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Abstract
The combination of inducing point methods with
stochastic variational inference has enabled ap-
proximate Gaussian Process (GP) inference on
large datasets. Unfortunately, the resulting predic-
tive distributions often exhibit substantially under-
estimated uncertainties. Notably, in the regression
case the predictive variance is typically dominated
by observation noise, yielding uncertainty esti-
mates that make little use of the input-dependent
function uncertainty that makes GP priors attrac-
tive. In this work we propose two simple methods
for scalable GP regression that address this issue
and thus yield substantially improved predictive
uncertainties. The first applies variational infer-
ence to FITC (Fully Independent Training Condi-
tional; Snelson et. al. 2006). The second bypasses
posterior approximations and instead directly tar-
gets the posterior predictive distribution. In an
extensive empirical comparison with a number of
alternative methods for scalable GP regression,
we find that the resulting predictive distributions
exhibit significantly better calibrated uncertainties
and higher log likelihoods—often by as much as
half a nat per datapoint.

1. Introduction
Machine learning is finding increasing use in applications
where autonomous decisions are driven by predictive mod-
els. For example, machine learning can be used to steer
dynamic load balancing in critical electrical systems, and
autonomous vehicles use machine learning algorithms to
detect and classify objects in unpredictable weather condi-
tions and decide whether to brake. As machine learning
models increasingly become deployed as components in
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Figure 1. We depict GP regressors fit to a heteroscedastic dataset
using two different inference algorithms. Solid lines depict mean
predictions and 2-σ uncertainty bands are in blue. In the lower
panel, fit with the PPGPR approach described in Sec. 3.2, signif-
icant use is made of input-dependent function uncertainty (dark
blue), while in the upper panel, fit with variational inference (see
Sec. 2.3.1), the predictive uncertainty is dominated by the observa-
tion noise σ2

obs (light blue) and the kernel scale σk is smaller.

larger decision making pipelines, it is essential that models
be able to reason about uncertainty and risk. Techniques
drawn from probabilistic machine learning offer the ability
to deal with these challenges by offering predictive models
with simple and interpretable probabilistic outputs.

Recent years have seen extensive use of variational inference
(Jordan et al., 1999) as a workhorse inference algorithm for a
variety of probabilistic models. The popularity of variational
inference has been been driven by a number of different
factors, including: i) its amenability to data subsampling
(Hoffman et al., 2013); ii) its applicability to black-box non-
conjugate models (Kingma and Welling, 2013; Rezende
et al., 2014); and iii) its suitability for GPU acceleration.

The many practical successes of variational inference
notwithstanding, it has long been recognized that varia-
tional inference often results in overconfident uncertainty
estimates.1 This problem can be especially acute for Gaus-
sian Process (GP) models (Bauer et al., 2016). In particular

1For example see Turner and Sahani (2011) for a discussion of
this point in the context of time series models.
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GP regressors fit with variational inference tend to appor-
tion most of the predictive variance to the input-independent
observation noise, making little use of the input-dependent
function uncertainty that makes GP priors attractive in the
first place (see Fig. 4 in Sec. 5 for empirical evidence). As
we explain in Sec. 3.3, this tendency can be understood
as resulting from the asymmetry with which variational
inference—through its reliance on Jensen’s inequality—
treats the various contributions to the uncertainty in output
space, in particular its asymmetric treatment of the observa-
tion noise.

In this work we propose two simple solutions that correct
this undesirable behavior. In the first we apply variational
inference to the well known FITC (Fully Independent Train-
ing Conditional; Snelson and Ghahramani (2006)) method
for sparse GP regression. In the second we directly target
the predictive distribution—bypassing posterior approxima-
tions entirely—to formulate an objective function that treats
the various contributions to predictive variance on an equal
footing. As we show empirically in Sec. 5, the predictive
distributions resulting from these two parametric approaches
to GP regression exhibit better calibrated uncertainties and
higher log likelihoods than those obtained with existing
methods for scalable GP regression.

2. Background
This section is organized as follows. In Sec. 2.1-2.2 we
review the basics of Gaussian Processes and inducing point
methods. In Sec. 2.3 we review various approaches to scal-
able GP inference that will serve as the baselines in our
experiments. In Sec. 2.4 we describe the predictive distri-
butions that result from these methods. Finally in Sec. 2.5
we review FITC (Snelson and Ghahramani, 2006)—an ap-
proach to sparse GP regression that achieves scalability by
suitably modifying the regression model—as it will serve as
one of the ingredients to the approach introduced in Sec. 3.1.
We also use this section to establish our notation.

