
Supplementary Material:
Learning Portable Representations for High-Level Planning

Steven James 1 Benjamin Rosman 1 George Konidaris 2

1. Proof of Sufficiency
In this section, we show that a combination of agent-space symbols with problem-space partition labels provides a sufficient
symbolic vocabulary for planning. We begin by defining the notion of X -space options, whose initiation sets, policies and
termination conditions are all defined in state space X .

Definition 1. Let OX be the set of all options defined over some state space X . That is, each option o ∈ OX has a policy
πo : X → A, an initiation set Io ⊆ X and a termination function βo : X → [0, 1].

Problem-space options are thus denoted OS , while OD are agent-space options. We now define a partitioned option as
follows:

Definition 2. Given an option o ∈ OX , define a relation ∼o on Io so that x ∼o y ⇐⇒ Pr(x′ | x, o) = Pr(x′ | y, o) for
all x, y, x′ ∈ X . Then ∼o is an equivalence relation which partitions Io. Label each equivalence class in Io/ ∼o with a
unique integer α. A partitioned subgoal option is then the parameterised option o(α) = 〈[α], πo, βo〉, where [α] ⊆ Io is the
set of states in equivalence class α.

We define a probabilistic plan pZ = {o1, . . . , on} to be the sequence of options to be executed, starting from some state
drawn from distribution Z. It is useful to introduce the notion of a goal option, which can only be executed when the agent
has reached its goal. Appending the goal option to a plan means that the probability of successfully executing a plan is
equivalent to the probability of reaching some goal. The act of planning now reduces to a search through the space of all
possible plans— ending with a goal option—to find the one most likely to succeed.

Our representation must therefore be able to evaluate the probability that an arbitrary plan, ending in goal option, successfully
executes. However, the options in the plan may be either problem- or agent-space options. In order to show that agent-space
representations and their associated problem-space partition labels are sufficient for planning with both types of options, we
first define a function that maps problem-space partitions to subsequent problem-space partitions:

Definition 3. A linking function L is a function that specifies the problem-space partition the agent will enter, given the
current problem-space partition and executed option. That is, L(α, o, β) = Pr(β | o, α), where o ∈ O, α, β ∈ Λ and Λ is
the set of problem-space partitions induced by all options.

We next need the following result, which demonstrates that we are able to model the true dynamics using problem-space
partitions and agent-space effects:

1School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa 2Department of
Computer Science, Brown University, Providence RI 02912, USA. Correspondence to: Steven James <steven.james@wits.ac.za>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Learning Portable Representations for High-Level Planning

Lemma 1. Let ω ∈ OD be a partitioned agent-space option, and denote ω(α) as that same option which has been further
partitioned in problem space, with problem-space partition α. Let s, s′ ∈ S and x, x′ ∈ D such that x′ ∼ Pr(· | x, s, ω) and
s′ ∼ Pr(· | s, ω(α)) with E[φ(s′)] = x′. Finally, assume s ∈ [β], where β is some partition label. Then,

Pr(s′ | s, x, x′, ω(α), β) =
g(x′, ω, α, β)∫

[α]
Pr(t | o(α))dt

, where

g(x′, ω, α, β) =

{
Pr(x′ | ω) if β = α

0 otherwise.

Proof. Recall that ω(α) obeys the subgoal property in both D and S. Thus the transition probability is simply its image,
given that it is executable at the current state. Thus we have:

Pr(s′ | s, x, x′, ω(α), β) = Pr(x′ | s ∈ [α], ω(α), β)

=
Pr(x′, s ∈ [α] | ω(α), β)

Pr(s ∈ [α] | ω(α), β)
.

Now β 6= α =⇒ s /∈ [α], and so Pr(x′, s ∈ [α] | ω(α), β) = 0. Conversely, β = α =⇒ s ∈ [α] and so
Pr(x′, s ∈ [α] | ω(α), β) = Pr(x′ | ω). Furthermore,

Pr(s ∈ [α] | ω(α), β) =

∫
[α]

Pr(t | ω[α])dt.

Therefore, we have

Pr(s′ | s, x, x′, ω(α), β) =
g(x′, ω, α, β)∫

[α]
Pr(t | ω(α))dt

,

where g is defined above.

The above states that, if the starting state s is in the problem-space partition of the executed option, then the transition
probabilities are exactly those under the subgoal option. However, if s is not in the correct partition, then the probability is 0
because we cannot execute the option. Thus we consider only starting states in [α] and set everything else to 0. Finally, we
renormalise over [α] to ensure that the transition remains a proper distribution. This is sufficient to predict the effect in agent
space, since we can just apply the observation function φ to s′ to compute Pr(x′ | s′). We can now proceed with our main
result:

Theorem 1. The ability to represent the preconditions and image of each option in agent space, together with the partitioning
in S , is sufficient for determining the probability of being able to execute any probabilistic plan p from starting distribution
Z.

