
Generalization to New Actions in Reinforcement Learning - Appendix

A. Environment Details
A.1. Grid World

The Grid World environment, based on Chevalier-Boisvert
et al. (2018), consists of an agent and a randomly placed
lava wall with an opening, as shown in Figure 1. The lava
wall can either be horizontal or vertical. The agent spawns
in the top left corner, and its objective is to reach the goal
in the bottom-right corner of the grid while avoiding any
path through lava. The agent can move using 5-step skills
composed of steps in one of the four directions (Up, Down,
Left, and Right). An episode is terminated when the agent
uses a maximum of 10 actions (50 moves), or the agent
reaches the goal (success) or lava wall (failure).

State: The state space is a flattened version of the 9x9 grid.
Each element of the 81-dimensional state contains an integer
ID based on whether the cell is empty, wall, agent, goal,
lava, or subgoal.

Actions: An action or skill of the agent is a sequence of
5 consecutive moves in 4 directions. Hence, 45 = 1, 024
total actions are possible. Once the agent selects an action,
it executes 5 sequential moves step-by-step. During a skill
execution, if the agent hits the boundary wall, it will stay in
the current cell, making a null interaction. If the agent steps
on lava during any action, the game will be terminated.

Reward: Grid world provides a sparse subgoal reward on
passing the subgoal for the first time and a sparse goal re-
ward when the agent reaches the goal. The goal reward is
discounted based on the number of actions taken to encour-
age a shorter path to the goal. More concretely,

R(s) = λSubgoal · 1Subgoal + (1− λGoal
Ntotal
Nmax

) · 1Goal
(1)

where λSubgoal = 0.1, λGoal = 0.9, Nmax = 50,
Ntotal = number of moves to reach the goal.

Action Set Split: The whole action set is randomly divided
into a 2:1:1 split of train, validation, and test action sets.

Action Observations: The observations about each action
demonstrate an agent performing the 5-step skill in an 80x80
grid with no obstacles. Each observation is a trajectory
of states resulting from the skill being applied, starting
from a random initial state on the grid. A set of 1024
such trajectories characterizes a single skill. By observing
the effects caused on the environment through a skill, the

action representation module can extract the underlying skill
behavior, which is further used in the actual navigation task.
Different types of action representations are described and
visualized in Section B.

A.2. Recommender System

We adapt the Recommender System environment from Ro-
hde et al. (2018) that simulates users responding to product
recommendations (the schematic shown in Figure 2). Every
episode, the agent makes a series of recommendations for a
new user to maximize their cumulative click-through rate.
Within an episode, there are two types of states a user can
transition between: organic session and bandit session. In
the bandit session, the agent recommends one of the avail-
able products to the user, which the user may select. After
this, the user can transition to an organic session, where the
user independently browses products. The agent takes action
(product recommendation) whenever the user transitions to
the bandit session. Every user interaction with organic or
bandit sessions varies their preferences slightly, resulting in
a change to the user’s vector. As a result, the agent cannot
repetitively recommend the same products in an episode,
since the user is unlikely to click it again. The environ-
ment provides engineered action representations, which are
also used by the environment to determine the likelihood
of a user clicking on the recommendation. The episode
terminates after 100 recommendations or stochastically in
between the session transitions.

State: The state is a 16-dimensional vector representing
the user, vuser. Every episode, a new user is created with
a vector vuser ∼ N (0, I). After each step in the episode,
the user transitions between organic and bandit sessions,
where the user vector is perturbed by resampling vuser ∼
N (vuser, σ1σ2I), where σ1 = 0.1 and σ2 ∼ N (0, 1).

Actions: There are a total of 10,000 actions (products) to
recommend to users. Each action is associated with a 16
dimension representation, c ∼ N (0, I). The selected prod-
uct’s representation and the current user vector determine
the probability of a click. The agent’s objective is to recom-
mend articles that maximize the user’s click-through rate.
The probability of clicking a recommended product i with
action representation ci is given by:

pclick(vuser, ci) = f(ci · vuser + µi),where
f(x) = σ(a ∗ σ(b ∗ σ(c ∗ x)− d)− e),

(2)

where a = 14, b = 2, c = 0.3, d = 2, e = 6, σ is the



Generalization to New Actions in Reinforcement Learning

State

Action (Skill) RDDDD DRRUU UUDRR RDDDD

State

Action (Skill) RURRD DLLDD LDRRR RUUUR
(Null Interaction with Wall) (Death from Lava)

(Reached Goal)(Pass Subgoal)

Figure 1. Grid World Environment: 9x9 grid navigation task. The agent is the red triangle, and the goal is the green cell. The environment
contains one row or column of lava wall with a single opening acting as a subgoal (blue). Each action consists of a sequence of 5
consecutive moves in one of the four directions: U(p), D(own), R(ight), L(eft).

