
Inverse Active Sensing

A. Notes on Simulations
Context for Example 1. Propositions 4–5 and Equation 20
give a theoretical characterization of optimal active sens-
ing. The aim of this example is to visualize the geometry
of the forward problem in the simplex, illustrating these
various results through a non-trivial example. In addition
to the main points to note in the captions to Figures 3(a)–
(d), in this example we set ηa,θ1<ηa,θ2<ηa,θ3 and likewise
ηb,θ1<ηb,θ2<ηb,θ3 , where ηa,θ<ηb,θ for all θ (as is often the
case—for medical diagnosis, for instance—failing to make
a decision before the deadline is at least as bad as making
the incorrect decision); observe that this preference ordering
among the hypotheses is reflected in the termination regions
in Figure 3(c): The optimal strategy most readily commits
to θ3 since it is the most important to catch, whereas it can
afford to be surer of θ1 before committing to it. Finally,
note that Proposition 5 operates implicitly behind Figure
3(d): In this example, we set punary, qunary and pbinary, qbinary
such that the former are more powerful but more risky, and
the latter are less powerful but less risky, which induces a
surprise-suspense tradeoff; note that increasing the power
(or decreasing the risk) of unary tests would naturally ex-
pand the (inner) acquisition regions or λ1, λ2, λ3 relative
to λ12, λ23, λ13, and vice versa in the opposite direction.
(Moreover, the tradeoff in Equation 20 is similarly (but triv-
ially) implicit in Figure 3(a): The peak of the Q-factor for
decisions gravitates away from vertices with higher ηa,θ).

Context for Example 2. While Example 1 illustrates prop-
erties of the optimal Q-factors, Example 2 and Figure 3(e)–
(g) visualizes the optimal strategy in action (i.e. showing
typical belief trajectories) through an intuitive example from
medical diagnosis. Consider the diagnostic problem with
diseases θ1, θ2, θ3, θ4 arranged in a hierarchy as in Figure
3(e) such that each test λ probabilistically distinguishes be-
tween its child elements, which can be specific diseases,
groups of diseases, or even disease stages as in progressive
cognitive impairment (Jarrett et al., 2019); for real-world
analogies see for instance National Guideline Centre (2016);
National Center for Complementary & Integrative Health
(2017). We naturally expect that the optimal strategy nav-
igate down the decision-tree, starting first from high-level
tests, then onto low-level tests, before finally declaring spe-
cific diagnoses of diseases. Panel (f) shows a typical belief
trajectory for the optimal strategy; observe from its decision
behavior that it indeed successively narrows down the space
of hypotheses through the tree. Panel (g) additionally shows
the effect of uniformly decreasing the cost-sensitivity pa-
rameter ηc: as expected, the optimal strategy now affords to
“double-check” test results before committing to a branch.

Context for Example 3. Unlike the previous two (which
serve to illustrate our results for the forward problem), this
gives an archetypical example exercising the full framework

for IAS that we have been building towards. In this case, we
specifically use the problem of preoperative testing as a con-
crete setting, but more broadly we are simply demonstrating
the central capability of IAS—that is, in understanding pref-
erences from behavior: Given the decision-behavior of an
agent acting according to unknown preferences, can we
recover their preferences? To do so, here we perform in-
verse optimal active sensing on a simulated agent that in
fact behaves as κ = ∗ (i.e. the model matches the behavior);
in Example 5, we highlight the interpretive nature of IAS
through a more general example (where there is a mismatch).
First, we simulate a collection D of 300 decision episodes
for a Bayes-optimal softmax agent with access to a single
preoperative test for surgery-complicating comorbidities.
The agent is driven by ηa = (0.25, 0.75); that is, Type I
errors are taken more seriously than Type II errors—but this
is (of course) unknown from the IAS point of view, and the
pretext is that we wish to estimate ηa fromD. Complete IAS
(cf. Proposition 6) would yield an estimate for the full tuple
(κ, η, ρ); in Figure 4(a) we show dimensions of the result
for κ = ∗ relevant to this example. The MAP estimate is
computed as Equation 26, and the posterior as Algorithm 1.
For additional visual intuition, Figures 4(d)–(f) depict the
(log un-normalized) posterior probabilities in relation to
values of η and ρ in this example, and also verify numeri-
cally—through 10,000 random episodes—that the (Bayes-
optimal) strategy induced by the true parameter values is in
fact the strategy with the lowest average (ground-truth) risk.

Context for Example 4. Clearly IAS allows analyzing pref-
erence weights within a decision-agent (i.e. differential im-
portances)—that is our objective from the beginning. How-
ever, we are often also interested in comparing preference
weights across agents and/or populations. In the case of
healthcare, for instance, current diagnostic guidelines are
largely based only on consensus (Martin & Cifu, 2017), with
remarkable physician-, provider-, and population-level vari-
ability in clinical practice even among routine procedures
(Song et al., 2010), which may incur significant harms and
costs (Bock et al., 2016). This example illustrates the poten-
tial use of IAS in assessing such differences in behavior. As
a concrete setting, consider the phenomenon of prescription
bias w.r.t. two different diagnostic tests (λ1, λ2) for the same
disease. Using our timely decision-making framework, pre-
scription bias is naturally defined, simulated, and detected as
inequalities between ηc,λ for different λ. Ceteris paribus, we
simulate the presence of bias in an “individual” institution
of of interest (via 300 trajectories driven by cost-sensitivity
weights ηc,λ1<ηc,λ2); similarly, we simulate the absence
of bias in the broader “population” (via 1000 trajectories
driven by ηc,λ1

≈ηc,λ2
). (Two runs of) IAS would yield

estimates (κ, η, ρ) each for the individual and population pa-
rameters; in Figure 4(b) we show relevant dimensions of the
results for κ = ∗, where we observe the apparent deviation
of the individual’s preferences from that of the population.
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Context for Example 5. While Examples 3–4 show the
result of IAS with κ = ∗ on an agent that behaves as κ = ∗,
here we emphasize the interpretive nature of IAS for under-
standing decision-making behavior through a more general
example—where there is a mismatch. Of course, the (ob-
vious) caveat here—as in any parameter estimation prob-
lem—is that the mismatch cannot be too large. Clearly a
complete mismatch would yield nonsensical results in IAS:
consider a strategy that simply selects acquisitions and de-
cisions uniformly at random. In practice, however, while
there may be a range of (active sensing) decision-making
behaviors in the world, we generally expect that they be
(somewhat imperfect) approximations to the optimal strat-
egy. For instance, the acquisition behavior induced by the
greedy generalized Q-factor (Equation 23) can be seen as
a one-step approximation to Q∗λ where (apart from the soft
decision-threshold) V ∗ is simply replaced by Q̄. Figure
4(c) shows what happens when we interpret behavior (un-
beknownst to us) generated as κ = GL, in terms of the
effective preferences under κ = ∗—namely, that (ceteris
paribus) greedy look-ahead behavior driven by ηd,θ1<ηd,θ2
is roughly equivalent to η a,θ1 > η a,θ2 . This (perhaps ob-
vious) point is worth belaboring—that is, while decision
agents may not necessarily be optimal in practice, this has
little bearing on the fact that inverse optimal active sensing
can still be able to provide a common yardstick by which
different decision behaviors can be quantified and compared.