2.1. Gaussian Process Regression

In probabilistic modeling Gaussian Processes offer powerful
non-parametric function priors that are useful in a variety
of regression and classification tasks (Rasmussen, 2003).
For a given input space Rd GPs are entirely specified by a
covariance function or kernel k : Rd × Rd → R and a mean
function µ : Rd → R. Different choices of µ and k allow the
modeler to encode prior information about the generative
process. In the prototypical case of univariate regression the
joint density takes the form2

p(y, f |X) = p(y|f , σ2
obs)p(f |X, k, µ) (1)

2In the following we will suppress dependence on the kernel k
and the mean function µ.

where y are the real-valued targets, f are the latent function
values, X = {xi}Ni=1 are the N inputs with xi ∈ Rd, and
σ2

obs is the variance of the Normal likelihood p(y|·). The
marginal likelihood takes the form

p(y|X) =

∫
df p(y|f , σ2

obs)p(f |X) (2)

Eqn. 2 can be computed analytically, but doing so is com-
putationally prohibitive for large datasets. This is because
the cost scales as O(N3) from the terms involving K−1

NN

and logdet KNN in Eqn. 2, where KNN = k(X,X). This
necessitates approximate methods when N is large.

2.2. Sparse Gaussian Processes

Over the past two decades significant progress has been
made in scaling Gaussian Process inference to large datasets.
The key technical innovation was the development of induc-
ing point methods (Snelson and Ghahramani, 2006; Titsias,
2009; Hensman et al., 2013), which we now review. By
introducing inducing variables u that depend on variational
parameters {zm}Mm=1, where M = dim(u)� N and with
each zm ∈ Rd, we augment the GP prior as follows:

p(f |X)→ p(f |u,X,Z)p(u|Z)

We then appeal to Jensen’s inequality and lower bound the
log joint density over the targets and inducing variables:

log p(y,u|X,Z) = log

∫
dfp(y|f)p(f |u)p(u)

≥ Ep(f |u) [log p(y|f) + log p(u)]

=

N∑
i=1

logN (yi|kTi K−1
MMu, σ2

obs)

− 1
2σ2

obs
TrK̃NN + log p(u)

(3)

where ki = k(xi,Z), KMM = k(Z,Z) and K̃NN is given
by

K̃NN = KNN −KNMK−1
MMKMN (4)

with KNM = KT
MN = k(X,Z). The essential characteris-

tics of Eqn. 3 are that: i) it replaces expensive computations
involving KNN with cheaper computations like K−1

MM that
scale as O(M3); and ii) it is amenable to data subsampling,
since the log likelihood and trace terms factorize as sums
over datapoints (yi,xi).

2.3. Approximate GP Inference

We now describe how Eqn. 3 can be used to construct a
variety of algorithms for scalable GP inference. We limit
ourselves to algorithms that satisfy two desiderata: i) sup-
port for data subsampling;3 and ii) the result of inference

3For this reason we do not consider the method in (Titsias,
2009). Note that all the inference algorithms that we describe
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is a compact artifact that enables fast predictions at test
time.4 The rest of this section is organized as follows.
In Sec. 2.3.1 we describe SVGP (Hensman et al., 2013)—
currently the most popular method for scalable GP inference.
In Sec. 2.3.2 we describe how Eqn. 3 can be leveraged in the
context of MAP (maximum a posteriori) inference. Then
in Sec. 2.3.3 we briefly review how ideas from robust varia-
tional inference can be applied to the GP setting.

2.3.1. SVGP

SVGP proceeds by introducing a multivariate Normal vari-
ational distribution q(u) = N (m,S). The parameters
m and S are optimized using the ELBO (evidence lower
bound), which is the expectation of Eqn. 3 w.r.t. q(u) plus
an entropy term term H[q(u)]:

Lsvgp = Eq(u) [log p(y,u|X,Z)] +H[q(u)]

=

N∑
i=1

logN (yi|kTi K−1
MMm, σ2

obs)− 1
2σ2

obs
Tr K̃NN

− 1
2σ2

obs

N∑
i=1

kTi K−1
MMSK−1

MMki −KL(q(u)|p(u))

(5)

where KL denotes the Kullback-Leibler divergence. Eqn. 5
can be rewritten more compactly as

Lsvgp =

N∑
i=1

{
logN (yi|µf (xi), σ

2
obs)−

σf (xi)
2

2σ2
obs

}
−KL(q(u)|p(u))

