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Abstract
Random Feature (RF) models are used as efficient
parametric approximations of kernel methods. We
investigate, by means of random matrix theory,
the connection between Gaussian RF models and
Kernel Ridge Regression (KRR). For a Gaussian
RF model with P features, N data points, and a
ridge λ, we show that the average (i.e. expected)
RF predictor is close to a KRR predictor with an
effective ridge λ̃. We show that λ̃ > λ and λ̃ ↘
λ monotonically as P grows, thus revealing the
implicit regularization effect of finite RF sampling.
We then compare the risk (i.e. test error) of the λ̃-
KRR predictor with the average risk of the λ-RF
predictor and obtain a precise and explicit bound
on their difference. Finally, we empirically find
an extremely good agreement between the test
errors of the average λ-RF predictor and λ̃-KRR
predictor.

1. Introduction
In this paper, we consider the Random Feature (RF) model
which is an approximation of Kernel Methods (Rahimi &
Recht, 2008) which has seen many recent theoretical devel-
opements.

The conventional wisdom suggests that to ensure good gen-
eralization performance, one should choose a model class
that is complex enough to learn the signal from the training
data, yet simple enough to avoid fitting spurious patterns
therein (Bishop, 2006). This view has been questioned
by recent developments in machine learning. First, Zhang
et al. (2016) observed that modern neural network models
can perfectly fit randomly labeled training data, while still
generalizing well. Second, the test error as a function of
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parameters exhibits a so-called ‘double-descent’ curve for
many models including neural networks, random forests,
and random feature models (Advani & Saxe, 2017; Spigler
et al., 2018; Belkin et al., 2018; Mei & Montanari, 2019;
Belkin et al., 2019; Nakkiran et al., 2019).

The above models share the feature that for fixed input, the
learned predictor f̂ is random: for neural networks, this is
due to the random initialization of the parameters and/or
to the stochasticity of the training algorithm; for random
forests, to the random branching; for random feature models,
to the sampling of random features. The somehow surpris-
ing generalization behavior of these models has recently
been the subject of increasing attention. In general, the risk
(i.e. test error) is a random variable with two sources of ran-
domness: the usual one due to the sampling of the training
set, and the second one due to the randomness of the model
itself.

We consider the Random Feature (RF) model (Rahimi &
Recht, 2008) with features sampled from a Gaussian Process
(GP) and study the RF predictor f̂ minimizing the regular-
ized least squares error, isolating the randomness of the
model by considering fixed training data points. RF mod-
els have been the subject of intense research activity: they
are (randomized) approximations of Kernel Methods aimed
at easing the computational challenges of Kernel Methods
while being asymptotically equivalent to them (Rahimi &
Recht, 2008; Yang et al., 2012; Sriperumbudur & Szabó,
2015; Yu et al., 2016). Unlike the asymptotic behavior,
which is well studied, RF models with a finite number of
features are much less understood.

1.1. Contributions

We consider a model of Random Features (RF) approximat-
ing a kernel method with kernel K. This model consists
of P Gaussian features, sampled i.i.d. from a (centered)
Gaussian process with covariance kernel K. For a given
training set of size N , we study the distribution of the RF
predictor f̂ (RF )

λ with ridge parameter λ > 0 (L2 penalty
on the parameters) and denote it by λ-RF. We show the
following:

• The distribution of f̂ (RF )
λ is that of a mixture of Gaus-

sian processes.



Implicit Regularization of Random Feature Models

• The expected RF predictor is close to the λ̃-KRR (Ker-
nel Ridge Regression) predictor for an effective ridge
parameter λ̃ > 0.

• The effective ridge λ̃ > λ is determined by the number
of features P , the ridge λ and the Gram matrix of K
on the dataset; λ̃ decreases monotonically to λ as P
grows, revealing the implicit regularization effect of
finite RF sampling. Conversely, when using random
features to approximate a kernel method with a specific
ridge λ∗, one should choose a smaller ridge λ < λ∗ to
ensure λ̃(λ) = λ∗.

• The test errors of the expected λ-RF predictor and of
the λ̃-KRR predictor f̂ (K)

λ̃
are numerically found to be

extremely close, even for small P and N .