Environment

Agent

User

Organic Session

Update vuser

Bandit Session

vuser

Recommend 
Product

Click?

Reward = 1 or 0

Figure 2. Recommender System schematic: The user transitions
stochastically between two sessions: organic and bandit. Each tran-
sition updates the user vector. Organic sessions simulate the user
independently browsing other products. Bandit sessions simulate
the agent recommending products to the current user. A reward is
given if the user clicks on the recommended product.

sigmoid function, · denotes a vector dot product. Here, µi
is an action-specific constant kept hidden from the agent to
simulate partial observability, as would be the case in real-
world recommender systems. Constants used in the function
f make the click-through rate, pclick, to be a reasonable
number, adapted and modified from Rohde et al. (2018).

In Section C.5, we also provide results on the fully observ-
able recommender system environment, where the agent has
access to µi as well. Concretely, µi is concatenated to ci
to form the action representation which the learning agent
utilizes to generalize.

Reward: There is a dense reward of 1 on every recommen-
dation that receives a user click, which is determined by
pclick computed in Eq 2.

Action Set Split: The 10,000 products are randomly divided
into a 2:1:1 split of train, validation, and test action sets.

A.3. Chain REAction Tool Environment (CREATE)

Inspired by the popular video game, The Incredible Machine,
Chain REAction Tool Environment (CREATE) is a physics-
based puzzle where the objective is to get a target ball (red)
to a goal position (green), as depicted in Figure 3. Some
objects start suspended in the air, resulting in a falling move-
ment when the game starts. The agent is required to select
and place tools to redirect the target ball towards the goal,
often using other objects in the puzzle (like the blue ball in
Figure 3). The agent acts every 40 physics simulation steps
to make the task reasonably challenging and uncluttered. An
episode is terminated when the agent accomplishes the goal,
or after 30 actions, or when there are no moving objects
in the scene, ending the game. CREATE was created with
the Pymunk 2D physics library (Blomqvist) and Pygame
physics engine (Shinners).

CREATE environment features 12 tasks, as shown in Fig-
ure 8. Results for 3 tasks are shown in the main paper and
9 others in Figure 8. Concurrently developed related envi-
ronments (Allen et al., 2019; Bakhtin et al., 2019) focus on
single-step physical reasoning with a few simple polygon
tools. In contrast, CREATE supports multi-step RL, features
many diverse tools, and requires continuous tool placement.

State: At each time step, the agent receives an 84x84x3
pixel-based observation of the game screen. Here, each orig-
inally colored observation is turned into gray-scale and the



Generalization to New Actions in Reinforcement Learning

State

Action Fan
(Hit Target Ball) (Reach Goal)(Initial State)

Belt Funnel Trampoline Lever

Figure 3. CREATE Push Environment: The blue ball falls into the scene and is directed towards the target ball (red), which is pushed
towards the goal location (green star). This is achieved with the use of various physical tools that manipulate the path of moving objects in
peculiar ways. At every step, the agent decides which tool to place and the (x, y) position of the tool on the screen.

past 3 frames are stacked channel-wise to preserve velocity
and acceleration information in the state.

Actions: In total, CREATE consists of 2,111 distinct tools
(actions) belonging to the classes of: ramp, trampoline, lever,
see-saw, ball, conveyor belt, funnel, 3-, 4-, 5-, and 6-sided
polygon, cannon, fan, and bucket. 2,111 tools are obtained
by generating tools of each class with appropriate variations
in parameters such as angle, size, friction, or elasticity. The
parameters of variation are carefully chosen to ensure that
any resulting tool is significantly different from other tools.
For instance, no two tools are within 15◦ difference of each
other. There is also a No-Operation action, resulting in no
tool placement.

The agent outputs in a hybrid action space consisting of (1)
the discrete tool selection from the available tools, and (2)
(x, y) coordinates for placing the tool on the game screen.

Reward: CREATE is a sparse reward environment where
rewards are given for reaching the goal, reaching any sub-
goal once, and making the target ball move in certain tasks.
Furthermore, a small reward is given to continue the episode.
There is a penalty for trying to overlap a new tool over ex-
isting objects in the scene and an invalid penalty for placing
outside the scene. The agent receives the following reward:

R(s, a) = λalive + λGoal · 1Goal ·
λSubgoal · 1Subgoal · λtarget hit · 1target hit+

λinvalid · 1invalid + λoverlap · 1overlap

(3)

where λalive = 0.01, λGoal = 10.0, λSubgoal = 2.0,
λtarget hit = 1, and λinvalid = λoverlap = −0.01.