(6)

where µf (xi) is the predictive mean function given by

µf (xi) = kTi K−1
MMm (7)

and where σf (xi)2 ≡ Var[fi|xi] denotes the latent function
variance

σf (xi)
2 = K̃ii + kTi K−1

MMSK−1
MMki (8)

Lsvgp, which depends onm,S,Z, σobs and the various ker-
nel hyperparameters θker, can then be maximized with gradi-
ent methods. Below we refer to the resulting GP regression
method as SVGP. Note that throughout this work we con-
sider a variant of SVGP in which the KL divergence term in
Eqn. 6 is scaled by a positive constant βreg > 0.

2.3.2. MAP

In contrast to SVGP, which maintains a distribution over the
inducing variables u, MAP is a particle method in which

that make use of Eqn. 3 automatically inherit its support for data
subsampling.

4Consequently we do not consider MCMC algorithms like the
Stochastic gradient HMC algorithm explored in the context of deep
gaussian processes in (Havasi et al., 2018), and which also utilizes
Eqn. 3.

we directly optimize a single point u ∈ RM rather than
a distribution over u. In particular we simply maximize
Eqn. 3 evaluated at u. Note that the term log p(u) serves
as a regularizer. In the following we refer to this inference
procedure as MAP. To the best of our knowledge, it has not
been considered before in the sparse GP literature.

2.3.3. ROBUST GAUSSIAN PROCESSES

Knoblauch et al. (2019); Knoblauch (2019) consider mod-
ifications to the typical variational objective (e.g. Eqn. 5),
which consists of an expected log likelihood and a KL diver-
gence term. In particular, they replace the expected log like-
lihood loss with an alternative divergence like the gamma
divergence. This divergence raises the likelihood to a power

log p(y|f)→ p(y|f)γ−1 (9)

where typically γ ∈ (1.0, 1.1).5 Empirically Knoblauch
(2019) demonstrates that this modification can yield better
performance than SVGP on regression tasks. We refer to
this inference procedure as γ-Robust.

2.4. Predictive Distributions

All of the methods in Sec. 2.3 yield predictive distributions
of the same form. In particular, conditioned on the inducing
variable u the predictive distribution at input x∗ is given by

p(y∗|x∗,u) = N (y∗|kT∗K−1
MMu, K̃∗∗ + σ2

obs) (10)

Integrating out u ∼ N (m,S) then yields

p(y∗|x∗) = N (y∗|µf (x
∗), σf (x

∗)2 + σ2
obs) (11)

where µf (x
∗) is the predictive mean function in Eqn. 7 and

σf (x
∗)2 is the latent function variance in Eqn. 8. Note that

since MAP can be viewed as a degenerate limit of SVGP, the
predictive distribution for MAP can be obtained by taking
the limit S→ 0 in σf (x∗)2.

2.5. FITC

FITC (Fully Independent Training Conditional) (Snelson
and Ghahramani, 2006) is a method for sparse GP regression
that is formulated using a joint probability

p(y,u) =

N∏
i=1

p(yi|kTi K−1
MMu, K̃ii + σ2

obs)p(u) (12)

with a modified likelihood corresponding to the conditional
predictive distribution in Eqn. 10 (for additional interpre-
tations see Bauer et al. (2016)). As noted by Snelson and
Ghahramani (2006) this can be viewed as a standard re-
gression model with a particular form of parametric mean

5See (Cichocki and Amari, 2010) for a detailed discussion of
this and other divergences.
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Algorithm 1: Scalable GP Regression. All of the inference
algorithms we consider follow the same basic pattern and
only differ in the form of the objective function, e.g. Lsvgp

(Eqn. 6), Lvfitc (Eqn. 15) or Lppgpr (Eqn. 18). Similarly for
all methods the predictive distribution is given by Eqn. 11.
See Sec. B in the supplementary materials for a discussion
of the time and space complexity of each method.
Input: L – objective function

optim() – gradient-based optimizer
D = {xi, yi}Ni=1 – training data
m,S,Z, θker – initial parameters

Output: m,S,Z, θker.

while not converged do
Choose a random mini-batch Dmb ⊂ D
Form an unbiased estimate L̂(Dmb)

Gradient step: m,S,Z, θker ← optim
(
L̂(Dmb)

)
end

function and input-dependent observation noise. Integrat-
ing out the latent function values u results in a marginal
likelihood

p(y) = N (y|0,KNMK−1
MMKMN+diag(K̃NN )+σ2

obs1)
(13)

that can be used for training withO(NM2 +M3) computa-
tional complexity per gradient step. Note that the structure
of the covariance matrix in Eqn. 13 prevents mini-batch
training, limiting FITC to moderately large datasets.