• The RF predictor’s concentration around its expecta-
tion can be explicitly controlled in terms of P and
of the data; this yields in particular E[L(f̂

(RF )
λ )] =

L(f̂
(K)

λ̃
) +O(P−1) as N,P → ∞ with a fixed ratio

γ = P/N where L is the MSE risk.

Since we compare the behavior of λ-RF and λ̃-KRR pre-
dictors on the same fixed training set, our result does not
rely on any probabilistic assumption on the training data (in
particular, we do not assume that our training data is sam-
pled i.i.d.). While our proofs currently require the features
to be Gaussian processes, we are confident that they could
be generalized to a more general setting (Louart et al., 2017;
Benigni & Péché, 2019).

1.2. Related works

Generalization of Random Features. The generalization
behavior of Random Feature models has seen intense study
in the Statistical Learning Theory framework. Rahimi &
Recht (2009) find that O(N) features are sufficient to en-
sure the O( 1√

N
) decay of the generalization error of Kernel

Ridge Regression (KRR). Rudi & Rosasco (2017) improve
on their result and show that O(

√
N logN) features is actu-

ally enough to obtain the O( 1√
N

) decay of the KRR error.

Hastie et al. (2019) use random matrix theory tools to
compute the asymptotic risk when both P,N → ∞ with
P
N → γ > 0. When the training data is sampled i.i.d. from
a Gaussian distribution, the variance is shown to explode
at γ = 1. In the same linear regression setup, Bartlett et al.
(2019) establish general upper and lower bounds on the
excess risk. Mei & Montanari (2019) prove that the double-
descent (DD) curve also arises for random ReLU features,
and adding a ridge suppresses the explosion around γ = 1.

Double-descent and the effect of regularization. For the
cross-entropy loss, Neyshabur et al. (2014) observed that
for two-layer neural networks the test error exhibits the

double-descent (DD) curve as the network width increases
(without regularizers, without early stopping). For MSE and
hinge losses, the DD curve was observed also in multilayer
networks on the MNIST dataset (Advani & Saxe, 2017;
Spigler et al., 2018). Neal et al. (2018) study the variance
due to stochastic training in neural networks and find that
it increases until a certain width, but then decreases down
to 0. Nakkiran et al. (2019) establish the DD phenomenon
across various models including convolutional and recur-
rent networks on more complex datasets (e.g. CIFAR-10,
CIFAR-100).

Belkin et al. (2018; 2019) find that the DD curve is not pe-
culiar to neural networks and observe the same for random
Fourier features and decision trees. In Geiger et al. (2019),
the DD curve for neural networks is related to the variance
associated with the random initialization of the Neural Tan-
gent Kernel (Jacot et al., 2018); as a result, ensembling is
shown to suppress the DD phenomenon in this case, and the
test error stays constant in the overparameterized regime.
Recent theoretical work (d’Ascoli et al., 2020) study the
same setting and derive formulas for the asymptotic error,
relying on the so-called replica method.

General Wishart Matrices. Our theoretical analysis re-
lies on the study of the spectrum of the so-called general
Wishart matrices of the form WΣWT (for N × N ma-
trix Σ and P × N matrix W with i.i.d. standard Gaus-
sian entries) and in particular their Stieltjes transform
mP (z) = 1

P Tr
(
WΣWT − zIP

)−1
. A number of asymp-

totic results (Silverstein, 1995; Bai & Wang, 2008) about
the spectrum and Stieltjes transform of such matrices can be
understood using the asymptotic freeness of WTW and Σ
(Gabriel, 2015; Speicher, 2017). In this paper, we provide
non-asymptotic variants of these results for an arbitrary ma-
trix Σ (which in our setting is the kernel Gram matrix); the
proofs in our setting are detailed in the Supp. Mat.

1.3. Outline

The rest of this paper is organized as follows:

• In Section 2, the setup (linear regression, Gaussian
RF model, λ-RF predictor, and λ-KRR predictor) is
introduced.

• In Section 3, preliminary results on the distribution of
the λ-RF model are provided: the RF predictors are
Gaussian mixtures (Proposition 3.1) and the λ ↘ 0-
RF model is unbiased in the overparameterized regime
(Corollary 3.2). Graphical illustrations of the RF pre-
dictors in various regimes are presented (Figure 1).