Computation. For all examples, agents are simulated with
inverse temperature ρ = 10. The precise setting is unimpor-
tant, and we observe that similar results obtain for an order
of magnitude larger or smaller; however, note that very large
values result in more deterministic behavior, which may not
be realistic (ρ =∞ gives fully-deterministic strategies), and
very small values result in more random behavior, which
may result in difficulties in parameter estimation (ρ = 0
gives strategies that are completely random). For MCMC, we
choose the lattice given by the union of Gη∩ [0, 1]d ∈ H and
Gρ ∈ R, where Gη .

= {x : xj is an integer multiple of r}
with r = 0.05 being our choice of resolution for the ele-
ments of η (and j being the index into elements of x), and
where Gρ .

= {0.01, 0.03, ..., 30, 100} is the set of roughly
(logarithmically) uniformly-spaced values for ρ. Note that
restricting the values of η to [0, 1] by itself involves no loss
of expressivity, since different values of ρ are equivalent to a
scaling of theQ-factors, which (by linearity of expectations)
is equivalent to a scaling of all elements of η. What does
have an effect on expressivity is the choice of resolution
r; now, our goal is to understand the relative magnitudes
of preference weights underlying decision behaviors, and
setting r = 0.05 with the [0, 1] bounds means that we can al-
ready represent relative importance weights taking on values
up to a maximum of 20 times each another. (In practice, if
IAS still returns estimates with elements at opposing bound-

aries of the lattice, this may indicate that we need to further
increase the resolution—e.g. by setting r = 0.01, which
would allow representing relative importance weights up to
100 times one another). For each inverse example, the pos-
terior distributions (using uniform priors) are generated as
1000 samples; with 300 initial “burn-in” samples discarded.

Modeling Priors. We briefly mention here a point for (more
applied) future work. In this paper we focus on develop-
ing a theoretical framework and demonstrating archetypical
examples for modeling and understanding timely decision-
making behavior. Therefore we do not concern ourselves
with the (separate but related) problem of obtaining or mod-
eling the priors µ0 themselves. Recall from Section 2.1 that
we simply take it that µ0 for a given problem instance is
available from an agent’s experience, medical literature, etc.
(Again, however, bear in mind the interpretive nature of
IAS: we are not effectively assuming that decision-makers
themselves possess such exact and common knowledge). In
our numerical examples, we simulate episodes for D with
µ0 uniformly randomly scattered throughout the simplex. In
practical applications with real-world input data, we proba-
bly wish to model µ0 based on additional input (clearly, hav-
ing a single constant prior may not provide nearly enough
variation for meaningful estimation of preference weights).
Any such model necessarily depends on the specific context;
however, while we defer this topic to future work with a
more applied focus, we note that in many cases existing
domain-specific models (such as those in medicine) can be
more or less adapted for this purpose. See Petousis et al.
(2018) for an example where such models are deployed for
modeling initial beliefs also in an inverse setting (although
with a very different approach, detailed in the next section).
In the context of medical diagnosis, for instance, one can
consider a rich literature of feature-based models (Freed-
man et al., 2005), including the widely used and validated
Tammemägi and Gail risk models (Tammemägi et al., 2013;
Gail, 2011; Smedley et al., 2011) for lung cancer and breast
cancer, which can consider a variety of baseline features
such as age, race, body mass, smoking status, family history,
and previous biopsies in generating accurate priors for use.

B. Related Work
In this paper, we develop an expressive theoretical frame-
work for evidence-based decision-making under time pres-
sure, and illustrate how it enables modeling and understand-
ing decision behavior via optimal and inverse active sens-
ing. As such, it lends itself to contextualization within
broader notions of both the forward and inverse problem
settings. While relevant works have been noted throughout
the manuscript, here we provide a more detailed overview.

Active Sensing. In the broadest sense, active sensing refers
to the general process of directing one’s attention towards ex-
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Table 4. Comparison with related work in sequential analysis. Viewed from the perspective of sequential analysis, our decision problem
can be framed as one of active multiple-hypothesis testing via adaptive and sequential sensing in the presence stochastic, endogenous, and
context-dependent time pressure. An exemplary work is shown for each category. Importantly, we focus on the significance of subjective
preferences, and develop a most general framework accommodating both forward (i.e. modeling) & inverse (i.e. understanding) problems.

Literature Acquisition Decision Strategy Evidence Costs Horizon Deadline Problem

Wald et al. (1948) Passive Binary - Sequential Fixed No - Forward
Blahut (1974) Passive Binary - Batch Fixed No - Forward
Bertsekas et al. (1995) Passive Binary - Sequential Fixed Fixed External Forward
Frazier et al. (2008) Passive Binary - Sequential Fixed Stochastic External Forward
Lorden (1977) Passive Multiple - Sequential Fixed No - Forward
Tuncel (2005) Passive Multiple - Batch Fixed No - Forward
Dayanik & Yu (2013) Passive Multiple - Sequential Fixed Stochastic External Forward
Polyanskiy & Verdu (2011) Active Binary Fixed Sequential Fixed No - Forward
Hayashi (2009) Active Binary Adaptive Batch Fixed No - Forward
Naghshvar & Javidi (2011) Active Binary Adaptive Sequential Fixed No - Forward
Nitinawarat et al. (2013) Active Multiple Fixed Batch Fixed No - Forward
Atia & Veeravalli (2012) Active Multiple Adaptive Batch Fixed No - Forward
Naghshvar et al. (2013) Active Multiple Adaptive Sequential Fixed No - Forward

(Ours) Active Multiple Adaptive Sequential Differential Stochastic Endogenous Forward+Inverse

tracting task-relevant information through interaction with
the world (Yang et al., 2018). This broad notion of inten-
tional information gathering has been applied in various set-
tings such as multi-view learning (Yu et al., 2009), sensory
processing (Schroeder et al., 2010), personalized screen-
ing (Ahuja et al., 2017), time-series prediction (Yoon et al.,
2018), and black-box classification (Janisch et al., 2019).
While most applications focus on crafting function approx-
imators to optimize performance on the downstream task,
our focus is instead in developing an expressive framework
for modeling and understanding the decision process itself.

