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A. Details on PPGPR-MFD
The regularizer we use for PPGPR-MFD is given by

Lreg = Breg{ 1og N'(m, K*) — KL(V(0,8) | N'(0,K)) }
= =2 { TS (K) 7+ mT (K im

log det K7 + log det K* — log det s}
(23)

with K? = K(Z,,Z,) and K* = K(Z,,Z,,), and where
we have dropped irrelevant constants. Here Z,, and Z, are
the decoupled inducing point locations used to define the
mean function and variance function, respectively. This
regularizer can be viewed as the sum of two multivariate
Normal KL divergences, one of which involves a Dirac delta
distribution (with divergent terms dropped).

As discussed in Sec. 3.4, the mean and variance functions
for PPGPR-MFD are given by

pe(x;) = k(K" " 'm (24)

and

or(x:)? =K% + kIT(K?)7IS(K?) kY (25)

where the various kernels in Eqn. 24 and Eqn. 25 share the
same hyperparameters and S is diagonal.

B. Time and Space Complexity

We briefly describe the time and space complexity of the
main algorithms for scalable GP regression discussed in this
work. We note that our complexity analysis is similar to that
of most sparse Gaussian process methods, such as SVGP
(Hensman et al., 2013).

Training complexity. Training a VFITC model requires
optimizing Eqn. 15, and training PPGPR models requires
optimizing Eqn. 17. First, we note that the KL(g(u)|p(u))
term is the K L divergence between two multivariate Gaus-
sians, which requires O(m?) time complexity and O(m?)
space complexity. For the remaining terms, the main compu-
tational bottleneck in both of these equations is computing
the term K]T/IIM. This is usually accomplished by comput-
ing its Cholesky factor L, which takes O(m?) computation
given m inducing points. After the Cholesky factor has
been computed, all matrix solves involving K;;M require
only O(m?) computation. The three main terms in both
objective functions (u¢(x;), Kyi, and kT K} SK; b ki)
each require a constant number of matrix solves for each
data point. All together, the total time complexity of each
training iteration is therefore O(m? + bm?), where b is the
number of data points in a minibatch. The space complexity
is O(m? + bm) — the size of storing K 377, its Cholesky
factor, and all k; vectors.

Prediction complexity. The predictive distributions for
VFITC and PPGPR are given by Eqn. 11. Again, the terms
pe(x;) and o¢(x;) = Ki; + kT K; 4, SK ki require a
constant number of matrix solves with K;}M for each x;.
However, we can cache and re-use the Cholesky factor of
KA_/[lM for all predictive distribution computations, since (af-
ter training) we are not updating the inducing point locations
or the kernel hyperparameters. Therefore, each predictive
distribution has a time complexity of O(m?) after the one-
time cost of computing/caching the Cholesky factor. It is
also worth noting that predictive means can be computed
in O(m) time by caching the vector K} /,,m vector. The
space complexity is also O(m?) (the size of the Cholesky
factor).

Note that each of our proposed variants in Section 3.4 have
the same computational complexity, as each variant simply
modifies the form of S which is not the computational bot-
tleneck. We do note that the MFD variant requires roughly
double the amount of computation and storage, as we are
storing/performing solves with two K ;s matrices (one for
the predictive means and one for the predictive variances).
Finally, we note that the whitening parameterization (see
Appendix E) has the same computaitonal/storage complex-
ity, as it also requires computing/storing a Cholesky factor.

C. Experimental Details

We use zero mean functions and Matérn kernels with in-
dependent length scales for each input dimension through-
out. All models and experiments are implemented using the
GPyTorch framework (Gardner et al., 2018) and the Pyro
probabilistic programming language (Bingham et al., 2019).