Action Set Split: The tools are divided into a 2:1:1 split
of train, validation, and test action sets. In Default Split
presented in the main experiments, the tools are split such
that the primary parameter (angle for most) is randomly
split between training and testing. This ensures that the test
tools are considerably different from the training tools in
the same class. The validation set is obtained by randomly
splitting the testing set into half. In Full Split, 1,739 of the

total tools are divided into a 2:1:1 split by tool class, as
described in Table 1.

Train Ramp, Trampoline, Ball, Bouncy Ball,
See-saw, Cannon, Bucket

Validation
and Test

Triangle, Bouncy Triangle, Lever,
Fan, Conveyor Belt, Funnel

Table 1. Tool classes in the CREATE Full split.

Additionally, we used a total of 7566 tools generated at 3◦

angle differences for analysis experiments to study general-
ization properties. HVAE was trained as an oracle encoder
over the entire action set, to get action representations suit-
able for all three analyses. The policy’s performance was
studied independently by training it on 762 distinct tools
with at least 15◦ angle differences and evaluated based on
analysis-specific action sampling from the rest of the tools
(e.g. at least 5◦ apart).

Action Observations: Each tool’s observations are ob-
tained by testing its functionality through scripted inter-
actions with a probe ball. The probe ball is launched
at the tool from various angles, positions, and speeds.
The tool interacts with the ball and changes its trajec-
tory depending on its properties, e.g. a cannon will catch
and re-launch the ball in a fixed direction. Thus, these
deflections of the ball can be used to infer the charac-
teristics of the tool. Examples of these action obser-
vations are shown at https://sites.google.com/
view/action-generalization/create.

The collected action observations have 1024 ball trajecto-
ries of length 7 for each tool. The trajectory is composed
of the environment states, which can take the form of either
the 2D ball position (default) or 48x48 gray-scale images.
The action representation module learns to reconstruct the
corresponding data mode, either state trajectories or videos,
for obtaining the corresponding action representations. Dif-
ferent types of action representations used are described and

https://sites.google.com/view/action-generalization/create
https://sites.google.com/view/action-generalization/create


Generalization to New Actions in Reinforcement Learning

visualized in Section B.

A.4. Shape Stacking

In Shape Stacking, the agent must place shapes to build
a tower as high as possible. The scene starts with two
cylinders of random heights and colors, dropped at random
locations on a line, which the agent can utilize to stack
towers. For each action, the agent selects a shape to place
and where to place it. The agent acts every 300 physics
simulator steps to give time for placed objects to settle into
a stable position. The episode terminates after 10 shape
placements.

State: The observation at each time step is an 84x84
grayscale image of the shapes lying on the ground. We
stack past 4 frames to preserve previous observations in the
state.

Actions: The action consists of a discrete selection of the
shape to place, the x position on the horizontal axis to
drop the shape, and a binary episode termination action.
The height of the drop is automatically calculated over the
topmost shape, enabling a soft drop. If a shape has already
been placed, trying to place it again does nothing. There
are a total of 810 shapes of classes: triangle, tetrahedron,
rectangle, cone, cylinder, dome, arch, cube, sphere, and
capsule. These shapes are generated by varying the scale
and vertical orientation in each shape class. The parameter
variance is carefully chosen to ensure all the shapes are
sufficiently different from each other.

In Figure 13, we compare various hybrid action spaces
with shape selection. We study different ways of placing a
shape: dropping at a fixed location, or deciding x-position,
or deciding (x, y)-positions.

Reward: To encourage stable and tall towers, there is a
sparse reward at episode end, for the final height of the
topmost shape in the scene, added to the average heights of
all N shapes in the scene:

R(s) = (λtopmax(hi) + λavg
1

N

∑
i

hi) · 1Done, (4)

where hi is the height of shape i and λtop = λavg = 0.5.

Action Set Split: The shapes are divided into a 2:1:1 split
of train, validation, and test action sets. In Default Split pre-
sented in the main experiments, the shapes are split such that
the primary parameter of scale is randomly split between
training and testing. This ensures that test tools are consider-
ably different in scale from the train tools in the same class.
The validation set is obtained by randomly splitting the test
set into half. In Full Split, the split is determined by shape
class, as shown in Table 2.

Train Domes, Rectangles, Capsules, Triangles,
Arches, Spheres

Validation
and Test

Cylinders, Tetrahedrons, Cubes, Cones,
Angled-Rectangles, Angled-Triangles

Table 2. Shape classes in the Shape Stacking Full split.

