
Tails of Lipschitz Triangular Flows

A. Proofs
Theorem 2. Let p ∈ L and q ∈ H such that q = T#p, where T is a diffeomorphism. Then, for all M > 0 and all z0 > 0
there is z > z0, such that T ′(z) > M . Conversely, if T is a Lipschitz-continuous map & p ∈ L, then, T#p ∈ L.

Proof. We prove this by contradiction. Assume on the contrary that there exists a diffeomorphism T : R→ R, such that
q = T#p and ∃M > 0, z0 > 0, such that ∀z > z0, T

′(z) ≤M . Because T is a univariate diffeomorphism, it is a strictly
monotonic function. Without loss of generality, consider a strictly increasing function T , such that 0 < T ′(z) ≤M for all
z > z0. Since, p ∈ L, we have ∫

Z

eλ1zp(z) dz <∞, for some λ1 > 0 (4)

Furthermore, since q ∈ H, we have ∫
X

eλxq(x) dx =∞, ∀ λ > 0 (5)

=⇒
∫
Z

eλT (z)p(z) dz =∞, ∀λ > 0, [∵ change of variables] (6)

Split the domain Z into : Z+ = Z ∩ {z ≥ 0} and Z− = Z ∩ {z < 0}. The integral over the negative part trivially converges
since: ∫

Z−

eλT (z)p(z) dz ≤
∫
Z−

eλT (0)p(z) dz ≤ eλT (0),

where we used that T is increasing. Next, we split the integral over Z+ into two parts: integral from 0 to z0 and from z0 to
∞. The first integral is clearly finite since it is an integral of a continuous function over a compact set in R. Thereafter,
integrating the inequality on a slope, we get ∀ z > z0: T (z) ≤Mz + T (z0). Then:∫ ∞

z0

eλT (z)p(z) dz ≤ eT (z0)

∫ ∞
z0

eλMzp(z) dz. ∀ λ > 0 (7)

≤ eT (z0)

∫
Z

eλMzp(z) dz, ∀ λ > 0 (8)

Choose λ such that λM = λ1. Then, the integral must be finite because p is light-tailed leading to the desired contradiction.

Proposition 1. Let p be a density with fQp ∼ (1− u)α as u→ 1−. Then, 0 < α < 1 iff supp(p) = [a, b] where b <∞
i.e. p has a support bounded from above.

Proof. Let 0 < α < 1.

fQp(u) ∼ (1− u)α ⇐⇒ Q(u) ∼ (1− u)δ + c, 0 < δ < 1, c is a finite constant
⇐⇒ lim

u→1−
Q(u)→ c

⇐⇒ F−1
p (1) = c ⇐⇒ p has support bounded from above.

A similar argument proves the reverse direction.

Proposition 3. Let p be a distribution with Qp(u) ∼ (1 − u)−γ as u → 1−. Then,
∫∞
z0
zωp(z)dz exists and is finite for

some z0 iff ω < 1
γ .

Proof. ∫ ∞
z0

zωp(z)dz exists ⇐⇒
∫ 1

u0

Qωp (u) du exists for some u0 > 0 (9)

⇐⇒
∫ 1−ε

u0

Qωp (u) du exists &

∫ 1

1−ε
Qωp (u) du exists (10)
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The first integral is finite because the integrand is non-singular. For the second integrand, we can use the asymptotic
behaviour of the quantile function by choosing ε very close to 1. Subsequently, the integral exists and converges if and only
if 1− ωγ > 0 ⇐⇒ ω < 1

γ .

Proposition 4. Let p be a ω−1
p −heavy distribution, q be a ω−1

q −heavy distribution and T be a diffeomorphism such that
q := T#p. Then for small ε > 0, T (z) = o(|z|ωp/ωq−ε).

Proof. The integral

Eq[|x|ωq−ε] =

∫
R

|x|ωq−εq(x) dx (11)

=

∫
R

|T (z)|ωq−εp(z) dz (12)

converges for 0 < ε < ωq, because q is ω−1
q -heavy. Because T is a univariate diffeomorphism, it is a strictly monotone

function. Without loss of generality, let us consider T to be positive increasing function and investigate the right asymptotic.
Consider the function T (z)ωq−ε/zωp for big positive z. Assume there is a sequence {zi}∞i=1, such that limi zi = +∞ and
the sequence T (zi)

ωq−ε/z
ωp
i does not converge to zero. In other words, there exists a > 0, such that for any N > 0 there

exists zj > N , such that T (zj)
ωq−ε/z

ωp
j > a. Let us work with this infinite sub-sequence {zj}. Because T (z) is increasing

function, we can estimate its integral from the left by its left Riemannian sum with respect to the sequence of points {zj}:∫ ∞
N

T (z)ωq−εp(z) dz ≥
∑
j

T (zj)
ωq−εp(∆zj) > a

∑
j

z
ωp
j p(∆zj).