C.1. Univariate regression

We use the Adam optimizer for optimization with an initial
learning rate of £ = 0.01 that is progressively decimated
over the course of training (Kingma and Ba, 2014). We use a
mini-batch size of B = 10* for the Buzz, Song, 3droad and
Houseelectric datasets and B = 103 for all other datasets.
We train for 400 epochs except for the Houseelectric dataset
where we train for 200 epochs. Except for the Exact re-
sults, we do 10 train/test/validation splits on all datasets
(always in the proportion 15:3:2, respectively). In par-
ticular for the Exact results we do 3 train/test/validation
splits on the smaller datasets and one split for the two
largest (3Droad and Song). All datasets are standardized in
both input and output space; thus a predictive distribution
concentrated at zero yields a root mean squared error of
unity. We use M = 1000 inducing points initialized with
kmeans. In the case of OD-SVGP and PPGPR-MFD we use
M = 1000 inducing points for the mean and M = 1000
inducing points for the (co)variance. We use the validation
set to determine a small set of hyperparameters. In par-
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ticular for SVGP, OD-SVGP, and VFITC we search over
Breg € {0.1,0.3,0.5,1.0}. For y-Robust we search over
{1.01,1.03,1.05,1.07} (with B,¢g = 1). For all PPGPR
variants we search over (. € {0.01,0.05,0.2,1.0}. For
MAP we fix Breg = 1.

C.2. PPGPR Ablation

The experimental procedure for the results reported in
Sec. 5.2 follows the procedure described in Sec. C.1.

C.3. DKL calibration

MC-Dropout has two hyperparameters that must be set
by hand: a dropout proportion p and a prior vari-
ance inflation term 7. These were set by temporar-
ily removing a portion of the training data as a vali-
dation set and performing a small grid search on each
dataset over p € [0.05,0.1,0.15,0.2,0.25] and 7 €
[0.05,0.1,0.25,0.5,0.75,1.0]. For PPGPR-MFD, 3 €
[0.05,0.2,0.5,1.0] was chosen in a similar fashion. The
datasets for each of the three cities contain 30 features that
encode various aspects of a trip like origin and destination
location, time of day and week, as well as various rudimen-
tary routing features.

For all three methods, we use the same five layer fully
connected neural network, with hidden representation sizes
of [256, 256,128,128, 64] and ReLU nonlinearities. We
use the Adam optimizer and use an initial learning rate of
¢ = 0.01, which we drop by a factor of 0.1 at 100 and
150 epochs. We train for 200 epochs for all three methods.
For the GP methods, we use M = 1024 inducing points,
initialized by randomly selecting training data points and
passing them through the initial feature extractor.

D. Additional Experimental Results

In Fig. 6-9 we depict summary results for all the experiments
in Sec. 5.1-5.2 in the main text. In particular in Fig. 9 we
depict Continuous Ranked Probability Scores (Gneiting and
Raftery, 2007). We also include a complete compilation of
our results in Table 3.

The effect of 3., We find empirically that PPGPR is
robust to the value of B;cs. On the five smallest UCI datasets,
the test RMSE varies by no more than 5% (relative) and the
LL by no more than 0.05 nats as we vary ;¢ from O to 1.
This is not unexpected, since we are always in the regime
M < N.

Comparison to Raissi et. al. We do not include a full
comparison to the method in Raissi et al. (2019) because
we find that it is outperformed by all the other baselines
we consider. In particular while this method can achieve

middling RMSEs, on many datasets it achieves very poor
log likelihoods. For example, using the authors’ implemen-
tation'* we find a test NLL of ~ 26 nats on the Elevators
dataset and ~ 6 nats on the Pol dataset. This performance
can be traced to the incoherency of the two-objective ap-
proach adopted by this method. In particular the logic of the
derivation makes it unclear whether the noise term in the
kernel should be included during test time; this ambiguity
is reflected in the authors’ code,!® where this contribution
is by default commented out. While the NLL performance
can be improved by including this term, the larger point is
that this approach does not provide a coherent account of
function uncertainty.

In-Sample Comparison to Exact GPs In this section,
we compare the fit of an exact GP, of SVGP, and of PPGPR
to samples drawn from a Gaussian process prior with a
Matern kernel and a Periodic kernel. For the draw from
the Matern kernel, we use a lengthscale of 0.1 and an out-
putscale of 1. For the periodic kernel, we use a period length
of 0.2 and outputscale of 1. For both kernels, we draw the
function on the range [0, 1], and fit all three models starting
from default hyperparameter initializations. For the periodic
kernel case, we consider an extrapolation task. The results
are presented in Fig 10. We observe that all three methods
are capable of performing the extrapolation task using the
periodic kernel, and in general depict qualitatively similar
results. This verifies that—in very simple cases—much of
the model performance can depend on the choice of kernel
rather than the particular training scheme.