Timely Decision-Making. In particular, we study active sens-
ing for the general problem of timely decision-making—that
is, the goal-directed task of selecting which acquisitions to
make, when to stop gathering information, and what de-
cision to ultimately settle on. As such, it is related to the
sequential identification problem in statistics (Naghshvar
et al., 2013), neuroscience (Ahmad & Yu, 2013), and eco-
nomics (Augenblick & Rabin, 2018)—where a hypothesis is
selected following observations of relevant evidence. Start-
ing with the seminal work on binary hypothesis testing
(Wald et al., 1948), a variety of studies have aimed to char-
acterize a range of heuristic and/or optimal strategies, with
such extensions as deadline pressure (Frazier et al., 2008),
incorporating active choice (Castro & Nowak, 2009), and
comparisons of behavioral strategies (Ahmad & Yu, 2013).
We emphasize the goal-directed nature of active sensing in
general (and our timely decision-making setting): this is
in contrast to pure exploration and surveillance problems,
which do not involve a specific task (the decision problem).

Generalized Setting. Several key distinctions warrant spe-
cial attention (see Table 4). We consider the most flexible
decision-making setting: (1) acquisitions are active—i.e.
involving choices among multiple competing sensory op-

tions; (2) strategies are adaptive—i.e. admitting context-
dependent choices determined on the fly; and (3) samples
are sequential—i.e. requiring a variable number of observa-
tions per the endogenous choice of stopping and issuing a de-
cision. These distinctions are critical—for instance, if sam-
pling were passive (e.g. single stream of observations), then
the task readily reduces to the well-studied problem of op-
timal stopping (Frazier et al., 2008; Dayanik & Yu, 2013).
Further, as motivated throughout, we additionally account
for (4) differential costs of acquisition and the presence of
(5) stochastic, endogenous, and context-dependent time pres-
sure. Perhaps most importantly, we accommodate modeling
and understanding (6) subjective preferences in decision
behavior, and uniquely focus on both forward and inverse
problems in our active sensing framework. Table 4 sets out
a comparison with related work in sequential analysis in
general, and Table 2 specifically as pertains timely decision-
making. In this view, our work develops a most generalized
framework to analyze both optimal and inverse problems.

Inverse Active Sensing. For the inverse direction, we ap-
proach the problem from an inverse optimization perspective.
In general, IO turns optimization problems on their heads:
Given (one or more) solutions to some problem, the goal
is to infer (parameters of) the objective function (Ahuja &
Orlin, 2001). IO has been applied to a broad range of under-
lying problems, including inverse linear (Dempe & Lohse,
2006) and integer (Schaefer, 2009) programming, inverse
convex optimization (Keshavarz et al., 2011), inverse conic
programming (Iyengar & Kang, 2005), and any manner of
inverse combinatorial optimization problems (Heuberger,
2004). Table 3 shows inverse (optimal) active sensing along-
side example formulations for some classic IO applications.

Multiple Observations. In particular, inverse active sensing
can be interpreted as a form of data-driven IO with multiple
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Table 5. Summary comparison of IAS and IRL. Although the two classes of IO problems share superficial resemblance from the perspective
of inverse learning from multiple observations, they have vastly different goals and multiple crucial distinctions. In particular, while
learning medical diagnosis behavior can be alternatively cast in IRL as a generic apprenticeship problem, our proposed IAS framework is
much better suited for modeling and understanding the decision process itself in timely decision-making settings. 1 Petousis et al. (2018).

Approach Markov
Process

Stopping
Time

Behavior
Parameters

Modeling
Acquisitions

Modeling
Decisions

Time
Pressure

Parameters
Interpretable

Downstream
Goal

Accuracy
of Decision

IRL
(Petousis)1

States with
Transitions Fixed Per-State

Rewards Yes No No No Apprentice-
ship

Objective,
Imposed

IAS
(Ours)

Posterior
& Survival

Stochastic,
Endogenous

Risk-based
Preferences Yes Yes Yes Yes Understan-

ding
Subjective,

Learned

observations (of solutions). Methods for data-driven IO are
increasingly relevant with the exponentially growing avail-
ability of electronic patient data (Jarrett & van der Schaar,
2020), and have been studied as pertains to imperfect in-
formation (Esfahani et al., 2018) and noisy observations
(Aswani et al., 2018), as well as using online learning (Bär-
mann et al., 2017; Dong et al., 2018). Now, a popular ap-
plication of this paradigm is inverse reinforcement learning
(“IRL”), which deals with inferring the reward function for a
reinforcement learning agent (Abbeel & Ng, 2004; Ziebart
et al., 2008). Although IRL may appear to bear resemblance
to IAS, they have vastly different goals and a number of
crucial distinctions. These are best highlighted by direct
comparison with Petousis et al. (2018), which applies IRL
for apprenticeship of expert cancer screening behavior (see
Table 5). In the first instance, (1) the typical goal of IRL
lies in apprenticeship; to that end, the central concern is
in replicating some notion of (“true”) performance, using
(potentially black-box) reward functions as an intermediary
to parameterize behavior. In contrast, in IAS the goal lies
in modeling and understanding the decision process itself
(in timely decision-making settings); to that end, the central
concern is in recovering a (transparent) description of an
agent’s (subjective) preferences. This distinction becomes
apparent in a number of aspects that render IRL unsuitable
for our purposes. An immediate difference lies in (2) the
nature of the Markov process in question: Recall that our
formulation tracks a posterior process (cf. Proposition 1)
over the hypothesis space, with survival itself is informative
(cf. Proposition 2). Applying the IRL formulation instead as
in Petousis et al. (2018), the “state space” is taken to be the
space of hypotheses; the Markov process tracks where the
agent him-/herself is located within the hypothesis space,
and the “transitions” model the agent probabilistically mov-
ing between hypotheses over time. Now, (3) this abstraction
is inherently opaque: What does it mean for the agent to “be”
somewhere, and what how do the transition probabilities
inform our understanding of what an agent prioritizes? This
is fine simply as a mathematical intermediary to parameter-
ize behavior, but is by no means interpretable as a vehicle
for understanding behavior (see also point 5). In contrast,
IAS purely focuses on the specific task of estimating pref-
erences for understanding. Moreover, (4) these transition