Action Observations: In Shape Stacking the functional-
ity of each action is characterized by the physical appear-
ance of the shape. Thus, the action observations consist
of images of the shape from various camera angles and
heights. Each shape has 1,024 observed images of res-
olution 84x84. Examples of these action observations
are shown at https://sites.google.com/view/
action-generalization/shape-stacking.

B. Visualizing Action Representations
In this work, we train and evaluate a wide variety of ac-
tion representations based on environments, data-modality,
presence or absence of hierarchy in action encoder, and dif-
ferent action splits. We describe these in detail and provide
t-SNE visualizations of the inferred action representations
of previously unseen actions. These visualizations show
how our model can extract information about properties
of the actions, by clustering similar actions together in the
latent space. Unless mentioned otherwise, the HVAE model
is used to produce these representations.

Grid World: Figure 4 shows the inferred action or skill
representations in Grid World. The actions are colored by
the relative change in the location of the agent after applying
the skill. For example, the skill ”Up, Up, Up, Right, Down”
would translate the agent to the upper right quadrant from
the origin, hence visualized in red color. All learned action
representations are 16-dimensional. We plot the following
action representations:

• State Trajectories (default): HVAE encodes action obser-
vations consisting of trajectories of 2D (x, y) coordinates
of the agent on the 80x80 grid.

• Non-Hierarchical VAE (baseline): A standard VAE en-
codes all the state-based action observations individually,
and then computes the action representation by taking
their mean.

• One-hot (alternate): State is represented by two 80-
dimensional one-hot vectors of the agent’s x and y coor-
dinates on the 80x80 grid. Reconstruction is based on a
softmax cross-entropy loss over the one-hot observations
in the trajectory.

• Engineered (alternate): These are 5-dimensional repre-
sentations containing the ground-truth knowledge of the
five moves (up, down, left, right) that constitute a skill.
The clustering of our learned representations looks com-

https://sites.google.com/view/action-generalization/shape-stacking
https://sites.google.com/view/action-generalization/shape-stacking


Generalization to New Actions in Reinforcement Learning

State Trajectories (Default) Non-Hierarchical VAE EngineeredOne-hot (Alternate Data)

Figure 4. t-SNE Visualization of learned skill representation space for Grid World environment. Colored by the quadrant that the skill
translates the agent to.

Non-Hierarchical VAEState Trajectories (Default) Videos (Alternate Data) Full-split

Figure 5. t-SNE Visualization of learned tool representation space for CREATE environment. Colored by the tool class.

Viewpoints (Default) Non-Hierarchical VAE Full-split

Figure 6. t-SNE Visualization of learned action representation space for the Shape-stacking environment. Colored by the shape class.

parable to these oracle representations.

CREATE: Figure 5 shows the inferred action or tool rep-
resentations in CREATE. The actions are colored by tool
class. All action representations are 128-dimensional.

• State Trajectories (default): HVAE encodes action ob-
servation data composed of (x, y) coordinate states of
the probe ball’s trajectory.

• Non-Hierarchical VAE (baseline): A standard VAE
encodes all the state-based action observations individ-
ually, and then computes the action representation by
taking their mean.

• Video (alternate): HVAE encodes action observation

data composed of 84x84 grayscale image-based trajec-
tories (videos) of the probe ball interacting with the
tool. The data is collected identically as the state case,
only the modality changes from state to image frames.

• Full Split: HVAE encodes state-based action observa-
tions, however, the training and testing tools are from
the Full Split experiment. The visualizations show that
even though training tools are vastly different from
evaluation tools, HVAE generalizes and clusters well
on unseen tools.

Shape Stacking: Figure 6 shows the inferred action rep-
resentations in Shape Stacking. The shapes are colored
according to shape class. All action representations are



Generalization to New Actions in Reinforcement Learning

(a) Push (b) Obstacle (c) Seesaw (d) Belt (e) Bucket (f) Cannon

(g) Navigate (h) Collide (i) Moving (j) Ladder (k) Basket (l) Funnel

Figure 7. 12 CREATE tasks. Results on (a) - (c) are in the main paper, while (d) - (l) with our method are in Figure 8.

128-dimensional.

• Viewpoints (default): HVAE encodes action observa-
tions in the form of viewpoints of the shape from dif-
ferent camera angles and positions.

• Non-Hierarchical VAE (baseline): A standard VAE
encodes all the image-based action observations indi-
vidually, and then computes the action representation
by taking their mean.

• Full-split: The training and testing tools are from the
Full Split experiment. Previously unseen shape types
are clustered well, showing the robustness of HVAE.