Proof. For notational convenience, we denote ω as a partitioned agent-space option, ω(α) as a partitioned agent-space option
with problem-space partition α, and o(α) as a problem-space option with Io = [α] ⊆ S. Because the only difficulty lies in
evaluating the precondition of a problem-space option, assume without loss of generality that pZ = {ω0, . . . , ωn−1, o(αn)}.
pZ is a plan consisting of a number of agent-space options followed by a problem-space option. Finally, we note that Z is a
start distribution over D and S. We denote the initial agent- and problem-space distributions as D0 and S0 respectively.

The image of an option in agent space is specified by the image operator

Zi+1 = Im(Zi, ωi;αi), with Z0 = D0.

Note that the agent-space image is conditioned on the problem-space partition, as Lemma 1 showed that we required it to
compute the effects in agent space. We can define the problem-space image similarly, although we will not require it to
learn a sufficient representation:

Learning Portable Representations for High-Level Planning

Ẑi+1 = Im(Ẑi, ωi, αi), with Ẑ0 = S0.

The probability of being able to execute pZ is given by

Pr(x0 ∈ Iω0 , . . . , xn−1 ∈ Iωn−1 , sn ∈ Io(αn)),

where xi ∼ Zi and sn ∼ Ẑn. By the Markov property, we can write this as

Pr(sn ∈ Io(αn))

n−1∏
i=0

[Pr(xi ∈ Iωi
)] .

If we can estimate the starting problem-space partition α0 and linking function L, then we can evaluate this quantity as
follows:

Pr(sn ∈ Io(αn)) = Pr(sn ∈ [αn])

= Pr(s0 ∈ [α0])

n−1∏
i=0

L(αi, ωi(αi), αi+1)

=

∫
S

Pr(s ∈ [α0])S0(s)ds×
n−1∏
i=0

L(αi, ωi(αi), αi+1),

and

Pr(xi ∈ Iωi
) =

i∏
j=1

L(αj−1, ωj−1, αj)×
∫
D

Pr(xi ∈ Iωi
)Zi(x;αi)dx.

Thus by learning the precondition and image operators in D, partitioning the options in problem-space, and learning the
links between these partitions, we can evaluate the probability of an arbitrary plan executing.

Learning Portable Representations for High-Level Planning

2. Learning a Portable Representation in Agent Space
Partitioning We collect data from a task by executing options uniformly at random and scale the state variables to be in
the range [0, 1]. We record state transition data as well as, for each state, which options could be executed. We then partition
options using the DBSCAN clustering algorithm (ε = 0.03) to cluster the terminating states of each option into separate
effects, which approximately preserves the subgoal property.

Preconditions Next, the agent learns a precondition classifier for each of these approximately partitioned options using
an SVM with Platt scaling. We use states initially collected as negative examples, and data from the actual transitions as
positive examples. We employ a simple feature selection procedure to determine which state variables are relevant to the
option’s precondition. We first compute the accuracy of the SVM applied to all variables, performing a grid search to find
the best hyperparameters for the SVM using 3-fold cross validation. Then, we check the effect of removing each state
variable in turn, recording those that cause the accuracy to decrease by at least 0.02. Finally, we check whether adding each
of the state variables back improves the SVM, in which case they are kept too. Having determined the relevant features, we
fit a probabilistic SVM to the relevant state variables’ data.

Effects A kernel density estimator with Gaussian kernel is used to estimate the effect of each partitioned option. We learn
distributions over only the variables affected by the option. We use a grid search with 3-fold cross validation to find the
best bandwidth hyperparameter for each estimator. Each of these KDEs is an abstract symbol in our propositional PDDL
representation.

Propositional PDDL For each partitioned option, we now have a classifier and set of effect distributions (propositions).
However, to generate the PDDL, the precondition must be specified in terms of these propositions. We use the same approach
as prior work to generate the PDDL: for all combinations of valid effect distributions, we test whether data sampled from
their conjunction is evaluated positively by our classifiers. If they are, then that combination of distributions serves as the
precondition of the high-level operator.

3. Learning Linking Functions
We can learn linking functions by simply executing options, and recording for each transition the start and end partition
labels. Let Γ(o) be the set of problem-space partition labels for option o, and Λ =

⋃
o∈O Γ(o) the set of all partition labels

over all options. Note that each label λ ∈ Λ refers to a set of initiation states [λ] ⊆ S. We present a simple count-based
approach to learning these functions, but note that any appropriate function-learning scheme would suffice:

1. Given a set of agent-space subgoal options that have subsequently been partitioned in S , gather data from trajectories,
recording tuples 〈s, d, o, s′, d′〉 representing initial states in both S and D, the executed option, and the subsequent
states.