parameters must be concomitantly learned, which adds an
(unnecessary) layer of approximation. Equally importantly,
(5) in the IRL formulation (as is typical), the observed behav-
ior is parameterized (and learned) in terms of per-state (and
action) rewards, which—in timely decision-making—are
not amenable to interpretation: What does it mean to reward
the agent for being “in” a given (intermediary) hypothesis at
each point in time? Again, this is fine purely as mathemati-
cal means to parameterize data (e.g. in their apprenticeship
setting), but makes less sense for our purposes of under-
standing. Instead, we directly parameterize behaviors as
importance weights assigned to inherently interpretable ele-
ments of the loss function (Equation 1). On a more technical
note—but perhaps even more significantly: (6) in our frame-
work, not only is the stopping time itself is an endogenous
variable, it is modeled as a conscious choice (cf. Propo-
sition 4); this is critical, since the ultimate decision itself
is in some sense the whole point. In contrast, the IRL for-
mulation (as is typical) employs fixed horizons, and does
not accommodate modeling the conscious choice of stop-
ping. In fact, to assess apprenticeship, the “accuracy” of
their learned behavior is quantified via the post-hoc choice
of equating some acquisitions to “positive” diagnoses (and
others to “negative” diagnoses); accuracies (e.g. Type I and
II errors) are therefore objective and imposed for evaluation.
In contrast, we seek to model the entire decision process
endogenously (not just acquisition behavior) via subjective
preferences over accuracies, deadlines, and costs—which
are learned. Last but not least is the technical distinction
that (7) the contractive property of the operator B is not
readily guaranteed in our setting (cf. Proposition 3); this
is in contrast with typical reinforcement learning (and IRL)
settings with fixed or infinite discounted horizons. Table 5
summarizes main distinctions between the problem classes.

Bayesian Approach. In terms of the objective, typical IO
settings are chiefly concerned with notions of identifiability
and optimality—that is, in recovering either some notion of
a “true” parameter, or in prescribing behavior that performs
“as well as” (or better than) observed solutions per the “true”
parameter (this obviously includes inverse reinforcement
learning). Instead, the focus of IAS is on describing and
understanding observed decision behavior; thus we embrace
non-identifiability—after all, we seek the range of strategies
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and preferences that can interpret or best explain behavior
(there is no single right answer). In this sense, we are more
aligned with Bayesian approaches to inverse problem set-
tings (Ye et al., 2019; Bardsley & Fox, 2012; Ramachandran
& Amir, 2007), which avoid confronting the convexity as-
sumptions of duality-based approaches (Bertsimas et al.,
2015; Keshavarz et al., 2011), nor the intractability of non-
convex solutions (Aswani et al., 2018; Esfahani et al., 2018).

Preference Elicitation. Finally, for completeness we note
that preference elicitation is a well-studied problem in com-
putational and social science: A range of works have ap-
proached the problem of (interactive) preference elicitation
using gaussian processes (Guo et al., 2010), Markov de-
cision processes (Wray & Zilberstein, 2016), and differ-
entiable networks (Vendrov et al., 2020). However, these
lines of work are very differet in that what is being mod-
eled (and optimized) is the process of explicitly reaching out
and querying user preferences efficiently—that is, the active
preference elicitation task itself constitutes the forward prob-
lem. In contrast, our focus is on implicitly understanding
strategies and preferences from observed decision behavior.

Relationship with POMDPs. Throughout this work, we
have taken a “bottom-up” approach in contextualizing our
developments—that is, by taking the basic case of sequen-
tial identification and “generalizing” from there, which
highlights structural results specific to the timely decision-
making problem. As its complement, it is equally possible
to take an opposite “top-down” approach—that is, by tak-
ing the generic POMDP formalism and “specializing” from
there. In particular, the timely decision-making problem can
be formulated as a POMDP with |Θ| decision states plus an
additional “terminal” state, with transitions from each of the
former into the latter, and self-loops for all states; stepwise
decomposing Equation 1 yields a “reward”. For instance, for
the decision tree from Example 2, the POMDP would con-
sist of the state space S = {θ0, θ1, θ2, θ3, θ4} where θ0 is
absorbing, action space A = {λ0, λ12, λ34, θ1, θ2, θ3, θ4},
emission kernels that correspond to generating distributions
{qθ,λ}θ∈Θ,λ∈Λ, and transition kernels to {pθ,λ}θ∈Θ,λ∈Λ.

In light of this correspondence to POMDPs, note that Propo-
sition 1 follows by construction, providing an alternative
proof. Note, however, that Propositions 2–5 are structural
results specific to active sensing for timely decision-making;
in particular, we note—analogously to the passive case of
Dayanik & Yu (2013)—that Proposition 2 is not free due to
the fact that this is neither a fixed-horizon nor discounted
problem; likewise, concavity of Q is similar to—but not
the same as—the classic PWLC result. That said, the fact
that the (forward) active sensing problem can be re-cast as a
POMDP does mean that we can use generic algorithms to ac-
complish the inner-loop ActiveSensing sub-procedure
in Algorithm 1 (bar minor technicalities in translation, such
as the fact that applying off-the-shelf POMDP solvers re-

quires the use of some nominal discount rate γ<1 to guar-
antee convergence). In our simulations, we verify using im-
plementations from http://pomdp.org/code/index.html and
http://github.com/AdaCompNUS/sarsop for our examples
that all results are virtually identical for any solver of choice,
such as PBVI and SARSOP (with γ nominally set to 0.99).

In the inverse direction, as noted above IAS (with optimal
κ) is likewise related to inverse optimal control; by casting
the forward problem generically as a POMDP, solving the
inverse optimal active sensing problem in our framework
can be interpreted by analogy to a model-based, Bayesian
solution to inverse reinforcement learning, but with partially-
observable states instead, and a reward function parameter-
ized by stepwise decomposing Equation 1; though beyond
the scope of this work, it is conceivable to derive “max-
margin”, “max-likelihood”, etc. versions of IAS (with op-
timal κ) in addition to the MAP and MCMC versions pre-
sented here. Finally, note that non-Bayes-optimal strategies
can alternatively be modeled by defining rewards as sums
of hand-crafted features, or by using “belief-dependent”
POMDPs. In the former case, however, this may require
more prior knowledge than we have access to, and—more
importantly—may not result in an interpretable functional
form amenable to comparing preferences across decision
agents (a key mission objective of ours); in the latter, note
that approximating the forward solution to belief-dependent
POMDPs in general requires that rewards be convex in
µ—which may be difficult to satisfy or verify in practice.

C. Proofs
Proposition 1 (Sufficient Statistic) Let νt

.
= 1{δ>t} de-

note the survival process, with initial value ν0 = 1. Then
the posterior process µt ∈ ∆(Θ) is given by the following:

µt = (1−νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+ νtM(λt−1, µt−1, ωt))νt−1
(27)

where the continual updateM : Λ×∆(Θ)×Ω→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

(1− pθ,λt−1
)qθ,λt−1

(ωt)µt−1(θ)∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

(28)

and where the terminal update M̄ : Λ×∆(Θ)→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

pθ,λt−1
µt−1(θ)/

∑
θ′∈Θpθ′,λt−1

µt−1(θ′) (29)

Moreover, the sequence (µt, νt)
∞
t=0 is a controlled Markov

process, where the control inputs are the acquisitions λt.