C. Further Experimental Results
C.1. Additional CREATE Results

Figure 7 visually describes all the CREATE tasks. The ob-
jective is to make the target ball (red) reach the goal (green),
which may be fixed or mobile. Figure 8 demonstrates our
method’s results on the remaining nine CREATE tasks (the
initial three tasks are in the main paper). Strong training and
testing performance on a majority of these tasks shows the
robustness of our method. The developed CREATE environ-
ment can be easily modified to generate more such tasks of
varying difficulties. Due to the diverse set of tools and tasks,
we propose CREATE and our results as a useful benchmark
for evaluating action space generalization in reinforcement
learning.

C.2. Additional Finetuning Results

We present additional results of finetuning and training from
scratch to adapt to unseen actions across all CREATE Ob-
stacle, CREATE Seesaw, Shape Stacking, Grid World, and

Recommender. In the results presented in Figure 9, we ob-
serve the same trend holds where additional training takes
many steps to achieve the performance our method obtains
zero-shot.

C.3. CREATE: No Subgoal Reward

To verify our method’s robustness, we also run experiments
on a version of the CREATE environment without the sub-
goal rewards. The results in Figure 10 verify that even
without reward engineering, our method exhibits strong gen-
eralization, albeit with higher variance in train and testing
performance.

C.4. Auxiliary Policy Alternative Architecture

While in our framework, the auxiliary policy is computed
from the state encoding alone, here we compare to also
taking the selected discrete-action as input to the auxiliary
policy. Comparison of this alternative auxiliary policy to the
auxiliary policy from the main paper is shown in Figure 11.
There are minimal differences in the average success rates
of the two design choices.

C.5. Fully Observable Recommender System

Figure 12 demonstrates our method in a fully observable
recommender environment where the product constant µi
from Eq. 2 is also included in the engineered action rep-
resentation. All methods achieve better training and gen-
eralization performance compared to the original partially
observable Recommender System environment. However,
full observability is infeasible in practical recommender sys-
tems. Therefore, we report the main results on the partially
observed environment.



Generalization to New Actions in Reinforcement Learning

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Belt

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Buckets

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Cannon

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Navigate

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Collide

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Moving

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Ladder

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Basket

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Funnel

Ours Continuous Output Nearest neighbor Ours w/o subsamplingOurs w/o entropy 

Figure 8. Results on the remaining 9 CREATE tasks with the same evaluation details as the main paper. We compare to both the baselines
and ablations from the main paper.

0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

CREATE Obstacle

Discrete Fine-Tune
Ours Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

CREATE Seesaw

Ours Fine-Tune
Discrete Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

0M 1M 2M 3M 4M 5M
Environment Steps

0.0

2.0

4.0

6.0

8.0

He
ig

ht

Shape Stacking

Ours Fine-Tune
Discrete Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

Grid World

Ours Fine-Tune
Discrete Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

0M 1M 2M 3M 4M 5M
Environment Steps

0.0

0.1

0.2

0.3

0.4

CT
R

Recommender

Ours Fine-Tune
Discrete Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

Discrete Fine-TuneOurs Fine-Tune Discrete ScratchOurs ScratchOurs Zero-Shot

Figure 9. Finetuning or training the policy from scratch on the new action space across the remaining 5 tasks not present in the main paper.
The evaluation settings are the same as in the main paper.

C.6. Additional Shape Stacking Results

Figure 13 demonstrates performance on different shape
placement strategies in Shape Stacking using our frame-

work. In No Place, the shapes are dropped at the cen-
ter of the table, and the agent only selects which shape
to drop from the available set. Since there are two ran-
domly placed cylinders on the table, this setting of drop-



Generalization to New Actions in Reinforcement Learning

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

CREATE Subgoal Reward Comparison

Push Obstacle Seesaw

Push - Main Obstacle - Main Seesaw - Main

Figure 10. Comparison of a version of CREATE that does not use
subgoal rewards. The “Main” methods are from the main paper
using subgoal rewards.

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Auxiliary Policy Comparison

Push Obstacle Seesaw

Push - Main Obstacle - Main Seesaw - Main

Figure 11. Comparison of an alternative auxiliary network architec-
ture that is conditioned on the selected discrete action. The “Main”
results are the default results that do not condition the auxiliary
policy on the selected action.

ping in the center gives less control to the agent while
stacking tall towers. Thus we report default results on 1D
Place, where the agent outputs in a hybrid action space
consisting of shape selection and 1D placement through
x-coordinate of the dropping location. The y-coordinate
of the drop is fixed to the center. Finally, in 2D Place, the
agent decides both x and y coordinates to have more con-
trol but makes the task more challenging due to the larger
search space. The evaluation videos of these new settings
are available on https://sites.google.com/view/
action-generalization/shape-stacking.