• In Section 4, the first main theorem is stated (Theorem
4.1): the average (expected) λ-RF predictor is close to
the λ̃-KRR predictor for an explicit λ̃ > λ. As a con-
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sequence (Corollary 4.3), the test errors of these two
predictors are close. Finally, numerical experiments
show that the test errors are in fact virtually identical
(Figure 2).

• In Section 5, the second main theorem is stated (Theo-
rem 5.1): a bound on the variance of the λ-RF predictor
is given, which show that it concentrates around the
average λ-RF predictor. As a consequence, the test
error of the λ-RF predictor is shown to be close to that
of the λ̃-KRR predictor (Corollary 5.2). The ridgeless
λ↘ 0 case is then investigated (Section 5.2): a lower
bound on the variance of the λ-RF predictor is given,
suggesting an explanation for the double-descent curve
in the ridgeless case.

• In Section 6, we summarize our results and discuss
potential implications and extensions.

2. Setup
Linear regression is a parametric model consisting of linear
combinations

fθ =
1√
P

(
θ1φ

(1) + · · ·+ θPφ
(P )
)

of (deterministic) features φ(1), . . . , φ(P ) : Rd → R. We
consider an arbitrary training dataset (X, y) with X =
[x1, ..., xN ] ∈ Rd×N and y = [y1, . . . , yN ] ∈ RN , where
the labels could be noisy observations. For a ridge parameter
λ > 0, the linear estimator corresponds to the parameters
θ̂ = [θ̂1, . . . , θ̂P ] ∈ RP that minimize the (regularized)
Mean Square Error (MSE) functional L̂λ defined by

L̂λ(fθ) =
1

N

N∑
i=1

(fθ(xi)− yi)2 +
λ

N
‖θ‖2. (1)

The data matrix F is defined as the N × P matrix with
entries Fij = 1√

P
φ(j)(xi). The minimization of (1) can be

rewritten in terms of F as

θ̂ = argminθ‖Fθ − y‖2 + λ‖θ‖2. (2)

The optimal solution θ̂ is then given by

θ̂ = FT
(
FFT + λIN

)−1
y (3)

and the optimal predictor f̂ = fθ̂ by

f̂(x) =
1√
P

P∑
j=1

φ(j)(x)FT:,j
(
FFT + λIN

)−1
y. (4)

In this paper, we consider linear models of Gaussian random
features associated with a kernelK : Rd×Rd → R. We take

φ(j) = f (j), where f (1), . . . , f (P ) are sampled i.i.d. from a
Gaussian Process of zero mean (i.e. E[f (j)(x)] = 0 for all
x ∈ Rd) and with covariance K (i.e. E[f (j)(x)f (j)(x′)] =
K(x, x′) for all x, x′ ∈ Rd). In our setup, the optimal
parameter θ̂ still satisfies (3) where F is now a random
matrix. The associated predictor, called λ-RF predictor, is
then given by

Definition 2.1 (Random Feature Predictor). Consider a ker-
nel K : Rd×Rd → R, a ridge λ > 0, and random features
f (1), . . . , f (P ) sampled i.i.d. from a centered Gaussian Pro-
cess of covariance K. Let θ̂ be the optimal solution to (1)
taking φ(j) = f (j). The Random Feature predictor with
ridge λ is the random function f̂ (RF )

λ : Rd → R defined by

f̂
(RF )
λ (x) =

1√
P

P∑
j=1

θ̂jf
(j)(x). (5)

The λ-RF can be viewed as an approximation of kernel ridge
predictors: observing from (4) that f̂ (RF )

λ only depends on
the scalar product KP (x, x′) = 1

P

∑P
j=1 f

(j)(x)f (j)(x′)
between datapoints, we see that as P →∞, KP → K and
hence f̂ (RF )

λ converges (Rahimi & Recht, 2008) to a kernel
predictor with ridge λ (Schölkopf et al., 1998), which we
call λ-KRR predictor.