E. Whitened Sparse Gaussian Process
Regression

The hyperparameters and variational parameters of the mod-
els can be learned by directly optimizing the objective func-
tions in Eqn. 3 (for MAP), in Eqn. 5 (for SVGP), in Eqn. 15
(for VFITC), and Eqn. 17 (for PPGPR). In practice, we
modify these objective functions using a transformation pro-
posed by (Matthews, 2017). The “whitening transformation”
is a simple change of variables

1
MM

u =
where A prps 1s a matrix such that AMMALM =Kuwm.
(Typically, Ajprps is taken to be the Cholesky factor of
Ksas.) Intuitively, this transformation is advantageous
because it reduces the number of changing terms in the ob-

jective functions. In whitened coordinates the prior p(u’)
is constant: p(u’) = N (0, Ay, KararAyh,) = N(0,1).

“https://github.com/maziarraissi/ParametricGp

5See line 177 in parametric_GP.py.
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Figure 6. We compare test NLLs for the various methods explored in Sec. 5.1-5.2 in the main text (lower is better). Results are averaged
over ten random train/test/validation splits. Here and throughout error bars depict standard errors.
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Figure 7. We compare test RMSEs for the various methods explored in Sec. 5.1-5.2 in the main text (lower is better). Results are averaged
over ten random train/test/validation splits.
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Figure 8. We compare the mean fraction of the predictive variance that is due to the observation noise for the various methods explored in
Sec. 5.1-5.2 in the main text. Results are averaged over ten random train/test/validation splits.

Incorporating this transformation into Eqn. 3 gives us similarly modified objectives for better optimization. For
MAP and PPGPR-4, we directly optimize the whitened
logp(y. WX, Z) > Eyejw) log p(y[£) +logp(w)]  \uiaples . For SVGP, VEITC, PPGPR-Chol, and
B n log A (v kT AL LR PPGPR-MF, the whitened variational distribution is given
- Z 0g N (yilki Ayt Oovs) — 55 Tr Ky as g(0') = N(Ayyym, Ay SAL,). We parameter-
=t ize the mean with a vector m’ = A}, m and we pa-
— L)z - Mog(2n) . . . g .
2 2 2108 : rameterize the covariance with a lower triangular matrix

LL"T = A,},SA}}y- The same transformation is ap-
plied to the OD-SVGP covariance variational parameters—
referred to as the 3 parameters by Salimbeni et al. (2018).

Importantly, the prior term p(u’) in the modified objec-
tive does not depend on the inducing point locations Z
or kernel hyperparameters. In all experiments we use
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Table 3. A compilation of all the results from Sec. 5.1-5.2. For each metric and dataset we bold the result for the best performing scalable
method. Errors are standard errors.