Proof. For M̄ , we want that θ be assigned the probability:

Pp,q{θ|λt−1, µt−1, νt−1 = 1, νt = 0} (30)

=
Pp,q{θ, νt = 0|λt−1, µt−1, νt−1 = 1}
Pp,q{νt = 0|λt−1, µt−1, νt−1 = 1} (31)

http://pomdp.org/code/index.html
http://github.com/AdaCompNUS/sarsop
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=
Pp{νt = 0|θ, λt−1, νt−1 = 1}µt−1(θ)∑
θ′∈Θ Pp{νt = 0|θ, λt−1, νt−1 = 1}µt−1(θ)

(32)

=
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
(33)

For M , we want that θ be assigned the probability:

Pp,q{θ|λt−1, µt−1, νt = 1, ωt} (34)

=
Pp,q{θ, νt = 1, ωt|λt−1, µt−1, νt−1 = 1}
Pp,q{νt = 1, ωt|λt−1, µt−1, νt−1 = 1} (35)

=Pp{θ, νt = 1|λt−1, µt−1, νt−1 = 1} · Pq{ωt|θ,
λt−1, νt = 1}/∑θ′∈Θ(Pp{θ′, νt = 1|λt−1,

µt−1, νt−1 = 1}Pq{ωt|θ′, λt−1, νt = 1}) (36)
=Pp{νt = 1|θ, λt−1, νt−1 = 1} · Pq{ωt|θ,
λt−1, νt = 1}µt−1(θ)/

∑
θ′∈ΘPp{νt = 1|θ,

λt−1, νt−1 = 1}Pq{ωt|θ′, λt−1, νt = 1}µt−1(θ) (37)

=
(1− pθ,λt−1)qθ,λt−1(ωt)µt−1(θ)∑

θ′∈Θ(1− pθ′,λt−1)qθ′,λt−1(ωt)µt−1(θ′)
(38)

where we used P{θ|λt−1, µt−1, νt−1 = 1} = µt−1(θ). To
show this is a controlled Markov process, first note that:

Pp,q{µt|λt−1, µt−1, νt−1, νt} (39)
=(1− νt−1)Pp{µt|λt−1, µt−1, νt−1 = 0, νt = 0}

+ ((1− νt)Pp{µt|λt−1, µt−1, νt−1 = 1, νt = 0}
+ νtPp,q{µt|λt−1, µt−1, νt = 1})νt−1 (40)

=(1− νt−1)1{µt=µt−1}
+ ((1− νt)1{µt=M̄(λt−1,µt−1)}

+ νt
Pp,q{µt, νt = 1|λt−1, µt−1, νt−1 = 1}

Pp{νt = 1|λt−1, µt−1, νt−1 = 1}
)νt−1 (41)

=(1− νt−1)1{µt=µt−1}
+ ((1− νt)1{µt=M̄(λt−1,µt−1)}
+ νt

∑
ω′t∈Ω(1{µt=M(λt−1,µt−1,ω′t)}

·
∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
))νt−1 (42)

Then the joint probability of the tuple is given by:

Pp,q{µt, νt|λt−1, µt−1, νt−1} (43)
=Pp,q{µt|λt−1, µt−1, νt−1, νt}
· Pp{νt|λt−1, µt−1, νt−1} (44)

=(1− νt−1)1{µt=µt−1} + ((1− νt)
· 1{µt=M̄(λt−1,µt−1)}

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

+ νt
∑
ω′t∈Ω(1{µt=M(λt−1,µt−1,ω′t)} ·∑

θ′∈Θ(1− pθ′,λt−1
)qθ′,λt−1

(ωt)µt−1(θ′)))νt−1 (45)

and for any f : ∆(Θ)× {0, 1} → R+ we have:

Ep,q[f(µt, νt)|λt−1, µt−1, νt−1] (46)
=Ep,q[(1− νt−1)f(µt−1, 0)

+ ((1− νt)f(M̄(λt−1, µt−1), 0) + νt ·
f(M(λt−1, µt−1, ωt), 1))νt−1|λt−1, µt−1, νt−1] (47)

=(1− νt−1)f(µt−1, 0) + (f(M̄(λt−1, µt−1), 0)

·∑θ′∈Θpθ′,λt−1µt−1(θ′)

+
∑
ω′t∈Ω(f(M(λt−1, µt−1, ωt), 1) ·∑

θ′∈Θ(1− pθ′,λt−1)qθ′,λt−1(ωt)µt−1(θ′)))νt−1 (48)

where we used the fact that Pp{νt = 1|λt−1, µt−1, νt−1 =
1} = 1 −∑θ′∈Θpθ′,λt−1

µt−1(θ′) , that Pp{νt = 0|λt−1,
µt−1, νt−1 = 1} =

∑
θ′∈Θpθ′,λt−1

µt−1(θ′). Likewise, it
is also trivial to see that Pp{νt = 0|λt−1, µt−1, νt−1 =
0} = 1, as well as Pp{νt = 1|λt−1, µt−1, νt−1 = 0} = 0.

Proposition 2 (Active and Passive Information) The in-
formation gleaned from (costly) acquisitions and (costless)
observations of survival can be uniquely decomposed as:

µt = µ̃t + αt + βt (49)

where µ̃t is a martingale that captures information obtained
from the (actively) acquired results, the (continual) compen-
sator αt = A(µt−1, λt−1, νt−1, νt) (passively) incorporates
the bias from the ongoing process survival (where α0 = 0):
αt(θ) = αt−1(θ)− µt−1(θ)νt−1νt

· (pθ,λt−1 − p̄µt,λt−1)/(1− p̄µt,λt−1)

(50)

and βt = B(µt−1, λt−1, νt−1, νt) is the (terminal) compen-
sator that analogously incorporates the bias from process
stoppage (where β0 = 0)—if the deadline were breached:

βt(θ) = βt−1(θ) + µt−1(θ)νt−1(1− νt)
· (pθ,λt−1

− p̄µt,λt−1
)/p̄µt,λt−1

(51)

where for brevity we denote the weighted average posterior
probability of failure p̄µt,λt−1

.
=
∑
θ′∈Θpθ′,λt−1

µt−1(θ′).