Definition 2.2 (Kernel Predictor). Consider a kernel func-
tion K : Rd × Rd → R and a ridge λ > 0. The Kernel
Predictor is the function f̂ (K)

λ : Rd → R

f̂
(K)
λ (x) = K(x,X)(K(X,X) + λIN )−1y

where K(X,X) is the N × N matrix of entries
(K(X,X))ij = K(xi, xj) and K( · , X) : Rd → RN
is the map (K(x,X))i = K(x, xi).

2.1. Bias-Variance Decomposition.

Let us assume that there exists a true regression function
f∗ : Rd → R and a data generating distribution D on Rd.
The risk of a predictor f : Rd → R is measured by the MSE
defined as

L(f) = ED
[
(f(x)− f∗(x))2

]
.

Let π denote the joint distribution of the i.i.d. sample
f (1), ..., f (P ) from the centered Gaussian process with co-
variance kernel K. The risk of f̂ (RF )

λ can be decomposed
into a bias-variance form as

Eπ
[
L(f̂

(RF )
λ )

]
=L

(
Eπ[f̂

(RF )
λ ]

)
+ED

[
Varπ(f̂

(RF )
λ (x))

]
.

This decomposition into the risk of the average RF predictor
and of the D-expectation of its variance will play a crucial
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Figure 1. Distribution of the RF Predictor. Red dots represent a sinusoidal dataset yi = sin(xi) for N = 4 points xi in [0, 2π). For
selected P and λ, we sample ten RF predictors (blue dashed lines) and compute empirically the average RF predictor (black lines) with
±2 standard deviations intervals (shaded regions).

role in the next sections. This is in contrast with the classical
bias-variance decomposition in Geman et al. (1992)

ED⊗N [L(f)] = L(ED⊗N [f ]) + ED[VarD⊗N [f(x)]]

where D⊗N denotes the joint distribution on x1, ..., xN ,
sampled i.i.d. from D. Note that in our decomposition no
probabilistic assumption is made on the data, which is fixed.

2.2. Additional Notation

In this paper, we consider a fixed dataset (X, y) with distinct
data points and a kernelK (i.e. a positive definite symmetric
function Rd ×Rd → R). We denote by ‖y‖K−1 the inverse
kernel norm of the labels defined as yT (K(X,X))−1y.

Let UDUT be the spectral decomposition of the kernel
matrix K(X,X), with D = diag(d1, . . . , dN ). Let D

1
2 =

diag(
√
d1, . . . ,

√
dN ) and set K

1
2 = UD

1
2UT . The law

of the (random) data matrix F is now that of 1√
P
K

1
2WT

where W is a P × N matrix of i.i.d. standard Gaussian
entries, so that E[FFT ] = K(X,X).

We will denote by γ = P
N the parameter-to-datapoint ratio:

the underparameterized regime corresponds to γ < 1, while
the overparameterized regime corresponds to γ ≥ 1. In
order to stress the dependence on the ratio parameter γ, we
write f̂ (RF )

λ,γ instead of f̂ (RF )
λ .

3. First Observations
The distribution of the RF predictor features a variety of
behaviors depending on γ and λ, as displayed in Figure 1. In
the underparameterized regime P < N , sample RF predic-
tors induce some implicit regularization and do not interpo-
late the dataset (1a); at the interpolation threshold P = N ,
RF predictors interpolate the dataset but the variance ex-
plodes when there is no ridge (1b), however adding some
ridge suppresses variance explosion (1c); in the overparam-
eterized regime P ≥ N with large P , the variance vanishes
thus the RF predictor converges to its average (1d). We will
investigate the average RF predictor (solid lines) in detail in

Section 4 and study its variance in Section 5.

We start by characterizing the distribution of the RF predic-
tor as a Gaussian mixture:

Proposition 3.1. Let f̂ (RF )
λ,γ (x) be the random features pre-

dictor as in (5) and let ŷ = F θ̂ be the prediction vector on
training data, i.e. ŷi = f̂

(RF )
λ,γ (xi). The process f̂ (RF )

λ,γ is
a mixture of Gaussians: conditioned on F , we have that
f̂
(RF )
λ,γ is a Gaussian process. The mean and covariance of

f̂
(RF )
λ,γ conditioned on F are given by

E[f̂
(RF )
λ,γ (x)|F ] = K(x,X)K(X,X)−1ŷ, (6)

Cov[f̂
(RF )
λ,γ (x), f̂

(RF )
λ,γ (x′)|F ] =

‖θ̂‖2

P
K̃(x, x′), (7)

with K̃(x, x′) = K(x, x′)−K(x,X)K(X,X)−1K(X,x′)
denoting the posterior covariance kernel.