MAP SVGP ~-Robust OD-SVGP VEITC PPGPR-§ PPGPR-MF PPGPR-Chol PPGPR-MFD Exact
Metric Dataset
NLL Pol —0.61540.007 —0.651+0.005 —0.657+£0.007 —0.723+£0.006 —0.681+£0.005  —0.755+0.009 —0.825+0.005 —0.866+£0.005 —1.090+0.009  —0.8170.001
Elevators 04120007 0.401+£0.007  0.409+0.007 0448 £0.010  0.376 % 0.007 0.386+0.008  0.320+0.007 0.324+0.007  0.368 % 0.011 0.398 + 0.013
Bike —0.830+0.010 —0.807+0.007 —0.901+0.013 —0.824+0.009 —0.989+0.009  —1.019+0.008 —1.314+0.007 —1.402+£0.004 -1.426+0.010  —1.750+0.014
Kind0K —0.3334£0.002 —0414+0.002 —0.423+0.002 —0.830+£0.004 —0.658+£0.001  —0.678+0.002 —0.770+£0.002 —0.837+0.002 —1.284+0.005  —0.075=0.001
Protein 0.931+0.003  0.902+0.003  0.906+0.004  0.892+0.006  0.796 = 0.004 0.794+0.004  0.747+0.008 0.735+0.007  0.743 +0.008 0.875 + 0.002
Keggdir. ~1.032£0.017 ~1.045+0.017 —1.02640.021 ~1.057+£0.018 —1.494+0.014  —1.52040.013 —1.601+0.016 -1.667+£0.028 —1.575+0.015 —0.870 + 0.052
Slice —0.921£0.002 —1.267+0.003 —1.07640.006 —-1.673+£0.013 —1.409+0.004  —1.442+0.004 -1.516+0.004 —-1.713+£0.004 1438 0.057 —1.240 £ 0.004
Keggundir. —0.694 £0.006 —0.704+0.006 —0.688+0.007 —0.712+£0.006 -1.643+0.016  —1.685+0.018 —1.807+0.018 -1.901+0.021 —1.801+0.013 —0.643 £ 0.008
3Droad 0.336+£0.002  0.330+£0.002 032540001  0231+£0.014  0.045%0.003 0.079+£0.004 —0.122+0.002 —0.18840.002 —0.297 £ 0.003 0.408
Song 1180+0.001  1.17840.001  1.I81+0.001  1168+0.001  1.145+0.001 114340001  1.109+0.001  1.104+0.001  1.103+0.001 1.139
Buzz 0.080£0.002  0.069+0.001  0.064+0.001  0.044+0.002  0.022+0.002 0.020£0.002  —0.020+0.001  —0.037£0.001  —0.047 £ 0.001 —
Houseelectric  —1.524£0.001 —1.543+£0.001 —1.5214+0.001 —1.559+0.002 —1.794+£0.001  —1.822+0.001 -1931+0.001 —1.978+0.001 —2.020 £ 0.003 —
RMSE Pol 0.115+£0.001  0.107+0.002  0.115£0.002  0.109+£0.001  0.104 % 0.002 0.101£0.001  0.111£0.002  0.1214+0.002  0.077 £ 0.001 0.074 £ 0.001
Elevators 0.364+0.002 0.36040.003 0.362 £ 0.002 0.370 £ 0.003 0.360 £0.003 0.362+0.003 0.362+0.003 0.370 £ 0.003 0.361 + 0.003 0.347 £0.007
Bike 0.086 £ 0.002 0.088 £ 0.002 0.089 £ 0.002 0.097 £ 0.002 0.083 £ 0.002 0.076 £ 0.001 0.094 £ 0.002 0.111 £ 0.002 0.060 £ 0.001 0.022 £ 0.001
Kin40K 0.156 £ 0.001 0.147 £ 0.001 0.152 £ 0.001 0.109 £ 0.001 0.156 £ 0.001 0.145 £ 0.001 0.188 £ 0.002 0.211 £ 0.003 0.126 £ 0.001 0.084 £ 0.005
Protein 0.610 £ 0.002 0.594 £ 0.002 0.598 £ 0.002 0.591 £ 0.003 0.607 £ 0.002 0.604 £ 0.002 0.609 £ 0.002 0.618 £ 0.002 0.569 + 0.002 0.514 £ 0.003
Keggdir. 0.087 +0.001 0.086+0.001 0.088+0.001 0.085+0.001 0.089 £ 0.001 0.090 £ 0.001 0.089 £ 0.002 0.090 £ 0.001 0.087 +0.001 0.090 =+ 0.004
Slice 0.071£0.001  0.051+£0.001  0.070+£0.003  0.043£0.001  0.054 % 0.001 0.053+0.001  0.095+0.001  0.208+£0.004  0.032+0.001 0.031 % 0.003