Proof. First, writing out the expectation:

Ep,q[µt|λt−1, µt−1, νt−1, νt] (52)
=Ep,q[(1− νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+νtM(λt−1, µt−1, ωt))νt−1|λt−1, µt−1, νt−1, νt] (53)
=(1− νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+ νt
∑
ω′t∈Ω(M(λt−1, µt−1, ω

′
t)

·
∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

1−∑θ′∈Θpθ′,λt−1
µt−1(θ′)

))νt−1 (54)

Then for element θ, this is equal to:

(1− νt−1)µt−1 + ((1− νt)
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)

+ νt
∑
ω′t∈Ω

(1− pθ,λt−1
)qθ,λt−1

(ωt)µt−1(θ)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
)νt−1 (55)

= µt−1 + ((1− νt)
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
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+ νt
(1− pθ,λt−1)µt−1(θ)

1−∑θ′∈Θpθ′,λt−1
µt−1(θ′)

− µt−1)νt−1 (56)

= µt−1 + ((1− νt)

·
pθ,λt−1 −

∑
θ′∈Θ

pθ′,λt−1µt−1(θ′)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
µt−1(θ)−

νt
pθ,λt−1

−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
µt−1(θ))νt−1 (57)

Therefore it is straightforward to define the functions αt =
A(µt−1, λt−1, νt−1, νt), βt = B(µt−1, λt−1, νt−1, νt), as
well as µ̃t = µt − αt − βt, where α0 = β0 = 0 and:

αt(θ) = αt−1(θ)− µt−1(θ)

· pθ,λt−1
−

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
νt−1νt (58)

βt(θ) = βt−1(θ) + µt−1(θ)

· pθ,λt−1
−

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
(1− νt)νt−1 (59)

Finally, for µ̃t observe that:

αt + βt =∑t
t′=1(Ep,q[µt′ − µt′−1|λt′−1, µt′−1, νt′−1, νt′ ]) (60)

therefore the difference between two steps is:

µ̃t − µ̃t−1 = µt − µt−1

− Ep,q[µt − µt−1|λt−1, µt−1, νt−1, νt] (61)

hence—taking expectations—we can write:

Ep,q[µ̃t − µ̃t−1|λt−1, µt−1, νt−1] = 0 (62)
⇒ Ep,q[µ̃t|λt−1, µt−1, νt−1] = µ̃t−1 (63)

Proposition 3 (Optimal Value) The optimal value func-
tion V ∗(µt, νt; η) is a fixed point of the operator B defined
over the space of functions V ∈ R∆(Θ)×{0,1}

+
as follows:

(BV )(µt, νt; η) =

min{inf θ̂′∈ΘQ̄θ̂′(µt, νt; η), infλ′t∈ΛQλ′t(µt, νt; η)} (64)

where the (continual) Q-factors for acquisitions quantify
the risk-to-go upon performing acquisition λt, given by:

Qλt
(µt, νt; η) = (1− νt)V (µt, 0; η) + ηc,λt

cλt

+ νtEp,q[V (µt+1, νt+1; η)|λt, µt, νt = 1]
(65)

and the (terminal) Q-factors for decisions quantify the risk
upon settling on the final choice of decision θ̂, given by:

Q̄θ̂(µt, νt; η) = (1− νt)
∑
θ′∈Θηb,θ′µt(θ

′)
+ νt

∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′)
(66)

Moreover, the operator B is contractive, and the optimal
value function is therefore the unique fixed point admitted.

Proof. Each of the Q-factors for decisions is given by:

Q̄θ̂(µt, νt; η) (67)
.
=Ep,q[`(λ0:τ−1, τ, θ̂; η)|λ0:t−1, τ = t, θ̂, µt, νt]

−∑t−1
t′=0 ηc,λt′ cλt′ (68)

=Ep,q
[∑

θ′∈Θηa,θ′1{θ=θ′,θ 6=θ̂,τ<δ}

+
∑
θ′∈Θηb,θ′1{θ=θ′,τ=δ}

+
∑τ−1
t′=0 ηc,λt′ cλt′ |λ0:t−1, τ = t, θ̂, µt, νt

]
−∑t−1

t′=0 ηc,λt′ cλt′ (69)

=Ep,q
[∑

θ′∈Θηa,θ′1{θ=θ′,θ 6=θ̂,t<δ}

+
∑
θ′∈Θηb,θ′1{θ=θ′,t=δ}|θ̂, µt, νt

]
(70)

=νt
∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′)

+ (1− νt)
∑
θ′∈Θηb,θ′µt(θ

′) (71)

For acquisitions, first observe that:

Qλt(µt, νt; η) (72)
.
=Ep,q[V (µt+1, νt+1; η)|λt, µt, νt] + ηc,λtcλt (73)
=(1− νt)Ep,q[V (µt+1, νt+1; η)|λt, µt, νt = 0]

+ Ep,q[V (µt+1, νt+1; η)|λt, µt, νt = 1]νt

+ ηc,λtcλt (74)
=(1− νt)V (µt, 0; η) + ηc,λtcλt

+ (Ep,q[V ((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1])νt (75)

For the expectation term:

Ep,q[V ((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1] (76)
=
∑
ω′t+1∈Ω(Pp,q{νt+1 = 1, ωt+1|λt, µt, νt = 1}
· V (M(λt, µt, ωt+1), 1; η))+

Pp{νt+1 = 0|λt, µt, νt = 1}V (M̄(λt, µt), 0; η) (77)
=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(Pp{θ′, νt+1 = 1|λt, µt, νt = 1}
· Pq{ωt+1|θ′, λt, νt+1 = 1}))+
Pp{νt+1 = 0|λt, µt, νt = 1}V (M̄(λt, µt), 0; η) (78)

=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(Pp{νt+1 = 1|θ, λt, νt = 1}
· Pq{ωt+1|λt, θ′, νt+1 = 1}µt(θ)))
+ V (M̄(λt, µt), 0; η)

∑
θ′∈Θpθ′,λt

µt(θ
′) (79)

=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′))

+ V (M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′) (80)

Therefore each Q-factor for acquisition is given by:

Qλt(µt, νt; η) = (1− νt)V (µt, 0; η) + ηc,λtcλt

+
(
V (M̄(λt, µt), 0; η)

∑
θ′∈Θpθ′,λtµt(θ

′)

+
∑
ω′t+1∈Ω(V (M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ω′t+1)µt(θ
′))
)
νt (81)
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For the contractive property, we want that ‖BV i −BV j‖ ≤
γ‖V i − V j‖ for some γ < 1, but where we do not have the
benefit of an explicit discount factor γ for this purpose. For
notational brevity, in the following we omit the functional
dependence of value functions and Q-factors on η:

|(BV i)(µt, νt)− (BV j)(µt, νt)| (82)

= |min{inf θ̂′∈ΘQ̄
i
θ̂′

(µt, νt), infλ′t∈ΛQ
i
λ′t

(µt, νt)}
−min{inf θ̂′∈ΘQ̄

j

θ̂′
(µt, νt), infλ′t∈ΛQ

j
λ′t

(µt, νt)}| (83)

= |min{inf θ̂∈Θ(νt
∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′) + (1− νt)
·∑θ′∈Θηb,θ′µt(θ

′)), infλ′t∈Λ((1− νt)V i(µt, 0)

+
(∑

ω′t+1∈Ω(V i(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V i(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt

