best learning
rates. Doubly-stochastic extrapolation allows faster and better training, most notably in term of Fréchet Inception Distance (10k). Curves

averaged over 5 runs.

et al. (2019), and select the best performing stepsizes among
a grid (see App. D). We use the Adam (Kingma & Ba, 2015)
refinement of extra-gradient (Gidel et al., 2019) for both the
baseline and proposed methods. The notion of functional
Nash error does not exist in the non-convex setting. We
estimate the convergence speed toward an equilibrium by
measuring a quality criterion for the generator. We therefore
evaluate the Inception Score (Salimans et al., 2016) and
Fréchet Inception Distance (FID, Heusel et al. (2017) along
training, and report their final values.

Results. We report training curves versus wall-clock time
in Fig. 4. Cyclic sampling allows faster and better training,
especially with respect to FID, which is more correlated
to human appreciation (Heusel et al., 2017). Fig. 5 (right)
compares our result to full extra-gradient with uniform av-
eraging. It shows substantial improvements in FID, with
results less sensitive to randomness. SEG itself slightly
outperforms optimistic mirror descent (Gidel et al., 2019;
Mertikopoulos et al., 2019).

Interpretation. Without extrapolation, alternated train-
ing is known to perform better than simultaneous updates
in WGAN-GP (Gulrajani et al., 2017). Full extrapolation
has been shown to perform similarly to alternated updates
(Gidel et al., 2019). Our approach combine extrapolation
with an alternated schedule. It thus performs better than
extrapolating with simultaneous updates. It remains true
across every learning rate we tested. Echoing our findings
of §5.1, deterministic sampling is crucial for performance,
as random player selection performs poorly (score 6.2 IS).

5.3. Mixtures of GANs

Finally, we consider a simple multi-player GAN setting,
akin to Ghosh et al. (2018), where n different genera-
tors (go, ); seeks to fool m different discriminators (f,, )j.
We minimize }_; {(go,, fp,) for all i, and maximize
> i ¢(g0;, fp,) for all j. Fake data is then sampled from
mixture y_. ; 8;—sge,(¢), where J is sampled uniformly
in [n] and € ~ N(0,I). We compare two methods: (i)
SEG extrapolates and updates all (g, )s, (f,,); at the same

FID
195 ] \ Full SEG  Method FID (50k)
—— DSEG SEG 19.69 + 1.53
100 1 DSEG 17.10+1.07
IS
501 SEG 8.26 + .16
o5 4, : , DSEG 8.38 + .06
G. iter 0 200000 400000

Figure 5. Left: Player sampling allows faster training of mixtures
of GANSs. Right: Player sampling trains better ResNet WGAN-GP.
FID and IS computed on 50k samples, averaged over 5 runs.

time; (ii) DSEG extrapolates and updates successive pairs
(90,, f,p,) alternating the 4-step updates from §5.2.

Results. We compare the training curves of both SEG and
DSEG in Fig. 5, for a range of learning rates. DSEG outper-
form SEG for all learning rates; more importantly, higher
learning rates can be used for DSEG, allowing for faster
training. DSEG is thus appealing for mixtures of GANs, that
are useful to mitigate mode collapse in generative modeling.
We report generated images in Appendix D.

6. Conclusion

We propose and analyse a doubly-stochastic extra-gradient
approach for finding Nash equilibria. According to our con-
vergence results, updating and extrapolating random sets of
players in extra-gradient brings speed-up in noisy and non-
smooth convex problems. Numerically, doubly-stochastic
extra-gradient indeed brings speed-ups in convex settings,
especially with noisy gradients. It brings speed-ups and
improve solutions when training non-convex GANs and
mixtures of GANSs, thus combining the benefits of alterna-
tion and extrapolation in adversarial training. Numerical
experiments show the importance of sampling schemes. We
take a first step towards understanding the good behavior
of cyclic player sampling through spectral analysis. We
foresee interesting developments using player sampling in
reinforcement learning: the policy gradients obtained us-
ing multi-agent actor critic methods (Lowe et al., 2017) are
noisy estimates, a setting in which it is beneficial.
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