The proof of Proposition 3.1 relies on the fact that f (j)

conditioned on
(
f (j)(xi)

)
i=1,...,N

is a Gaussian Process.

Note that (6) and (7) depend on λ and P through ŷ and
‖θ̂‖2; in fact, as the proof shows, these identities extend to
the ridgeless case λ↘ 0. For the ridgeless case, when one
is in the overparameterized regime (P ≥ N ), one can (with
probability one) fit the labels y and hence ŷ = y:

Corollary 3.2. When P ≥ N , the average ridgeless RF
predictor is equivalent to the ridgeless KRR predictor

E
[
f̂
(RF )
λ↘0,γ(x)

]
= K(x,X)K(X,X)−1y = f̂

(K)
λ↘0(x).

This corollary shows that in the overparameterized case, the
ridgeless RF predictor is an unbiased estimator of the ridge-
less kernel predictor. The difference between the expected
loss of ridgeless RF predictor and that of the ridgeless KRR
predictor is hence equal to the variance of the RF predic-
tor. As will be demonstrated in this article, outside of this
specific regime, a systematic bias appears, which reveals an
implicit regularizing effect of random features.
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Figure 2. Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor. We train the RF predictors on N = 100
MNIST data points whereK is the RBF kernel, i.e. K(x, x′) = exp

(
−‖x− x′‖2/`

)
. We approximate the average λ-RF on 100 random

test points for various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed numerically using (9). In (b), the test errors of the
λ̃-KRR predictor (blue lines) and the empirical average of the λ-RF predictor (red dots) agree perfectly.

4. Average Predictor

In this section, we study the average RF predictor E[f̂
(RF )
λ,γ ].

As shown by Corollary 3.2 above, in the ridgeless over-
parmeterized regime, the RF predictor is an unbiased es-
timator of the ridgeless kernel predictor. However, in the
presence of a non-zero ridge, we see the following implicit
regularization effect: the average λ-RF predictor is close to
the λ̃-KRR predictor for an effective ridge λ̃ > λ (in other
words, sampling a finite number P of features amounts to
taking a greater kernel ridge λ̃).
Theorem 4.1. For N,P > 0 and λ > 0, we have∣∣∣E[f̂

(RF )
λ,γ (x)]− f̂ (K)

λ̃
(x)
∣∣∣ ≤ c

√
K(x, x) ‖y‖K−1

P
(8)

where the effective ridge λ̃(λ, γ) > λ is the unique positive
number satisfying

λ̃ = λ+
λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
, (9)

and where c > 0 depends on λ, γ, and 1
NTrK(X,X) only.

Proof. (Sketch; see Supp. Mat. for details) Set Aλ =
F (FTF +λIP )−1FT . The vector of the predictions on the
training set is given by ŷ = Aλy and the expected predictor
is given by

E
[
f̂
(RF )
λ,γ (x)

]
= K(x,X)K(X,X)−1E [Aλ] y.

By a change of basis, we may assume the kernel Gram
matrix to be diagonal, i.e. K(X,X) = diag(d1, . . . , dN ).

In this basis E [Aλ] turns out to be diagonal too. For each
i = 1, . . . , N we can isolate the contribution of the i-th
row of F : by the Sherman-Morrison formula, we have
(Aλ)ii = digi

1+digi
, where

gi =
1

P
WT
i (FT(i)F(i) + λIP )−1Wi,

withWi denoting the i-th column ofW =
√
PFTK−

1
2 and

F(i) being obtained by removing the i-th row of F . The gi’s
are all within O(1/

√
P ) distance to the Stieltjes transform

mP (−λ) =
1

P
Tr
(
FTF + λIP

)−1
.