2. Determine the start and end partitions of the transition. The start partition is the singleton c = {γ | γ ∈ Γ(o), s ∈ [Γ(o)]},
while the end labels are given by the set β = {λ | λ ∈ Λ, s′ ∈ [λ]}. In practice, we keep all states belonging to each
partition and then calculate the L2-norm to the closest states in each partition. We select those partitions whose distance
is less than some threshold.

3. Denote Lo as the linking function for option o which stores the number of times transitions between different partition
labels occur. Increment the existing count stored by Lo(c, β), and keep count of the number of times the entry (o, c)
has been updated.

4. Normalise the linking functions Lo by dividing the frequency counts by the number of times the entry for c was updated.
We have now learned the link between the parameters of the precondition and effect for each option.

Learning Portable Representations for High-Level Planning

4. PPDDL Description for the Navigation Task

; Automatically generated ToyDomainV0 domain PPDDL file.
(define (domain ToyDomain)

(:requirements :strips :probabilistic-effects :conditional-effects :rewards :fluents)
(:predicates

(notfailed)
(wall-junction)
(window-junction)
(dead-end)

)

(:functions (partition))

;Action Inward-partition-0
(:action Inward_0
:parameters()
:precondition (and (dead-end) (notfailed))
:effect (and (when (= (partition) 6) (and (wall-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 5))))
(when (= (partition) 3) (and (wall-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 4))))
(when (= (partition) 1) (and (window-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 2))))
(when (= (partition) 8) (and (window-junction) (not (dead-end)

(decrease (reward) 1.00) (assign (partition) 7))))
)

)

;Action Outward-partition-0
(:action Outward_1
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 2) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 1))))
(when (= (partition) 5) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 6))))
(when (= (partition) 4) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 3))))
(when (= (partition) 7) (and (dead-end) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 8))))
)

)

;Action Outward-partition-0
(:action Outward_2
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 2) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 1))))
(when (= (partition) 5) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 6))))
(when (= (partition) 4) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 3))))
(when (= (partition) 7) (and (dead-end) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 8))))
)

)

;Action Clockwise-partition-0
(:action Clockwise_3
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 2))))
(when (= (partition) 5) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 7))))
)

)

;Action Clockwise-partition-1
(:action Clockwise_4
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction) (not (window-junction)

Learning Portable Representations for High-Level Planning

(decrease (reward) 1.00) (assign (partition) 4))))
(when (= (partition) 2) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 5))))
)

)

;Action Anticlockwise-partition-0
(:action Anticlockwise_5
:parameters()
:precondition (and (window-junction) (notfailed))
:effect (and (when (= (partition) 7) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 5))))
(when (= (partition) 2) (and (wall-junction) (not (window-junction)

(decrease (reward) 1.00) (assign (partition) 4))))
)

)

;Action Anticlockwise-partition-1
(:action Anticlockwise_6
:parameters()
:precondition (and (wall-junction) (notfailed))
:effect (and (when (= (partition) 4) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 7))))
(when (= (partition) 5) (and (window-junction) (not (wall-junction)

(decrease (reward) 1.00) (assign (partition) 2))))
)

)

)

Learning Portable Representations for High-Level Planning

5. Examples of Portable Rod-and-Block Rules

(a) Precondition of
GoLeft1

(b) Negative effect
of GoLeft1

(c) Positive effect of
GoLeft1

(d) Precondition of
GoLeft2

(e) Negative effect
of GoLeft2

(f) Positive effect of
GoLeft2

(g) Precondition of
GoLeft3

(h) Negative effect
of GoLeft3

(i) Positive effect of
GoLeft3

(j) Precondition of
GoRight1

(k) Negative effect
of GoRight1

(l) Positive effect of
GoRight1

(m) Precondition of
RotateUp
Clockwise1

(n) Negative effect
of RotateUp
Clockwise1

(o) Positive effect of
RotateUp
Clockwise1

Figure 1: A subset of symbolic rules learned for the task in Figure 8.

Learning Portable Representations for High-Level Planning

6. Examples of Portable Treasure Game Rules

(a) Precondition of
UpLadder

(b) Negative effect
of UpLadder

(c) Positive effect of
UpLadder

(d) Precondition of
GoLeft1

(e) Negative effect
of GoLeft1

(f) Positive effect of
GoLeft1

(g) Precondition of
DownLeft1

(h) Negative effect
of DownLeft1

(i) Positive effect of
DownLeft1

(j) Precondition of
Interact1

(k) Negative effect
of Interact1

(l) Positive effect of
Interact1

(m) Precondition of
Interact3

(n) Negative effect
of Interact3

(o) Positive effect of
Interact3

Figure 2: A subset of symbolic rules learned in Level 1

Learning Portable Representations for High-Level Planning

7. Treasure Game Level Layouts

(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 6

(g) Level 7 (h) Level 8 (i) Level 9

(j) Level 10