Since, p is ω−1
p −heavy, the series on the right hand side diverges as a left Riemannian sum of a divergent integral. But

this contradicts to the convergence of the integral on the left hand side. Hence, our assumption was wrong and for all
sequences {zi} we have: limT (zi)

ωq−ε/z
ωp
i = 0. Hence, |T (z)|ωq−ε = o(|z|ωp) which leads to the desired result that

|T (z)| = o(|z|ωp/ωq−ε).

Proposition 5. Under the same assumptions as in Lemma 2 (App.B), if X ∼ εd(0, I, FR) is ω−1-heavy, then the conditional
distribution of X2|(X1 = x1) is (ω + d1)−1-heavy where X1 ⊆ Rd1 .

Proof. The density function of the conditional p(x|X1 = x1) is proportional to gR((x − µ∗)TΣ∗−1(x − µ∗)), where
x ∈ Rd2 and gR is the same function as for the distribution of X (see (Cambanis et al., 1981)). Then, because it is a
d2-dimensional elliptical distribution, it is α-heavy iff µl =

∫∞
0
rl+d2−1gR(r2)dr < ∞ for all 0 < l < α. It is given

that X is ω−1-heavy, which is equivalent to
∫∞

0
rl+d−1gR(r2)dr <∞, ∀0 < l < ω. Because d = d1 + d2, one gets that∫∞

0
rl̃+d2−1gR(r2)dr <∞, ∀ 0 < l̃ < ω + d1, hence X2|X1 = x1 is (ω + d1)−1-heavy.

Theorem 3. Let Z ⊆ Rd be a random variable with density function p that is light-tailed and X ⊆ Rd be a target random
variable with density function q that is heavy-tailed. Let T : Z→ X be such that q = T#p, then T cannot be a Lipschitz
function.

Proof. On the contrary, assume that T is M−Lipschitz. Since q(x) is heavy tailed we have that ∀ λ > 0∫
x

eλ‖x‖q(x) dx =∞ (13)

=⇒
∫
z

eλ‖T (z)‖p(z) dz =∞ (14)∫
z

eλ‖T (z)‖p(z) dz ≤
∫
z

eλM‖z‖p(z) dz (15)

Since p(z) is light-tailed there exists a λ > 0 such that the right hand side of the equation above is finite. This gives us the
required contradiction.

Corollary 3. Under the same set-up as in Theorem 3, there exists an index i ∈ [d] such that ‖∇zTi‖ is unbounded.
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Proof. We will prove this using contradiction; assume that ∀(i, j) ∈ [d]2, ∂Ti
∂zj
≤ M < ∞. Assume for simplicity that

T(0) = c <∞. Therefore, we have

Ti(z)− Ti(0) =

∫ z

r(0→z):0

∇Ti · d~r (16)

=⇒ |Ti(z)− Ti(0)| ≤M
d∑
i=1

|zi| (17)

Since, q(z) is heavy tailed, ∃ u ∈ B1 such that ∀ κ > 0∫
Rd
eκu

Txq(x) dx =∞ (18)

i.e.

∫
Rd
eκu

TT(z)p(z) dz =∞ [ change of variables ] (19)

We have ∫
Rd
eκu

TT(z)p(z) dz =

∫
Rd

d∏
i=1

eκuiTi(z)p(z) dz (20)

≤ C
∫
Rd

d∏
i=1

eκ|ui||Ti(z)|p(z) dz, [ C = finite constant ] (21)

≤ C
∫
Rd

d∏
i=1

eκM
∑d
i=1 |ui||zi|p(z) dz, [ u = max |ui| ] (22)

≤ C̃
∫
Rd
eκM

∑d
i=1 |ui||zi|p(z) dz (23)

= C̃

∫
Rd
eκM

∑d
i=1 sign(zi)|ui|zip(z) dz (24)

Partition Rd into 2d sets Uk, k ∈ [2d], i.e. Rd = ∪2d

k=1Uk such that if a = (a1, a2, · · · , ad) ∈ Ui, and
b = (b1, b2, · · · , bd) ∈ Uj , i 6= j, then there exists at least one index m ∈ [d] such that sign(am) 6= sign(bm).
Subsequently, we can rewrite the integral above as