By a fixed point argument, the Stieltjes transform mP (−λ)
is itself withinO(1/

√
P ) distance to the deterministic value

m̃(−λ), where m̃ is the unique positive solution to

γ =
1

N

N∑
i=1

dim̃(z)

1 + dim̃(z)
− γzm̃(z).

(The detailed proof in the Supp. Mat. uses non-asymptotic
variants of arguments found in (Bai & Wang, 2008); the
constants in the O bounds are in particular made explicit).

As a consequence, from the above results, we obtain

E [(Aλ)ii] = E
[

digi
1 + digi

]
≈ dim̃

1 + dim̃
=

di

λ̃+ di
,

revealing the effective ridge λ̃ = 1/m̃(−λ).
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This implies that E [Aλ] ≈ K(X,X)(K(X,X) + λ̃IN )−1

and

E
[
f̂
(RF )
λ,γ (x)

]
≈K(x,X)(K(X,X)+λ̃IN )−1y= f̂

(K)

λ̃
(x),

yielding the desired result.

Note that asymptotic forms of equations similar to the ones
in the above proof appear in different settings (Dobriban
& Wager, 2018; Mei & Montanari, 2019; Liu & Dobriban,
2020), related to the study of the Stieltjes transform of the
product of asymptotically free random matrices.

While the above theorem does not make assumptions on
P,N , and K, the case of interest is when the right hand side
cK(x,x)‖y‖K−1

P is small. The constant c > 0 is uniformly
bounded whenever γ and λ are bounded away from 0 and
1
NTrK(X,X) is bounded from above. As a result, to bound
the right hand side of (8), the two quantities we need to
bound are T = 1

NTrK(X,X) and ‖y‖K−1 .

• The boundedness of T is guaranteed for kernels that
are translation-invariant, i.e. of the form K(x, y) =
k(‖x− y‖): in this case, one has T = k(0).

• If we assume ED [K(x, x)] < ∞ (as is commonly
done in the literature (Rudi & Rosasco, 2017)), T con-
verges to ED [K(x, x)] as N → ∞ (assuming i.i.d.
data points).

• For ‖y‖K−1 , under the assumption that the labels are
of the form yi = f∗(xi) for a true regression function
f∗ lying in Reproducing Kernel Hilbert Space (RKHS)
H of the kernel K (Schölkopf et al., 1998), we have
‖y‖K−1 ≤ ‖f∗‖H.

Our numerical experiments in Figure (2b) show excellent
agreement between the test error of the expected λ-RF pre-
dictor and the one of the λ̃-KRR predictor suggesting that
the two functions are indeed very close, even for smallN,P .

Thanks to the implicit definition of the effective ridge λ̃
(which depends on λ, γ,N and on the eigenvalues di of
K(X,X)) we obtain the following:

Proposition 4.2. The effective ridge λ̃ satisfies the follow-
ing properties:

1. for any γ > 0, we have λ < λ̃(λ, γ) ≤ λ+ 1
γT ;

2. the function γ 7→ λ̃(λ, γ) is decreasing;

3. for γ > 1, we have λ̃ ≤ γ
γ−1λ;

4. for γ < 1, we have λ̃ ≥ 1−√γ√
γ mini di.

The above proposition shows the implicit regularization
effect of the RF model: sampling fewer features (i.e. de-
creasing γ) increases the effective ridge λ̃.

Furthermore, as λ→ 0 (ridgeless case), the effective ridge
λ̃ behave as follows:

• in the overparameterized regime (γ > 1), λ̃ goes to 0;

• in the underparameterized regime (γ < 1), λ̃ goes to a
limit λ̃0 > 0.

These observations match the profile of λ̃ in Figure (2a).

Remark. When λ ↘ 0, the constant c in our bound (8)
explodes (see Supp. Mat.). As a result, this bound is not
directly useful when λ = 0. However, we know from Corol-
lary 3.2 that in the ridgeless overparametrized case (γ > 1),
the average RF predictor is equal to the ridgeless KRR
predictor. In the underparametrized case (γ < 1), our nu-
merical experiments suggest that the ridgeless RF predictor
is an excellent approximation of the λ̃0-KRR predictor.