3. Parametric Gaussian Process Regressors
Before introducing the two scalable methods for GP regres-
sion we consider in this work, we examine one of the salient
characteristics of the SVGP objective Eqn. 6 referred to in
the introduction. As discussed in Sec. 2.4, in SVGP the
predictive variance Var[y∗|x∗] at an input x∗ has two con-
tributions, one that is input-dependent, i.e. σf (x∗)2, and one
that is input-independent, i.e. σ2

obs:

Var[y∗|x∗] = σ2
obs + σf (x

∗)2

= σ2
obs + K̃∗∗ + kT∗K−1

MMSK−1
MMk∗

(14)

These two contributions appear asymmetrically in Eqn. 6;
in particular σf (xi)

2 does not appear in the data fit
term that results from the expected log likelihood
Eq(u) [log p(yi|xi,u)]. We expect this behavior to be unde-
sirable, since it leads to a mismatch between the training
objective and the predictive distribution used at test time.

In the following we introduce two approaches that address
this asymmetry. Crucially, unlike the inference strategies
outlined in Sec. 2.3, neither approach makes use of the
lower-bound energy surface in Eqn. 3. As we will see, the

first approach, Variational FITC, introduced in Sec. 3.1,
only partially removes the asymmetry, while the second
Parametric Predictive GP approach, introduced in Sec. 3.2,
restores full symmetry between the training objective and
the test time predictive distribution. For more discussion of
this point see Sec. 3.3.

3.1. Variational FITC

Variational FITC proceeds by applying variational infer-
ence to the FITC model defined in Eqn. 12. That is, we
introduce a multivariate Normal variational distribution
q(u) = N (m,S) and compute the ELBO:

Lvfitc = Eq(u) [log p(y,u|X,Z)] +H[q(u)]

=

N∑
i=1

logN (yi|µf (xi), K̃ii + σ2
obs)

− 1
2

N∑
i=1

kTi K−1
MMSK−1

MMki

K̃ii + σ2
obs

−KL(q(u)|p(u))

(15)

The parameters m, S, Z, as well as the observation noise
σobs and kernel hyperparameters θker can then be optimized
by maximizing Eqn. 15 using gradient methods (see Al-
gorithm 1). Note that since the inducing point locations
Z appear in the model, this is properly understood as a
parametric model.

We note that, unlike FITC, the objective in Eqn. 15 readily
supports mini-batch training, and is thus suitable for very
large datasets. Below we refer to this method as VFITC.

3.2. Parametric Predictive GP Regression

As we discuss further in the next section, using the VFITC
objective only partially addresses the asymmetric treatment
of σ2

obs and σf (x∗)2 in Eqn. 6. We now describe our second
approach to scalable GP regression, which is motivated by
the goal of restoring full symmetry between the training
objective and the test time predictive distribution. To accom-
plish this, we introduce a parametric GP regression model
formulated directly in terms of the family of predictive dis-
tributions given in Eqn. 11. We then introduce an objective
function based on the KL divergence between p(y|x) and
pdata(y|x)

L′ppgpr = −Epdata(x) KL(pdata(y|x)||p(y|x))
→ Epdata(y,x) [log p(y|x)]

(16)

where pdata(y,x) is the empirical distribution over training
data. In the second line we have dropped the entropy term
−Epdata(y|x) [log pdata(y|x)], since it is a constant w.r.t. to
the maximization problem. We obtain our final objective
function by adding an optional regularization term modu-
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lated by a positive constant βreg > 0:

Lppgpr = Epdata(y,x) [log p(y|x)]− βregKL(q(u)||p(u))
(17)

Note that apart from the regularization term, maximizing
this objective function corresponds to doing maximum like-
lihood estimation of a parametric model defined by p(y|x).
The objective in Eqn. 17 can be expanded as

Lppgpr =

N∑
i=1

logN (yi|µf (xi), σ
2
obs + σf (xi)

2)

− βregKL(q(u)||p(u))

(18)

where σf (xi)2 = Var[fi|xi] is the function variance defined
in Eqn. 8. The parametersm, S, Z, as well as the observa-
tion noise σobs and kernel hyperparameters θker can then be
optimized by maximizing Eqn. 17 using gradient methods
(see Algorithm 1). We refer to this model class as PPGPR.