Keggundir. 0.121 £ 0.001 0.120 + 0.001 0.121 £ 0.001 0.119 + 0.001 0.123 £ 0.001 0.123 £ 0.001 0.124 +0.001 0.125 + 0.001 0.123 £ 0.001 0.119 £ 0.002
3Droad 0320£0.001 032940001  0.331+£0.001  0.303+0.004 0.424 = 0.001 0.403+0.005  0.383+0.002  0.389+£0.001  0.304+0.001 0.057
Song 0.788+0.001  0.786+0.001  0.788+£0.001  0.778£0.001  0.782 % 0.001 0.780+0.001  0.777+0.001  0.778+0.001  0.770 +0.001 0.750
Buzz 0.265+0.001  0.261+0.000  0.264+0.001  0.256+0.001  0.281 % 0.001 027540001  0.271+0.001 02720001  0.283 4 0.001 —
Houseelectric 0.052+£0.000  0.051+0.000  0.052+0.000  0.0500.000  0.053 % 0.000 0.052+0.000  0.053+0.000  0.0544+0.000  0.046 % 0.000 —
CRPS Pol 0.065+0.001  0.061+0.000  0.062+0.001  0.059+0.000  0.060 % 0.000 0.057+£0.001  0.057+0.000  0.057+0.000  0.040 % 0.000 0.051 £ 0.000
Elevators 0.200+£0.001  0.198+0.001  0.199£0.001  0.203+£0.001  0.197 % 0.001 0.198+£0.001  0.193+0.001 0.195+0.001  0.195 + 0.002 0.195 + 0.003
Bike 0.047+£0.000  0.049+0.000  0.043£0.000  0.051+£0.001  0.042 % 0.000 0.040+£0.000  0.037+£0.000  0.037+0.001  0.028 % 0.000 0.019 = 0.000
Kind0K 0.088+£0.000  0.082+0.000  0.082+0.000  0.056+0.000  0.074 % 0.000 0.071+£0.000  0.077£0.000  0.079+0.000  0.050 % 0.000 0.093 £ 0.000
Protein 0.337+£0.001  0.326+0.001 03260001  0317+£0.001  0.318%0.001 0.317+£0.001  0310£0.001  0.310£0.001  0.288+0.001 0.293 £ 0.001
Keggdir. 0.038+£0.000  0.037£0.000  0.036+0.000  0.037+£0.000  0.033%0.000 0.032+£0.000  0.031£0.000 0.031+0.000  0.031 % 0.000 0.046 £ 0.002
Slice 0.044 £ 0.000 0.031 £ 0.000 0.037 £ 0.000 0.021 £ 0.000 0.029 £ 0.000 0.028 £ 0.000 0.032 £ 0.000 0.060 = 0.001 0.014 + 0.000 0.029 £ 0.000
Keggundir. 0.052 £ 0.000 0.051 £ 0.000 0.050 £ 0.000 0.051 £ 0.000 0.038 £ 0.000 0.037 £ 0.000 0.036 £ 0.000 0.035 £ 0.000 0.036 £ 0.000 0.056 £ 0.001
3Droad 0.178 £ 0.000 0.177 £ 0.000 0.175 £ 0.000 0.163 £ 0.002 0.191 £ 0.001 0.185 £ 0.002 0.170 £ 0.001 0.167 £ 0.000 0.138 + 0.000 0.142
Song 0.441 £ 0.000 0.440 = 0.000 0.441 £ 0.000 0.434 £ 0.000 0.434 £ 0.000 0.433 £ 0.000 0.426 + 0.000 0.425 £ 0.000 0.422 + 0.000 0.420
Buzz 0.141£0.000  0.14040.000  0.139+£0.000  0.135£0.000  0.141 % 0.000 0.140£0.000  0.136£0.000  0.135£0.000  0.134 % 0.000 —
Houseelectric 0.027£0.000  0.027+£0.000  0.027+£0.000  0.026+0.000  0.025 % 0.000 0.025+0.000  0.024£0.000  0.024£0.000  0.022 % 0.000 —
Pol Elevators Bike Kin40K  Protein = Keggdir. Slice  Keggundir. 3Droad Song Buzz Houseelectric
(N=11250) (N=12449) (N=13034) (N=30000) (N=34297) (N=36620) (N=40125) (N=47706) (N=326155) (N=386508) (N=437437) (N=1536960)
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Figure 9. We compare test continuous ranked probability scores (CRPS) for the various methods explored in Sec. 5.1-5.2 (lower is better).