C̃

∫
Rd
eκM

∑d
i=1 sign(zi)|ui|zip(z) dz = C̃

2d∑
k=1

∫
Uk

eκM
∑d
i=1 sign(zi)|ui|zip(z) dz (25)

= C̃

2d∑
k=1

∫
Uk

eκMwT zp(z) dz, wi = sign(zi) · |ui| (26)

(27)

We will prove that each integral over the set Uk is finite.∫
Uk

eκMwT zp(z) dz ≤
∫
Rd
eκMwT zp(z) dz (28)

Since p(z) is light-tailed, we know that for any u ∈ B1, there exists a λ > 0 such that
∫
Rd
eλu

T zp(z) dz <∞. Choose any
u ∈ B1, then for λ = κM/‖w‖ we have that the above integral is finite. This directly implies that

2d∑
k=1

∫
Uk

eκMwT zp(z) dz <∞ (29)

Hence, we have our contradiction.
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Proposition 6. Let Z ∼ εd(0, I, FS) and X ∼ εd(0, I, FR) have densities p and q respectively where FR is heavier tailed
than FS . If T : Z→ X is an increasing triangular map such that q := T#p, then all diagonal entries of ∇T and det|∇T|
are unbounded.

Proof. We need to show that

lim
zj→∞

∂Tjj
∂zj

= lim
zj→∞

fQp,j|<j

fQq,j|<j
→∞, ∀ j ∈ [d] (30)

Thus, all we need to show is that the generating variate R∗ of the conditional distribution for the target is heavier than the
generating variate S∗ of the conditional distribution of the source. From §3, we know that the tail exponent in the asymptotics
of the density quantile function characterize the degree of heaviness. Furthermore, we also know that asymptotical behaviour
of the density quantile function is directly related to the asymptotical behaviour of the density function since if f is a
density function, the cdf is given by F (x) =

∫
f(x) dx, the quantile function therefore is Q = F−1 and the density

quantile function is the reciprocal of the derivative of the quantile function i.e. fQ = 1/Q′. Hence, we need to ensure that
asymtotically, the density of R∗ is heavier than the density of S∗. Using the result of the cdf of a conditional distribution as
given by Eq.(15) in (Cambanis et al., 1981) we have that asymptotically

fR∗(x) = Cxd1−dfR(x) (31)

where d1 is the dimension of the partition that is being conditioned upon. Since, R is heavier tailed than S, we have that R∗

is heavier tailed than S∗ for all the conditional distributions.

Theorem 4. Let p be a light-tailed density and T be a triangular transformation such that Tj(zj ; z<j) = σj · zj + µj . If,
σj(z<j) is bounded above and µj(z<j) is Lipschitz then the target density q := T#p is light-tailed.

Proof. Here, we will prove the result in two-dimensions and the higher-dimensional proof will follow directly. Following
the definition of class H and L as given in the beginning of Section 3, we will show that for all direction vectors v ∈ B
where B := {v : ‖v‖ = 1}, the univariate random variable vTx ∈ L i.e. there is no direction on the hyper-sphere where
the marginal distribution of the push-forward random variable is heavy-tailed.∫

x

exp(λ · vTx)q(x) dx =

∫
z

exp(λ · vTT(z))p(z) dz

=

∫
z

exp(λv1z1 + λv2 · σ · z2 + λv2 · µ)p(z) dz

≤
∫
z

exp(λv1z1 + λv2 ·B · z2 + λv2 ·M · z1)p(z) dz

=

∫
z

exp(λ̃ · uT z)p(z) dz <∞, ∀ λ̃ > 0,∀u ∈ B

where B is the upper bound of σ(·), M is the Lipschitz constant of µ(·) and the final inequality follows from the fact that
p(z) is a light-tailed distribution.

B. Useful Results, Figures, and Examples
Example 2. Let p ∼ N (0, 1) and q ∼ t1(0, 1). Then, T such that q := T#p is given by:

T (z) = G−1 ◦ F = tan
(π

2
erf(

z√
2

)
)

&, T ′(z) =
√
πe−

z2

2 sec2
(π

2
erf(

z√
2

)
)

where erf(t) = 2√
π

∫ t
0
e−s

2

ds is the error function. Furthermore, fQp(u) ∼ (1− u)
(
− 2 log(1− u)

)1/2
and fQq(u) ∼

(1− u)2 and hence, limz→∞ T ′(z) = limu→1−(1− u)−1
(
− 2 log(1− u)

)1/2 →∞.
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Similarly, for p ∼ uniform[0, 1]:

T (z) = G−1 ◦ F = tan
(
π(z − 1

2
)
)

&, T ′(z) = π sec2
(
π(z − 1

2
)
)

and fQp(u) = 1. Thus, limz→∞ T ′(z) = limu→1−(1− u)−2 →∞.