When βreg = 1 the form of the objective in Eqn. 17 can
be motivated by a connection to Expectation Propagation
(Minka, 2004); see Sec. G in the supplementary materials
and (Li and Gal, 2017) for further discussion.6

3.3. Discussion

What are the implications of employing the scalable GP
regressors described in Sec. 3.1 and Sec. 3.2?7 It is helpful
to compare the objective functions in Eqn. 15 and Eqn. 17
to the SVGP objective in Eqn. 6. In Eqn. 15 we obtain a
data fit term

Lvfitc ⊃ − 1
2

1
σ2
obs+K̃ii

|yi − µf (xi)|2 (19)

while in Eqn. 18 we obtain a data fit term

Lppgpr ⊃ − 1
2

1
σ2
obs+σf (xi)2

|yi − µf (xi)|2 (20)

In contrast in SVGP the corresponding data fit term is

Lsvgp ⊃ − 1
2

1
σ2
obs
|yi − µf (xi)|2 (21)

with σ2
obs in the denominator. We reiterate that in all three

approaches the predictive variance Var[y∗|x∗] at an input
x∗ is given by the formula

Var[y∗|x∗] = σ2
obs + σf (x

∗)2 (22)

where σf (x∗)2 is the latent function variance at x∗ (see
Eqn. 8). Thus SVGP—and, more generally, variational in-
ference for any regression model with a Normal likelihood—

6We thank Thang Bui for pointing out this connection.
7See Sec D in the supplementary materials for a comparison to

exact GPs.

makes an arbitrary8 distinction between the observation vari-
ance σ2

obs and the latent function variance σf (x∗)2, even
though both terms contribute symmetrically to the total pre-
dictive variance in Eqn. 22. Moreover, this asymmetry will
be inherited by any method that makes use of Eqn. 3, e.g. the
MAP procedure described in Sec. 2.3.2.

When the priority is predictive performance—the typical
case in machine learning—this asymmetric treatment of
the two contributions to the predictive variance is troubling.
As we will see in experiments (Sec. 5), the difference be-
tween Eqn. 20 and Eqn. 21 has dramatic consequences. In
particular the data fit term in SVGP does nothing to encour-
age function variance σf (x∗). As a consequence for many
datasets σf (x∗)� σobs; i.e. most of the predictive variance
is explained by the input-independent observation noise.

In contrast, the data fit term in Eqn. 20 directly encour-
ages large σf (x∗), typically resulting in behavior opposite
to that of SVGP, i.e. σf (x∗) � σobs. This is gratifying
because—after having gone to the effort to introduce an
input-dependent kernel and learn an appropriate geometry
on the input space—we end up with predictive variances
that make substantial use of the input-dependent kernel.

The case of Variational FITC (see Eqn. 19) is intermedi-
ate in that the objective function directly incentivizes non-
negligible latent function variance through the term K̃ii(xi),
while the S-dependent contribution to σf (xi) is still treated
asymmetrically (since it does not appear in the data fit term).

As argued by (Bauer et al., 2016), methods based on FITC—
and by extension our Parametric Predictive GP approach—
tend to underestimate the observation noise σ2

obs, while vari-
ational methods like SVGP or the closely related method in-
troduced by (Titsias, 2009) tend to overestimate σ2

obs. While
the possibility of underestimating σ2

obs is indeed a concern
for our approach, our empirical results in Sec. 5 suggest that,
this tendency notwithstanding, our methods yield excellent
predictive performance.

3.4. Additional Variants

A number of variants to the Parametric Predictive GP ap-
proach outlined in Sec. 3.2 immediately suggest themselves.
One possibility is to take the formal limit S → 0 in q(u).
In this limit q(u) is a Dirac delta distribution, the function
variance σf (xi)2 → K̃ii, and the number of parameters is
now linear in M instead of quadratic.9 Below we refer to
this variant as PPGPR-δ. Another possibility is to restrict

8Arbitrary from the point of view of output space. Depending
on the particular application and structure of the model, distinctions
between different contributions to the predictive variance may be
of interest.