Figure 13 also shows the results of our method trained and
evaluated on Full Split which was introduced in Table 2.
Poor performance on this split could be explained by the
policy not seeing enough shape classes during training to be
able to generalize well to new shape classes during testing.
This is also expected since this split severely breaks the i.i.d.
assumption essential for generalization (Bousquet et al.,
2003).

Ours 

Ours w/o subsamplingOurs w/o entropy 

Continuous Output Nearest neighbor

Figure 12. Training and testing results on the fully observable ver-
sion of Recommender System with standard evaluation settings.

1D Place (Main) No Place 2D Place Full Split

Figure 13. Comparing different placement strategies in shape stack-
ing and showing performance on the Full Split action split. Results
are using our main method with the standard evaluation details.

C.7. Learning Curves

Figure 14 show the training and validation performance
curves for all methods and environments to contrast the
training process of a policy against the objective of gener-
alization to new actions. The plots clearly show how the
generalization gap varies over the training of the policy.
Ablation curves (last two columns) for some environments
depict that an increase in training performance corresponds
to a drop in validation performance. This is attributed to the
policy overfitting to the training set of actions, which is often
observed in supervised learning. Our proposed regularizing
training procedure aims to avoid such overfitting.

D. Experiment Details
D.1. Implementation

We use PyTorch (Paszke et al., 2017) for our implemen-
tation, and the experiments were primarily conducted on
workstations with 72-core Intel Xeon Gold 6154 CPU and
4 NVIDIA GeForce RTX 2080 Ti GPUs. Each experiment
seed takes about 6 hours (Recommender) to 25 hours (CRE-
ATE) to converge. For logging and tracking experiments,
we use the Weights & Biases tool (Biewald, 2020). All
the environments were developed using the OpenAI Gym
interface (Brockman et al., 2016). The HVAE implemen-

https://sites.google.com/view/action-generalization/shape-stacking
https://sites.google.com/view/action-generalization/shape-stacking


Generalization to New Actions in Reinforcement Learning

Hyperparameter Grid world Recommender CREATE Shape Stacking

HVAE

action representation size 16 16 128 128
batch size 128 - 128 32
epochs 10000 - 10000 5000

Policy

entropy coefficient 0.05 0.01 0.005 0.01
observation space 81 16 84× 84× 3 84× 84× 4
actions per episode 50 500 50 20
total environment steps 4× 107 4× 107 6× 107 3× 106

max. episode length 10 100 30 10
continuous entropy scaling - - 0.1 0.1
PPO batch size 4096 2048 3072 1024

Table 3. Environment-specific hyperparameters

tation is based on the PyTorch implementation of Neural
Statistician (Edwards & Storkey, 2017), and we use RAdam
optimizer (Liu et al., 2019). For training the policy network,
we use PPO (Schulman et al., 2017; Kostrikov, 2018) with
the Adam optimizer (Kingma & Ba, 2015). Further details
can be found in the supplementary code.1

D.2. Hyperparameters

The default hyperparameters shared across all environments
are shown in Table 4 and environment-specific hyperparam-
eters are given in Table 3. We perform linear decay of the
learning rate over policy training.

Hyperparameter Value

HVAE

learning rate 0.001
action observations 1024
MLP hidden layers 3
qφ hidden layer size 128
default hidden layer size 64

Policy

learning rate 0.001
discount factor 0.99
parallel processes 32
hidden layer size 64
value loss coefficient 0.5
PPO epochs 4
PPO clip parameter 0.1

Table 4. General Hyperparameters

1Code available at https://github.com/clvrai/new-
actions-rl

D.2.1. HYPERPARAMETER SEARCH

Initial HVAE hyperparameters were inherited from the im-
plementation of Edwards & Storkey (2017) and PPO hyper-
parameters from Kostrikov (2018). The hyperparameters
were finetuned to optimize the performance on the held-out
validation set of actions. Certain hyperparameters were sen-
sitive to the environment or the method being trained and
were searched for more carefully.

Specifically, entropy coefficient is a sensitive parame-
ter to appropriately balance the ease of reward max-
imization during training versus the generalizability
at evaluation. For each method and environment,
we searched for entropy coefficients in subsets of
{0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}, and selected the
best parameter based on the performance on the validation
set. We found PPO batch size to be an important parameter
affecting the speed of convergence, convergence value, and
variance across seeds. Thus, we searched for the best value
in {1024, 2048, 3072, 4096} for each environment. Total
environment steps are chosen so all the methods and base-
lines can run until convergence.