Example 3 (Pushing uniform to normal). Let p be uniform over [0, 1] and q ∼ N (µ, σ2) be normal distributed. The unique
increasing transformation

T (z) = G−1 ◦ F = µ+
√

2σ · erf−1(2z − 1)

= µ+
√

2σ ·
∞∑
k=0

πk+1/2ck
2k + 1

(z − 1
2 )2k+1,

where erf(t) = 2√
π

∫ t
0
e−s

2

ds is the error function, which was Taylor expanded in the last equality. The coefficients c0 = 1

and ck =
∑k−1
m=0

cmck−1−m
(m+1)(2m+1) . We observe that the derivative of T is an infinite sum of squares of polynomials. Both

uniform and normal distributions are considered “light-tailed” (all their higher moments exist and are finite). However,
an increasing transformation from uniform to normal distribution has unbounded slope. Density quantile functions help
us to reveal this precisely: fQp(u) = 1 and fQq(u) ∼ (1− u)

(
− 2 log(1− u)

)1/2
i.e. Normal distribution is “relatively”

heavier tailed than uniform distribution explaining the asymptotic divergence of this transformation. However, note that this
characterization does not follow immediately from Theorem 2. Indeed, density quantiles provide a more granular definition
of heavy-tailedness based on the tail-exponent α and shape exponent β.

Lemma 1 (Marginal distributions of an elliptical distribution are elliptical, (Frahm, 2004)). Let X = (X1,X2) ∼
εd(µ,Σ, FR) where X1 ⊆ Rd1 and X2 ⊆ Rd2 partition X such that d1 + d2 = d. Let µ1 ∈ Rd1 ,µ2 ∈ Rd1

and Σ11 ∈ Rd1×d1 ,Σ12 ∈ Rd1×d2 ,Σ22 ∈ Rd2×d2 be the corresponding partitions of µ and Σ respectively. Then,
Xi ∼ εdi(µi,Σii, FR), i ∈ {1, 2}.
Lemma 2 (Conditional distributions of an elliptical distribution are elliptical, (Cambanis et al., 1981; Frahm, 2004)).
Let X ∼ εd(µ,Σ, FR) where µ = (µ1,µ2) ∈ Rd and Σ ∈ Rd×d is p.s.d with rank(Σ) = r and Σ = AAT where

X
d
= µ +RAU (r). Further, let X1 ⊆ Rd1 and X2 ⊆ Rd2 partition X such that d1 + d2 = d. Let µ1 ∈ Rd1 ,µ2 ∈ Rd2 and

Σ11 ∈ Rd1×d1 ,Σ12 ∈ Rd1×d2 ,Σ22 ∈ Rd2×d2 be the corresponding partitions of µ and Σ respectively. If the conditional
random vector X2|(X1 = x1) exists then

X2|(X1 = x1)
d
= µ∗ +R∗Σ∗U (d2)

where µ∗ = µ2 + Σ21Σ−1
11 (x1 − µ1), Σ∗ = Σ22 + Σ21Σ−1

11 Σ12, R
∗ =

((
R2 − h(x1)

)1/2|X1 = x1

)
where h(x1) =

(x1 − µ1)Σ−1
11 (x1 − µ1)T .
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Figure 6. Results for SOS-Flows with degree of polynomial r = 2 for two and three blocks. The first and last column plots the samples
from the source (Gaussian) and target (student-t) distribution respectively. The two rows from top to bottom in second-fourth columns
correspond to results from transformations learned using two, and three compositions (or blocks). The second and third column depict the
quantile and log-quantile (for clearer illustration of differences) functions of the source (orange), target (blue), and estimated target (green)
and the fourth column plots the samples drawn from the estimated target density. The estimated target quantile function matches exactly
with the quantile function of the target distribution illustrating that the higher-order polynomial flows like SOS flows can capture heavier
tails of a target. This is further reinforced by their respective tail-coefficients which were estimated to be γsource = 0.15, γtarget = 0.81,
γestimated−target,2 = 0.76, γestimated−target,3 = 0.81. Best viewed in color.