9Additionally in the regularizer we make the replacement
−βregKL(q(u)|p(u))→ βreg log p(u).
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Figure 2. We depict test negative log likelihoods (NLL) for twelve univariate regression datasets (lower is better). Results are averaged
over ten random train/test/validation splits. See Sec. 5.1 for details. Here and elsewhere horizontal error bars depict standard errors.
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Figure 3. We depict test root mean squared errors (RMSE) for twelve univariate regression datasets (lower is better). Results are averaged
over ten random train/test/validation splits. See Sec. 5.1 for details.

the covariance matrix S in q(u) to be diagonal; we refer to
this ‘mean field’ variant as PPGPR-MF. Yet another possi-
bility is to decouple the parametric mean function µf (x) and
variance function σf (x)2 used to define p(y|x) in Eqn. 17,
i.e. use separate inducing point locations Zµ and Zσ for
additional flexibility. This is conceptually similar to the
decoupled approach introduced in Cheng and Boots (2017),
with the difference that our parametric modeling approach is
not constrained by the need to construct a well-defined vari-
ational inference problem in an infinite-dimensional RKHS.
Below we refer to this decoupled approach together with
a diagonal covariance S as PPGPR-MFD. We refer to the
variant of PPGPR that is closest to SVGP (because it utilizes
a full-rank covariance matrix S = LLT) as PPGPR-Chol.

A number of other variants are also possible. For example
we might replace the KL regularizer in Eqn. 17 with another
divergence, for example a Rényi divergence (Knoblauch
et al., 2019). Alternatively we could use another divergence
measure in Eqn. 16—e.g. the gamma divergence used in
Sec. 2.3.3—to control the qualitative features of pdata(y|x)
that we would like to capture in p(y|x). We leave the explo-
ration of these and other variants to future work.

4. Related Work
The use of pseudo-inputs and inducing point methods to
scale-up Gaussian Process inference has spawned a large
literature, especially in the context of variational inference
(Csató and Opper, 2002; Seeger et al., 2003; Quiñonero-

Candela and Rasmussen, 2005; Snelson and Ghahramani,
2006; Titsias, 2009; Hensman et al., 2013; 2015a; Cheng
and Boots, 2017). While variational inference remains the
most popular inference algorithm in the scalable GP set-
ting, researchers have also explored different variants of Ex-
pectation Propagation (Hernández-Lobato and Hernández-
Lobato, 2016; Bui et al., 2017) as well as Stochastic gradient
Hamiltonian Monte Carlo (Havasi et al., 2018) and other
MCMC algorithms (Hensman et al., 2015b). For a recent
review of scalable methods for GP inference we refer the
reader to (Liu et al., 2018).

Our approach bears some resemblance to that described
in (Raissi et al., 2019) in that, like them, we consider GP
regression models that are parametric in nature. There are
important differences, however. First because Raissi et al.
(2019) consider a two-step training procedure that does not
benefit from a single coherent objective, they are unable to
learn inducing point locations Z. Second, inconsistent treat-
ment of latent function uncertainty between the two training
steps degrades the quality of the predictive uncertainty. For
these reasons we find that the approach in (Raissi et al.,
2019) significantly underperforms10 all the other methods
we consider and hence we do not consider it further.

Several of our objective functions can also be seen as in-
stances of Direct Loss Minimization, which emerges from a

10Both in terms of RMSE and log likelihood (especially the
latter, with the predictive uncertainty drastically underestimated in
some cases). See Sec. D for details.
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view of approximate inference as regularized loss minimiza-
tion (Sheth and Khardon, 2016; 2017; 2019).11 We refer the
reader to Sec. F in the supplementary materials for further
discussion of this important connection.

Our focus on the predictive distribution also recalls (Snel-
son and Ghahramani, 2005), in which the authors construct
parsimonious approximations to Bayesian predictive distri-
butions. Their approach differs from the approach adopted
here, since the posterior distribution is still computed (or ap-
proximated) as an intermediate step, whereas in PPGPR we
completely bypass the posterior. Similarly PPGPR recalls
(Gordon et al., 2018), where the authors consider training
objectives that explicitly target posterior predictive distribu-
tions in the context of meta-learning.

5. Experiments
In this section we compare the empirical performance of the
approaches to scalable GP regression introduced in Sec. 3 to
the baseline inference strategies described in Sec. 2.3. All
our models use a prior mean of zero and a Matérn kernel
with independent length scales for each input dimension.12

5.1. Univariate regression

We consider a mix of univariate regression datasets from
the UCI repository (Dua and Graff, 2017), with the number
of datapoints ranging from N ∼ 104 to N ∼ 106 and
the number of input dimensions in the range dim(x) ∈
[3, 380]. Among the methods introduced in Sec. 3, we focus
on Variational FITC (Sec. 3.1) and PPGPR-MFD (Sec. 3.4).
In addition to the baselines reviewed in Sec. 2.3, we also
compare to the orthogonal parameterization of the basis
decoupling method described in Cheng and Boots (2017)
and Salimbeni et al. (2018), which we refer to as OD-SVGP.
For all but the two largest datasets we also compare to Exact
GP inference, leveraging the conjugate gradient approach
described in (Wang et al., 2019).