4.1. Effective Dimension

The effective ridge λ̃ is closely related to the so-called effec-
tive dimension appearing in statistical learning theory. For
a linear (or kernel) model with ridge λ, the effective dimen-
sion N (λ) ≤ N is defined as

∑N
i=1

di
λ+di

(Zhang, 2003;
Caponnetto & De Vito, 2007). It allows one to measure the
effective complexity of the Hilbert space in the presence of
a ridge.

For a given λ > 0, the effective ridge λ̃ introduced in
Theorem 4.1 is related to the effective dimension N (λ̃) by

N (λ̃) = P

(
1− λ

λ̃

)
.

In particular, we have that N (λ̃) ≤ min(N,P ): this shows
that the choice of a finite number of features corresponds
to an automatic lowering of the effective dimension of the
related kernel method.

Note that in the ridgeless underparameterized case (λ↘ 0
and γ < 1), the effective dimension N (λ̃) equals precisely
the number of features P .

4.2. Risk of the Average Predictor

A corollary of Theorem 4.1 is that the loss of the expected
RF predictor is close to the loss of the KRR predictor with
ridge λ̃:

Corollary 4.3. If ED[K(x, x)] < ∞, we have that the

difference of errors δE =
∣∣∣L(E[f̂

(RF )
λ,γ ])− L(f̂

(K)

λ̃
)
∣∣∣ is
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Figure 3. Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test errors of the ridgeless and the ridge RF
predictors (solid lines) and the effect of ensembling (dashed lines) for N = 100 MNIST data points. In (b), the variance of the RF
predictors and in (c), the evolution of ∂λλ̃ in the ridgeless and ridge cases. The experimental setup is the same as in Figure 2.

bounded from above by

δE ≤
C ‖y‖K−1

P

(
2

√
L
(
f̂
(K)

λ̃

)
+
C ‖y‖K−1

P

)
,

where C is given by c
√
ED[K(x, x)], with c the constant

appearing in (8) above.

As a result, δE can be bounded in terms of λ, γ, T, ‖y‖K−1 ,
which are discussed above, and of the kernel generalization
error L(f

(K)

λ̃
). Such a generalization error can be controlled

in a number of settings as N grows: in (Caponnetto &
De Vito, 2007; Marteau-Ferey et al., 2019), for instance, the
loss is shown to vanish as N →∞. Figure (2b) shows that
the two test losses are indeed very close.

5. Variance
In the previous sections, we analyzed the loss of the ex-
pected predictor E[f̂

(RF )
λ,γ ]. In order to analyze the expected

loss of the RF predictor f̂ (RF )
λ,γ , it remains to control the vari-

ance of the RF predictor: this follows from the bias-variance
decomposition

E
[
L(f̂

(RF )
λ,γ )

]
=L

(
E[f̂

(RF )
λ,γ ]

)
+ ED

[
Var(f̂

(RF )
λ,γ (x))

]
,

introduced in Section 2.1.

The variance Var
(
f̂
(RF )
λ,γ (x)

)
of the RF predictor can itself

be written as the sum

Var
(
E
[
f̂
(RF )
λ,γ (x) | F

])
+ E

[
Var

(
f̂
(RF )
λ,γ (x) | F

)]
.

By Proposition 3.1, we have

E
[
f̂
(RF )
λ,γ (x) | F

]
= K(x,X)K(X,X)−1ŷ

Var
(
f̂
(RF )
λ,γ (x) | F

)
=
‖θ̂‖2

P
K̃(x, x).

5.1. RF Predictor Concentration

The following theorem allows us to bound both terms:

Theorem 5.1. There are constants c1, c2 > 0 depending on
λ, γ, T only such that

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P∣∣∣E‖[θ̂‖2]− ∂λλ̃yTMλ̃y
∣∣∣ ≤ c2‖y‖2K−1

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for
Mλ̃ = K(X,X)(K(X,X) + λ̃IN )−2. As a result

Var
(
f̂
(RF )
λ,γ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .

Putting the pieces together, we obtain the following bound
on the difference ∆E = |E[L(f̂

(RF )
λ,γ )]−L(f̂

(K)

λ̃
)| between

the expected RF loss and the KRR loss:

Corollary 5.2. If ED[K(x, x)] <∞, we have

∆E ≤
C1‖y‖K−1

P

(√
L(f̂

(K)

λ̃
) + C2‖y‖K−1

)
.

where C1 and C2 depend on λ, γ, T and ED[K(x, x)] only.