+ ηc,λ′tcλ′t)}
−min{inf θ̂∈Θ(νt

∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′) + (1− νt)
·∑θ′∈Θηb,θ′µt(θ

′)), infλ′t∈Λ((1− νt)V j(µt, 0)

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt

+ ηc,λ′tcλ′t)}| (84)

≤|infλ′t∈Λ((1− νt)V i(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V i(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V i(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)

− infλ′t∈Λ((1− νt)V j(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)| (85)

= |(1− νt)V i(µt, 0) + ηc,λ∗t cλ∗t

+
(∑

ω′t+1∈Ω(V i(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

+ V i(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt

− infλ′t∈Λ((1− νt)V j(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)| (86)

≤|(1− νt)V i(µt, 0) + ηc,λ∗t cλ∗t

+
(∑

ω′t+1∈Ω(V i(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

+ V i(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt

− (1− νt)V j(µt, 0)− ηc,λ∗t cλ∗t

−
(∑

ω′t+1∈Ω(V j(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

− V j(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt| (87)

= |∑ω′t+1∈Ω((V i(M(λ∗t , µt, ωt+1), 1)

− V j(M(λ∗t , µt, ωt+1), 1))

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′)νt)| (88)

≤|(1− infθ′∈Θ,λ′∈Λpθ′,λ′)

·∑ω′t+1∈Ω((V i(M(λ∗t , µt, ωt+1), 1)

− V j(M(λ∗t , µt, ωt+1), 1))

·∑θ′∈Θqθ′,λ∗t (ωt+1)µt(θ
′)νt)| (89)

≤(1− infθ′∈Θ,λ′∈Λpθ′,λ′)

· supµ′t+1∈∆(Θ)|V i(µ′t+1, 1)− V j(µ′t+1, 1)| (90)

≤γ‖V i − V j‖ (91)

where in the fourth equality λ∗t
.
= arg infλ′t∈ΛQ

k
λ′t

(µt, νt)
in which k .

= arg infk′∈{i,j}infλ′t∈ΛQ
k′

λ′t
(µt, νt), and in the

last step γ .
= 1− infθ′∈Θ,λ′∈Λpθ′,λ′ < 1, and we also used

the fact that V (µt, 0) = Q̄θ̂(µt, 0) =
∑
θ′∈Θηb,θ′µt(θ

′).

For the uniqueness property, consider two such fixed points
V ∗ and V ′∗. But ‖V ∗−V ′∗‖ = ‖BV ∗−BV ′∗‖ ≤ γ‖V ∗−
V ′∗‖, therefore it must the case that ‖V ∗ − V ′∗‖ = 0.

Proposition 4 (Continuation and Termination) Denote
by mθ ∈ ∆(Θ) each vertex in the simplex, and let the
optimal aggregate Q-factor for continuation be given by:

Q∗(µt, νt; η)
.
= infλ′t∈ΛQ

∗
λ′t

(µt, νt; η) (92)

and likewise Q̄(µt, νt; η)
.
= inf θ̂′∈Θ Q̄θ̂′ (µt, νt; η). Then

Q∗ is a concave function with respect to µt, and moreover
takes on values strictly greater than Q̄ at every vertex mθ:

∀mθ : Q∗(mθ, νt; η) > Q̄(mθ, νt; η) (93)

Hence the termination set T is the (disjoint) union of |Θ|
convex regions delimited by the intersection of Q∗ and Q̄:

T (η) = {µt : Q∗(µt, νt; η) ≥ Q̄(µt, νt; η)} (94)

and contains each of the simplex vertices. Finally, the (pos-
sibly null) continuation set is its complement ∆(Θ) \ T .

Proof. We first show that V ∗ is concave. Since V ∗ is the
limit of successive approximations by application of B, we
simply want to show if V is concave that BV is then con-
cave. Suppose V is concave. Since BV is the minimum be-
tween inf θ̂′∈ΘQ̄θ̂′(µt, νt; η) and infλ′t∈ΛQλ′t(µt, νt; η) and
the former clearly concave, it remains to show that each
Qλt

in the latter is concave. This is obvious for νt = 0
since V (µt, 0) = Q̄θ̂(µt, 0) is concave. For νt = 1, we
want that

∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

∑
θ′∈Θ(1−
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pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)) be concave. Let υ ∈ (0, 1). We

similarly omit functional dependence on η for brevity:

υ
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ωt+1)µt(θ
′))

+ (1− υ)
∑
ω′t+1∈Ω(V (M(λt, µ

′
t, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′)) (95)

=
∑
ω′t+1∈Ω((υV (M(λt, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))

+ (1− υ)V (M(λt, µ
′
t, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′)

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′)))

· (υ∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1−υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))) (96)
≤∑ω′t+1∈Ω(V ((υM(λt, µt, ωt+1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1− υ)M(λt, µ
′
t, ωt+1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′))

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′)), 1)

· (υ∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1−υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))) (97)
=
∑
ω′t+1∈Ω(V (M(υµt + (1− υ)µ′t))

·∑θ′∈Θ((1− pθ′,λt)qθ′,λt(ωt+1)

· (υµt(θ′) + (1− υ)µ′t(θ
′)))) (98)

Now, V ∗ is simply the limit of successive approximations
by application of B, so by induction V ∗ is concave. Finally,
each Q∗λt

and therefore Q∗ is concave since V ∗ is concave.

For the inequality, note if νt = 1 then Q̄θ̂ at each vertex
is simply zero for any choice of θ̂. But clearly Q∗λt

is at
least ηc,λtcλt for any choice of λt, so it must be true that
Q∗ > Q̄. Finally, consider the intersection (if any) of Q∗

and Q̄θ̂ when νt = 1, for any θ̂. Let µt, µ′t ∈ ∆(Θ) be
two points for which θ̂ = arg inf θ̂′∈ΘQ̄θ̂′(·, νt; η). Since
the former is concave and the latter is affine, we can write:

Q̄θ̂(υµt + (1− υ)µt, 1; η) (99)
=υQ̄θ̂(µt, 1; η) + (1− υ)Q̄θ̂(µt, 1; η) (100)
=υV ∗(µt, 1; η) + (1− υ)V ∗(µt, 1; η) (101)
≤V ∗(υµt + (1− υ)µt, 1; η) (102)
≤Q̄(υµt + (1− υ)µt, 1; η) (103)
≤Q̄θ̂(υµt + (1− υ)µt, 1; η) (104)

for υ ∈ (0, 1), hence the set Q̄θ̂ < Q∗ is convex. Finally,
the overall termination set T (η) is the union of |Θ| such
regions. For completeness, consider the other (trivial) case
where νt = 0; clearly Q∗λt

= Q̄+ ηc,λt
cλt

, so convexity is
automatic and there is no intersection (i.e. T (η) is empty).