We summarize the results in Fig. 2-4 and Table 1 (see the
supplementary materials for additional results). Both our
approaches yield consistently lower negative log likelihoods
(NLLs) than the baseline approaches, with PPGPR perform-
ing particularly well. Averaged across all twelve datasets,
PPGPR outperforms the strongest baseline, OD-SVGP, by
∼ 0.35 nats. Interestingly on most datasets PPGPR outper-
forms Exact GP inference. We hypothesize that this is at
least partially due to the ability of our parametric models
to encode heteroscedasticity, a “bonus” feature that was al-

11Note, however, that this interpretation is not applicable to our
best performing model class, PPGPR-MFD, which benefits from
mean and variance functions that are decoupled.

12For an implementation of our method in GPyTorch see
https://git.io/JJy9b.

Table 1. Average ranking of methods (lower is better). CRPS is
the Continuous Ranking Probability Score, a popular calibration
metric for regression (Gneiting and Raftery, 2007). Rankings are
averages across datasets and splits. See Sec. 5.1 for details.

MAP γ-Robust SVGP OD-SVGP VFITC PPGPR

NLL 5.47 4.76 4.33 3.08 2.20 1.17
RMSE 4.53 4.59 2.92 2.49 4.35 2.12
CRPS 5.55 4.12 4.21 3.20 2.90 1.02

ready noted by Snelson and Ghahramani (2006). Perhaps
surprisingly, we note that on most datasets MAP yields com-
parable NLLs to SVGP. Indeed averaged across all twelve
datasets, SVGP only outperforms MAP by ∼ 0.05 nats.

The results for root mean squared errors (RMSE) exhibit
somewhat less variability (see Fig. 3), with PPGPR per-
forming the best and OD-SVGP performing second best
among the scalable methods. In particular, in aggregate
PPGPR attains the lowest RMSE (see Table 1), though it
is outperformed by other methods on 2/12 datasets. We
hypothesize that the RMSE performance of VFITC could
be substantially improved if the variational distribution took
the structured form that is implicitly used in OD-SVGP. Not
surprisingly Exact GP inference yields the lowest RMSE
for most datasets.

Strikingly, both VFITC and PPGPR yield predictive vari-
ances that are in a qualitatively different regime than those
resulting from the scalable inference baselines. Fig. 4 de-
picts the fraction of the total predictive variance Var[y∗ |x]
due to the observation noise σ2

obs. The predictive variances
from the baseline methods make relatively little use of input-
dependent function uncertainty, instead relying primarily on
the observation noise. By contrast the variances of our para-
metric GP regressors are dominated by function uncertainty.
This substantiates the discussion in Sec. 3.3. Additionally,
this observation explains the similar log likelihoods exhib-
ited by SVGP and MAP: since neither method makes much
use of function uncertainty, the uncertainty encoded in q(u)
is of secondary importance.13

Finally we note that for most datasets PPGPR prefers small
values of βreg. This suggests that choosing M � N is
sufficient for ensuring well-regularized models and that
overfitting is not much of a concern in practice.

5.2. PPGPR Ablation Study

Encouraged by the predictive performance of PPGPR-MFD
in Sec. 5.1, we perform a detailed comparison of the differ-
ent PPGPR variants introduced in Sec. 3.4. Our results are
summarized in Table 2 (see supplementary materials for ad-
ditional figures). We find that as we increase the capacity of

13Note that MAP can be viewed as a degenerate limit of SVGP
in which q(u) is a Dirac delta function.
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Figure 4. We depict the mean fraction of the predictive variance that is due to the observation noise (as measured on the test set). Results
are averaged over ten random train/test/validation splits. See Sec. 5.1 for details.