5.2. Double Descent Curve

We now investigate the neighborhood of the frontier γ = 1
between the under- and overparameterized regimes, known
empirically to exhibit a double descent curve, where the test
error explodes at γ = 1 (i.e. when P ≈ N ) as exhibited in
Figure 3.

Thanks to Theorem 5.1, we get a lower bound on the vari-
ance of f̂ (RF )

λ,γ :
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Corollary 5.3. There exists c4 > 0 depending on λ, γ, T
only such that Var(f̂

(RF )
λ,γ (x)) is bounded from below by

∂λλ̃
yTMλ̃y

P
K̃(x, x)−

c4K(x, x)‖y‖2K−1

P 2
.

If we assume the second term of Corollary 5.3 to be negligi-
ble, then the only term which depends on P is ∂λλ̃

yTMλ̃y

P .
The derivative ∂λλ̃ has an interesting behavior as a function
of λ and γ:

Proposition 5.4. For γ > 1, as λ→ 0, the derivative ∂λλ̃
converges to γ

γ−1 . As λγ →∞, we have ∂λλ̃(λ, γ)→ 1.

The explosion of ∂λλ̃ in (γ = 1, λ = 0) is displayed in
Figure (3c).

Corollary 5.3 can be used to explain the double-descent
curve numerically observed for small λ > 0. It is natural to
assume that in this case ∂λλ̃� 1 around γ = 1, dominating
the lower bound in Corollary 5.3. In turn, by Proposition 5.4
this implies that the variance of f̂ (RF ) gets large. Finally, by
the bias-variance decomposition, we obtain a sharp increase
of the test error around γ = 1, which is in line with the
results of (Hastie et al., 2019; Mei & Montanari, 2019).

6. Conclusion
In this paper, we have identified the implicit regularization
arising from the finite sampling of Random Features (RF):
using a Gaussian RF model with ridge parameter λ > 0
(λ-RF) and feature-to-datapoints ratio γ = P

N is essentially
equivalent to using a Kernel Ridge Regression with effective
ridge λ̃ > λ (λ̃-KRR) which we characterize explicitly.
More precisely, we have shown the following:

• The expectation of the λ-RF predictor is very close to
the λ̃-KRR predictor (Theorem 4.1).

• The λ-RF predictor concentrates around its expectation
when λ is bounded away from zero (Theorem 5.1); this
implies in particular that the test errors of the λ-RF and
λ̃-KRR predictors are close to each other (Corollary
5.2).

Both theorems are proven using tools from random matrix
theory, in particular finite-size results on the concentration
of the Stieltjes transform of general Wishart matrix models.
While our current proofs require the assumption that the
RF model is Gaussian, it seems natural to postulate that the
results and the proofs extend to more general setups, along
the lines of (Louart et al., 2017; Benigni & Péché, 2019).

Our numerical verifications on the expected λ-RF predictor
and the λ̃-KRR predictor have shown that both are in excel-
lent agreement. This shows in particular that in order to use
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Figure 4. Average test error of the λ-RF predictor for two values
of N and λ = 10−4. For N = 1000, the test error is naturally
lower and the cusp at γ = 1 is narrower than for N = 100. The
experimental setup is the same as in Figure 2.

RF predictors to approximate KRR predictors with a given
ridge, one should choose both the number of features and
the explicit ridge appropriately.

Finally, we investigate the ridgeless limit case λ ↘ 0. In
this case, we see a sharp transition at γ = 1: in the overpa-
rameterized regime γ > 1, the effective ridge goes to zero,
while in the underparameterized regime γ < 1, it converges
to a positive value. At the interpolation threshold γ = 1, the
variance of the λ-RF explodes, leading to the double descent
curve emphasized in (Advani & Saxe, 2017; Spigler et al.,
2018; Belkin et al., 2018; Nakkiran et al., 2019). We inves-
tigate this numerically and prove a lower bound yielding a
plausible explanation for this phenomenon.
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