Results are averaged over ten random train/test/validation splits.

As in the original work, the mean variational parameters
(the v parameters) are not re-parameterized.

We apply a similar whitening transformation to the decou-
pled variant of our method (PGPR-MFD). Given inducing
points Z,, and Z, for the mean and variance functions re-
spectively, we optimize the transformed parameters

m' = A%’j)ﬂzlm, S = AS\?}\TS %Z)A}T,

F. Connection to Direct Loss Minimization

In a series of papers the authors of (Sheth and Khardon,
2016; 2017; 2019) consider approximate inference from
the angle of regularized loss minimization. For Bayesian
models of the general form

N

p() [ [ p(yilw, )

i=1

p(y,u) (26)

and (approximate posterior) distributions ¢(u) Sheth and
Khardon investigate PAC-Bayes-like bounds for the Bayes

risk
» o) PBayes[q(W)] = Epy ) [~ 108 Egqup(yln, x)] - 27)
where A}y, and A}, are the Cholesky factor of the Z, . .
and Z, kernel matrices. S’ is constrained to be a diagonal and the Gibbs risk
matrix because of the mean-field approximation. Taibbs[¢(W)] = Ep L (x,y) Eqeu) [~ log p(y[u, x)]  (28)
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Figure 10. We compare exact GPs, SVGP, and PPGPR from functions drawn from a Gaussian process prior using a periodic kernel (top)

and Matern kernel (bottom).

In particular, under some restrictions on the family of multi-
variate Normal distributions ¢(u), they establish a bound on
a smoothed log loss variant of Bayes risk for an inference
setup that corresponds to Variational FITC (Sec. 3.1).!® Ad-
ditionally, under similar assumptions an analogous bound
for an inference setup that corresponds to PPGPR-Chol
is established in (Sheth and Khardon, 2019). Moreover,
in (Sheth and Khardon, 2016) the authors provide some
empirical evidence for the good performance of these two
objective functions.

Importantly, our parametric modeling perspective allows
us more flexibility than is allowed by Direct Loss Mini-
mization as explored by Sheth and Khardon. Indeed much
of the predictive power of approximate GP regressors ar-
guably comes from the sensible behavior of the parametric
family of mean and variance functions that is induced by
a particular kernel and associated inducing point locations
Z—for example, the variance o¢(x)? increases as x moves
away from Z. In particular the maximum likelihood ap-
proach we adopt in Sec. 3.2 allows us to consider parametric
families of predictive distributions that are not of the form
Eqw)Ep(flu,x) [P(y|f)] for some distribution g(u). This is
in fact the case for our best performing method, PPGPR-
MFD, which freely combines mean and variance functions
that are parameterized by distinct inducing point locations
Z, and Z,. Indeed, while we have not done so in our ex-
periments, this perspective allows us to entirely decouple
ue(x) and o¢(x)? by introducing separate kernels for each.

16See corollary 12 in (Sheth and Khardon, 2017).

G. Connection to stochastic EP and the BB-«
objective

Suppose we want to approximate the distribution
N
1

7o) [[ fu@)

i=1

plw) = (29)

where Z is an unknown normalizer. In the prototypical
context of Bayesian modeling po(w) would be a prior distri-
bution and f,,(w) would be a likelihood factor for the n't
datapoint. Expectation propagation (EP) is a broad class
of algorithms that can be used to approximate distributions
like that in Eqn. 29 (Minka, 2004). In the following we
give a brief review of a few variants of EP and describe a
connection to the Predictive objective defined in Eqn. 17 in
the main text.

Li et al. (2015) propose a particular variant of EP called
Stochastic EP that reduces memory requirements by a factor
of N by tying (i.e. sharing) factors together. In subsequent
work Hernandez-Lobato et al. (2016) present a version of
Stochastic EP that is formulated in terms of an energy func-
tion, the so-called BB-a objective £, which is given by

1/N\ ¢
:——ZlogEq(w [(W) 1 (30)

where g(w) is a so-called cavity distribution and « € [0, 1].
As shown in (Li and Gal, 2017), this can be rewritten as

ZlogE [fn(w)?]

Lo = Re(q|po) — (31)
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where ¢(w) is defined by the equation

4(w) = Zquau) ( ;;((‘2))““ 32)

and where { = +~— and Re¢(q||po) is a Rényi divergence.

Li and Gal (2017) then argue that, under suitable conditions,
we have that as 5 — 0 this becomes

Lo — KL(qllpo) — ZlogE [fa(@)] (33

For the particular choice o« = 1 (so that we require N — 00)
this then becomes

La=1 — KL(ql[po) ZlogE [fa(@)]  (34)

The similarity of Eqn. 34 and Eqn. 17 is now manifest.

For further discussion of EP methods in the context of Gaus-
sian Process inference we refer the reader to (Bui et al.,
2017).