Figure 5. We visualize the calibration of three probabilistic deep learning models fit to trip data in three cities. For each method we depict
the empirical CDF of the z-scores z = (y∗ − µf (x

∗))/σ(x∗) computed on the test set {(x∗
k, y

∗
k)}. The “Ideal CDF” is the Normal CDF,

which corresponds to the best possible calibration for a model with a Normal predictive distribution. See Sec. 5.3 for details.

the variance function σf (x)2 (i.e. PPGPR-δ⇒ PPGPR-MF
⇒ PPGPR-Chol) the test NLL tends to decrease, while the
test RMSE tends to increase. This make sense since PPGPR
prefers large predictive uncertainty in regions of input space
where good data fit is hard to achieve. Consequently, there
is less incentive to move the predictive mean function away
from the prior in those regions, which can then result in
higher RMSEs; this effect becomes more pronounced as the
variance function becomes more flexible. In contrast, since
the mean and variance functions are entirely decoupled in
the case of PPGPR-MFD (apart from shared kernel hyper-
parameters), this model class obtains low NLLs without
sacrificing performance on RMSE.

Note, finally, that PPGPR-δ and PPGPR-Chol utilize the
same family of predictive distributions as MAP and SVGP,
respectively, and only differ in the objective function used
during training. If we compare these pairs of methods in
Table 2, we find that PPGPR-δ and PPGPR-Chol yield the
best log likelihoods, with PPGPR-Chol exhibiting degraded
RMSE performance for the reason described in the previ-
ous paragraph. Indeed these observations motivated the
introduction of PPGPR-MFD.

Table 2. Average rank of PPGPR variants (lower is better).

MAP SVGP PPGPR
δ

PPGPR
MF

PPGPR
Chol

PPGPR
MFD

NLL 5.90 5.08 3.96 2.66 1.59 1.81
RMSE 3.64 2.36 3.65 4.16 5.38 1.82
CRPS 5.72 4.78 3.87 2.77 2.47 1.40

5.3. Calibration in DKL Regression

In this section we demonstrate that PPGPR (introduced in
Sec. 3.2) offers an effective mechanism for calibrating deep
neural networks for regression. To evaluate the potential of
this approach, we utilize a real-world dataset of vehicular
trip durations in three large cities. In this setting, uncertainty
estimation is critical for managing risk when estimating
transportation costs.

We compare three methods: i) deep kernel learning (Wilson
et al., 2016) using SVGP (SVGP+DKL); ii) deep kernel
learning using PPGPR-MFD (PPGPR+DKL); and iii) MC-
Dropout (Gal and Ghahramani, 2016), a popular method for
calibrating neural networks that does not rely on Gaussian
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Processes.

In Fig. 5 we visualize how well each of the three methods
is calibrated as compared to the best possible calibration
for a model with Normal predictive distributions. Overall
PPGPR+DKL performs the best, with MCDropout outper-
forming or matching SVGP+DKL. Using PPGPR has a
number of additional advantages over MCDropout. In par-
ticular, because the predictive variances can be computed
analytically for Gaussian Process models, the PPGPR+DKL
model is significantly faster at test time than MCDropout,
which requires forwarding data points through many sam-
pled models (here 50). This is impractically slow for many
applied settings, especially for large neural networks.

6. Conclusions
Gaussian Process regression with a Normal likelihood rep-
resents a peculiar case in that: i) we can give an analytic
formula for the exact posterior predictive distribution; but ii)
it is impractical to compute for large datasets. In this work
we have argued that if our goal is high quality predictive dis-
tributions, it is sensible to bypass posterior approximations
and directly target the quantity of interest. While this may
be a bad strategy for an arbitrary probabilistic model, in
the case of GP regression inducing point methods provide a
natural family of parametric predictive distributions whose
capacity can be controlled to prevent overfitting. As we
have shown empirically, the resulting predictive distribu-
tions exhibit significantly better calibrated uncertainties and
higher log likelihoods than those obtained with other meth-
ods, which tend to yield overconfident uncertainty estimates
that make little use of the kernel.

More broadly, our empirical results suggest that the good
predictive performance of approximate GP methods like
SVGP may have more to do with the power of kernel meth-
ods than adherence to Bayes. The approach we have adopted
here can be viewed as maximum likelihood estimation for
a model with a high-powered likelihood. This likelihood
leverages flexible mean and variance functions whose para-
metric form is motivated by inducing point methods. We
suspect that a good ansatz for the variance function is of
particular importance for good predictive uncertainty. We
explore one possible alternative—and much more flexible—
parameterization in Jankowiak et al. (2020). Here we sug-
gest that one simple and natural variant of PPGPR would
replace the mean function with a flexible neural network
so that inducing points are only used to define the variance
function.
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Lobato. Scalable gaussian process classification via ex-
pectation propagation. In Artificial Intelligence and Statis-
tics, pages 168–176, 2016.
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