Proposition 5 (Surprise and Suspense) When µt 6∈T (η),
the optimal acquisition directly trades off surprise and su-
spense (in addition to the immediate cost of acquisition):

λ∗t = arg supλt∈Λ h(It(λt), St(λt))− ηc,λt
cλt (105)

where h is increasing in It(λt) and St(λt), and the uncer-
tainty function for the information gain is taken as U = V ∗.

Proof. Each optimal Q-factor for acquisitions is given by:

Q∗λt
(µt, νt; η) (106)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (Ep,q[V ∗((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1])νt (107)
=(1− νt)V ∗(µt, 0; η) + ηc,λt

cλt

+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ω
′
t+1)µt(θ

′)))νt (108)

Note that the expectation term can also be expressed:

Ep,q[V ∗((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1] (109)
=Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1] + Pp{νt+1 = 0|λt, µt, νt = 1}
· V ∗(M̄(λt, µt), 0; η) (110)

So we can rewrite:∑
ω′t+1∈ΩPp,q{νt+1 = 1, ωt+1|λt, µt, νt = 1}
· V ∗(M(λt, µt, ωt+1), 1; η) (111)

=
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)) (112)

=Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1] (113)

Hence each Q-factor for acquisitions can be expressed:

Q∗λt
(µt, νt; η) (114)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ω
′
t+1)µt(θ

′)))νt (115)
=(1− νt)V ∗(µt, 0; η) + ηc,λtcλt
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+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+ Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1])νt (116)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (

∑
θ′∈Θηb,θ′pθ′,λtµt(θ

′)∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

∑
θ′∈Θpθ′,λt

µt(θ
′)

− (V ∗(µt, 1; η)− Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1]) + V ∗(µt, 1; η))νt (117)

=(1− νt)V ∗(µt, 0; η)− It(λt) + ηc,λtcλt

+ (

∑
θ′∈Θηb,θ′pθ′,λt

µt(θ
′)∑

θ′∈Θηb,θ′µt(θ′)

∑
θ′∈Θηb,θ′µt(θ

′)

+ V ∗(µt, 1; η))νt (118)
=(1− νt)V ∗(µt, 0; η)− It(λt) + ηc,λt

cλt

+ ((1− St(λt))
∑
θ′∈Θηb,θ′µt(θ

′)

+ V ∗(µt, 1; η))νt (119)

Consider νt = 1, and suppose µt ∈ T (η). Then:

Q∗λt
= V ∗(µt, 1; η)− It(λt)
− (St(λt)− 1)

∑
θ′∈Θηb,θ′µt(θ

′) + ηc,λt
cλt

(120)
= −h(It(λt), St(λt)) + ηc,λt

cλt
(121)

for some h increasing in It(λt) and St(λt), since other
terms do not depend on the choice of λt. Hence minimiz-
ing Q∗λt

is equivalent to maximizing h(It(λt), St(λt)) −
ηc,λt

cλt
. For completeness, consider also νt = 0. But

clearly T (η) is empty since Q∗λt
= Q̄+ ηc,λtcλt , therefore

µt 6∈ T (η) and there is no acquisition hence no tradeoff.

Proposition 6 (Strategy Posterior) The posterior P{π|D}
over P (Equation 22) satisfies the following proportionality:

P{πκρ (...; η)|D} ∝ P{κ}P{η|κ}P{ρ}
·∏N

n=1

∏τn−1
t=0 πκρ (λ̃n,t|µn,t, νn,t; η)

(122)

where µn,t is recursively computed via update M , νn,t=1

prior to stopping, and πκρ (...; η) is defined as in Equation 24.

Proof. First, the likelihood term is given by:

Pp,q{D|πκρ (...; η)} (123)

=Pp,q{(λ̃n,0:τ−1, ω̃n,1:τ )Nn=1|κ, η, ρ} (124)

=
∫

∆(Θ)

∏N
n=1

∏τ−1
t=0 (P{λ̃n,t|µn,t, νn,t, κ, η, ρ}

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t})
dP{µn,t+1|λ̃n,t, µn,t, ω̃n,t+1} (125)

=
∏N
n=1

∏τ−1
t=0 (P{λ̃n,t|µn,t =

M(λn,t−1, µn,t−1, ω̃n,t), νn,t, κ, η, ρ}

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t}) (126)

=
∏N
n=1

∏τ−1
t=0 π

κ
ρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t),

νn,t; η)Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t} (127)

where for third equality recall the Bayesian recognition
model (which involves no uncertainty), and the fourth equal-
ity is just our definition of a strategy. So the posterior is:

Pp,q{πκρ (...; η)|D} (128)

=
1

Z
P{κ}P{η|κ}P{ρ}∏N

n=1

∏τ−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t}) (129)

where the normalizing constant is given by:

Z =
∫
K
∫
H
∫
R
∏N
n=1

∏τ−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t})
dP{ρ}dP{η|κ}dP{κ} (130)

Note that the dynamics term does not depend on κ, η, or ρ
and cancels out from the numerator and denominator, so:

P{πκρ (...; η)|D} (131)

=
1

Z ′
P{κ}P{η|κ}P{ρ}∏N

n=1

∏τn−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)) (132)

Proposition 7 (Differentiable Posterior) Assuming diffe-
rentiable priors P{η |∗},P{ρ}, the posterior P{η, ρ|∗,D}
for optimal strategies is differentiable (almost everywhere).

Proof. First, we show each Q̃∗ ˜λn,t
(µn,t, νn,t; η) is concave in

η, for which it is sufficient to show each V ∗(µn,t, νn,t; η) is
concave. Let π be the Bayes-optimal strategy corresponding
to the point υη + (1− υ)η′ for υ ∈ (0, 1). Then:

V ∗(µn,t, νn,t; υη + (1− υ)η′) (133)
=V π(µn,t, νn,t; υη + (1− υ)η′) (134)
=υV π(µn,t, νn,t; η) + (1− υ)V π(µn,t, νn,t; η

′) (135)
≥υV ∗(µn,t, νn,t; η) + (1− υ)V ∗(µn,t, νn,t; η

′) (136)

where the second equality follows from linearity of expecta-
tions, and the inequality from the fact that any the optimal
strategy for η and η′ respectively is by definition at least
as good as any other strategy π (which in this case is only
known to be optimal for some other point υη + (1− υ)η′).
But for any function f : Rd → R for some finite d that is
concave, the set of points of non-differentiability is at most
countable. Therefore Q̃∗ ˜λn,t

(µn,t, νn,t; η) is differentiable
(almost everywhere). Now, the likelihood is a differentiable
in ρ and in each Q̃

∗
˜λn,t

(µn,t, νn,t; η), so the posterior is
differentiable (almost everywhere) in η and ρ as long as
the priors P{η |∗} and P{ρ} themselves are differentiable.