D.3. Network Architectures

D.3.1. HIERARCHICAL VAE

Convolutional Encoder: When the action observation data
is in image or video form, a convolution encoder is applied
to encode it into a latent state or state-trajectory. Specifi-
cally, for CREATE video case, each action observation is
a 48x48 grayscale video. Thus, each frame of the video
is encoded through a 7-layer convolutional encoder with
batch norm (Ioffe & Szegedy, 2015). Similarly, for Shape
Stacking, the action observation is an 84x84 image, that is
encoded through 9 convolutional layers with batch norm.

https://github.com/clvrai/new-actions-rl
https://github.com/clvrai/new-actions-rl


Generalization to New Actions in Reinforcement Learning

Bi-LSTM Encoder: When the data is in trajectory form
(as in CREATE and Grid World), the sequence of states are
encoded through a 2-layer Bi-LSTM encoder. For CRE-
ATE video case, the encoded image frames of the video are
passed through this Bi-LSTM encoder in place of the raw
state vector. After this step, each action observation is in the
form of a 64-dimensional encoded vector.

Action Inference Network: The encoded action observa-
tions are passed through a 4-layer MLP with ReLU activa-
tion, and then aggregated with mean-pooling. This pooled
vector is passed through a 3-layer MLP with ReLU acti-
vation, and then 1D batch-norm is applied. This outputs
the mean and log-variance of a Gaussian distribution qφ,
which represents the entire action observation set, and thus
the action. This is then used to sample an action latent to
condition reconstruction of individual observations.

Observation Inference Network: The action latent and
individual encoded observations are both passed through
linear layers and then summed up, and followed by a ReLU
nonlinearity. This combined vector is then passed through
two 2-layer MLPs with ReLU followed by a linear layer, to
output the mean and log-variance of a Gaussian distribution,
representing the individual observation conditioned on the
action latent. This is used to sample an observation latent,
which is later decoded back while being conditioned on the
action latent.

Observation Decoder: The sampled observation latent and
its action latent are passed through linear layers, summed
and then followed by a nonlinearity. For non-trajectory data
(as in Shape Stacking), this vector is then passed through a
3-layer MLP with ReLU activation to output the decoded
observation’s mean and log-variance (i.e. a Gaussian dis-
tribution). For trajectory data (as in CREATE and Grid
World), the initial ground truth state of the trajectory is first
encoded with a 3-layer MLP with ReLU. Then an element-
wise product is taken with the action-observation combined
vector. The resulting vector is then passed through an LSTM
network to produce the latents of future states of the trajec-
tory. Each future state latent of the trajectory goes through
a 3-layer MLP with ReLU, to result in the mean and log-
variance of the decoded trajectory observation (i.e. a Gaus-
sian distribution).

Convolutional Decoder: If the observation was originally
an image or video, then the mean of the reconstructed ob-
servation is converted into pixels through a convolutional
decoder consisting of 2D convolutional and transposed-
convolutional layers. For the case of video input, the output
of the convolutional decoder is also channel-wise augmented
with with a 2D pixel mask. This mask is multiplied with
the mean component of the image output (i.e. log-variance
output stays the same), and then added to the initial frame
of the video. This is the temporal skip connection tech-

nique (Ebert et al., 2017), which eases the learning process
with high-dimensional video observation datasets.

Finally, the reconstruction loss is computed using the Gaus-
sian log-likelihood of the input observation data with respect
to the decoded distribution.

D.3.2. POLICY NETWORK

State Encoder fω: When the input state is in image-form
(channel-wise stacked frames in CREATE and Stacking),
fω is implemented with a 5-layer convolutional network,
followed by a linear layer and ReLU activation function.
When the input is not an image, we use 2-layer MLP with
tanh activation to encode the state.

Critic Network V : For image-based states, the output of
the state encoder fω is passed through a linear layer to result
in the value function of the state. This is done to share
the convolutional layers between the actor and critic. For
non-image states, we use 2-layer MLP with tanh activation,
followed by a linear layer to get the state’s value.

Utility Function fν : Each available action’s representation
c is passed through a linear layer and then concatenated
with the output of the state encoder. This vector is fed into
a 2-layer MLP with ReLU activation to output a single logit
for each action. The logits of all the available actions are
then stacked and input to a Categorical distribution. This
acts as the policy’s output and is used to sample actions,
compute log probabilities, and entropy values.

Auxiliary Policy fχ: The output of the state encoder is
also separately used to compute auxiliary action outputs.
For CREATE and Shape Stacking, we have a 2D position
action in [−1, 1]. For such constrained action space, we
use a Beta distribution whose α and β are computed us-
ing linear layers over the state encoding. Concretely, α =
1 + softplus(fcα(fω(s)) and β = 1 + softplus(fcβ(fω(s)),
to ensure their values lie in [1,∞]. This in turn ensures that
the Beta distribution is unimodal with values constrained
in [0,1] (as done in (Chou et al., 2017)), which we then
convert to [-1,1]. The Shape Stacking environment also has
a binary termination action for the agent. This is imple-
mented by passing the state encoding through a linear layer
which outputs two logits (for continuation/termination) of a
Categorical distribution. The auxiliary action distributions
are combined with the main discrete action Categorical dis-
tribution from fν . This overall distribution is used to sample
hybrid actions, compute log probabilities, and entropy val-
ues. Note, the entropy value of the Beta distribution is
multiplied by a scaling factor of 0.1, for better convergence.



Generalization to New Actions in Reinforcement Learning

References
Allen, K. R., Smith, K. A., and Tenenbaum, J. B. The

tools challenge: Rapid trial-and-error learning in physical
problem solving. arXiv preprint arXiv:1907.09620, 2019.
2

Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L.,
and Girshick, R. Phyre: A new benchmark for physical
reasoning. arXiv:1908.05656, 2019. 2

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com. 8

Blomqvist, V. Pymunk. URL http://
www.pymunk.org/. Accessed 2020-02-18. 2

Bousquet, O., Boucheron, S., and Lugosi, G. Introduction to
statistical learning theory. In Summer School on Machine
Learning, pp. 169–207. Springer, 2003. 8

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016. 8

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid, 2018. 1

Chou, P.-W., Maturana, D., and Scherer, S. Improving
stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribution.
In International Conference on Machine Learning, pp.
834–843, 2017. 10

Ebert, F., Finn, C., Lee, A. X., and Levine, S. Self-
supervised visual planning with temporal skip connec-
tions. In Conference on Robot Learning, pp. 344–356,
2017. 10

Edwards, H. and Storkey, A. Towards a neural statisti-
cian. In International Conference on Learning Repre-
sentations, 2017. URL https://openreview.net/
forum?id=HJDBUF5le. 9

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015. 9

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015. 9

Kostrikov, I. Pytorch implementations of re-
inforcement learning algorithms. https:
//github.com/ikostrikov/pytorch-a2c-
ppo-acktr-gail, 2018. 9

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate and
beyond. arXiv preprint arXiv:1908.03265, 2019. 9

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS Autodiff
Workshop, 2017. 8

Rohde, D., Bonner, S., Dunlop, T., Vasile, F., and Karat-
zoglou, A. Recogym: A reinforcement learning envi-
ronment for the problem of product recommendation in
online advertising. arXiv preprint arXiv:1808.00720,
2018. 1, 2

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017. 9

Shinners, P. Pygame. URL http://pygame.org/. Ac-
cessed 2020-02-18. 2

https://www.wandb.com/
http://www.pymunk.org/
http://www.pymunk.org/
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=HJDBUF5le
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
http://pygame.org/


Generalization to New Actions in Reinforcement Learning

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Ours

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Non-hierarchical VAE

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Continuous Output

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Nearest Neighbor

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Ours w/o Entropy

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Push Ours w/o subsampling

(a) CREATE Push

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Ours

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Non-hierarchical VAE

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Continuous Output

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Nearest Neighbor

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Ours w/o Entropy

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle Ours w/o subsampling

(b) CREATE Obstacle

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Ours

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Non-hierarchical VAE

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Continuous Output

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Nearest Neighbor

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Ours w/o Entropy

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Seesaw Ours w/o subsampling

(c) CREATE Seesaw

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

2.0

He
ig

ht

Shape Stacking Ours

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

2.0

He
ig

ht

Shape Stacking Non-hierarchical VAE

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

He
ig

ht

Shape Stacking Continuous Output

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

2.0

4.0

6.0

8.0

He
ig

ht

Shape Stacking Nearest Neighbor

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

2.0
He

ig
ht

Shape Stacking Ours w/o Entropy

0M 1M 2M 3M 4M 6M
Environment Steps

0.0

2.0

4.0

6.0

8.0

He
ig

ht

Shape Stacking Ours w/o subsampling

(d) Shape Stacking

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Ours

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Non-hierarchical VAE

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Continuous Output

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Nearest Neighbor

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Ours w/o Entropy

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

Grid World Ours w/o subsampling

(e) Grid World

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Recommender Ours

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Recommender Continuous Output

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Recommender Nearest Neighbor

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Recommender Ours w/o Entropy

0M 12M 24M 36M 48M 60M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Recommender Ours w/o subsampling

(f) Recommender System

ValidationTraining

Figure 14. Learning curves for all environments and methods showing performance on both the training and validation sets. Each line
shows the performance of 5 random seeds (8 for Grid World) as average value and the shaded region as the standard deviation.


