Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Yasutoshi Ida !> Sekitoshi Kanai'! Yasuhiro Fujiwara

3 Tomoharu Iwata?

Koh Takeuchi?* Hisashi Kashima 2+

Abstract

The deterministic CUR matrix decomposition is a
low-rank approximation method to analyze a data
matrix. It has attracted considerable attention due
to its high interpretability, which results from the
fact that the decomposed matrices consist of sub-
sets of the original columns and rows of the data
matrix. The subset is obtained by optimizing an
objective function with sparsity-inducing norms
via coordinate descent. However, the existing
algorithms for optimization incur high computa-
tion costs. This is because coordinate descent
iteratively updates all the parameters in the ob-
jective until convergence. This paper proposes
a fast deterministic CUR matrix decomposition.
Our algorithm safely skips unnecessary updates
by efficiently evaluating the optimality conditions
for the parameters to be zeros. In addition, we
preferentially update the parameters that must be
nonzeros. Theoretically, our approach guarantees
the same result as the original approach. Experi-
ments demonstrate that our algorithm speeds up
the deterministic CUR while achieving the same
accuracy.

1. Introduction

Matrix decomposition is a fundamental tool of machine
learning, and it is used to decompose the data matrix into
its low-rank approximations. Among the various matrix
decomposition methods such as Singular Value Decomposi-
tion (SVD), CUR matrix decomposition (CUR) (Mahoney
& Drineas, 2009) has been a popular method due to its high
interpretability. This is because the decomposed matrices
consist of the subsets of the original columns and rows of

'NTT Software Innovation Center, Tokyo, Japan *Department
of Intelligence Science and Technology, Kyoto University, Kyoto,
Japan *NTT Communication Science Laboratories, Kyoto, Japan
“RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
Correspondence to: Yasutoshi Ida <yasutoshi.ida@ieee.org>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

the data matrix. Namely, the decomposed matrices pre-
serve the original elements in the data matrix. Thanks to
its high interpretability, CUR has been successfully applied
to a large number of domains, including gene expression
data (Bien et al., 2010), network traffic data (Tong et al.,
2008), bibliographic data (Sun et al., 2007), collaborative
filtering (Mackey et al., 2011), hyperspectral medical image
(Mahoney et al., 2006), and text data (Drineas et al., 2008).

In the literature, randomized algorithms (Mahoney &
Drineas, 2009; Sun et al., 2007; Drineas et al., 2006; Tong
et al., 2008) and deterministic algorithms (Bien et al., 2010;
Mairal et al., 2011; Papailiopoulos et al., 2014) were pro-
posed for CUR. Although randomized algorithms were pro-
posed first, they would be disconcerting to the practitioners
as they obtain a different result on every run (Bien et al.,
2010; Mairal et al., 2011). Specifically, when the sizes of
the decomposed matrices are small, they can obtain a poor
approximate result because the variance of the approximate
results is large (Sun et al., 2007; Bien et al., 2010). To
overcome these drawbacks, researchers have focused on
deterministic algorithms that utilize a sparse optimization
approach (Bien et al., 2010; Mairal et al., 2011). In de-
terministic algorithms, matrix decomposition is seen as a
convex optimization problem with sparsity-inducing norms
on the basis of group Lasso (Yuan & Lin, 2006). In particu-
lar, they optimize an objective with respect to the parameter
vectors corresponding to the columns and the rows of the
data matrix. Since the unimportant parameter vectors are
turned into zero vectors by the sparsity-inducing norms,
they can deterministically obtain the important columns and
rows, which are used to construct the decomposed matrices.

Although deterministic algorithms are attractive, they suf-
fer from high computation costs. In order to optimize the
objective, they usually use coordinate descent, which itera-
tively updates each parameter vector corresponding to each
column and row of the data matrix (Bien et al., 2010). Un-
fortunately, the computation cost of updating a parameter
vector is quadratic with respect to the number of columns or
rows of the data matrix. In addition, they need to iteratively
update all the parameters until convergence. For the afore-
mentioned reasons, deterministic algorithms require longer
processing times as the sizes of data matrices increase.

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

This paper proposes a fast deterministic algorithm for CUR.
Our approach utilizes two ideas to speed up the determinis-
tic CUR. The first idea is to safely skip the updates of the
parameters in coordinate descent. Since a high computation
cost is needed for one update in coordinate descent, we can
effectively reduce the total computation cost by skipping
the updates. Specifically, we identify the rows and columns
whose parameters must be zeros at linear time with respect
to the number of columns or rows by approximately evaluat-
ing the optimality conditions for the parameters to be zeros.
The second idea is to preferentially update the parameters
that must be nonzeros. Because these nonzero parameters
would correspond to the important columns and rows for
the construction of the decomposed matrices, our algorithm
is expected to effectively optimize the objective function.
Similar to that in the first idea, it can identify the columns
and rows whose parameters must be nonzeros at linear time.
Another advantage of our algorithm is that it does not have
additional hyperparameters, which incur additional com-
putation costs for the tuning. Theoretically, our algorithm
provably guarantees convergence to the same value of the
objective function as that of the original algorithm. Exper-
iments show that our method is up to 10x faster than the
original method, and up to 4 x faster than the state-of-the-art
method while achieving the same accuracy.

2. Preliminary

In this section, we first explain the deterministic CUR by
following (Bien et al., 2010; Mairal et al., 2011). Next, we
describe coordinate descent, which optimizes the objective
of deterministic CUR. Throughout the paper, given a matrix
A, A(i) and A" denote the i-th row vector and 4-th column
vector of A, respectively. Similarly, given a set of indices
7, A7 and A7 denote the submatrices of A containing only
7 rows and columns, respectively. |A|r represents the
Frobenius norm of matrix A.

2.1. Deterministic CUR Matrix Decomposition

CUR provides a low-rank approximation to a data matrix
X € R™*P_ In particular, CUR decomposes the data matrix
X into the form of a product of three matrices as X ~ CUR,
where C € R"*¢, U € R°*", and R € R"*P, Unlike other
low-rank approximations such as Singular Value Decom-
position (SVD), CUR extracts C and R as small numbers
of the column and row vectors of X, respectively. In other
words, C and R are subsets of ¢ columns and r rows of the
original data matrix X, respectively. This property helps
practitioners to interpret the result more easily than that in
the case of SVD (Tong et al., 2008).

To select C or R, Bien et al. (2010) utilized a sparse op-
timization approach. In particular, the selection of C or
R from X can be seen as a convex optimization problem

Algorithm 1 Deterministic CUR

cA={1,..,p},W+0
repeat
for each i € A do
update W ;) by Equation (2);
until W converges

AEA

with sparsity-inducing norms. For the selection of C, the
optimization problem is defined as follows:

Whin 51X = XWIE + AT W e, (1)
where W € RP*P is the parameter matrix, and A > O is a
regularization constant. The term [W ;) |2 induces W ;) to
be a zero vector; this sparsity-inducing norm is also used
in group Lasso (Yuan & Lin, 2006). The regularization
constant A controls the degree of sparsity of the parame-
ter matrix W. If W;, is a zero vector, the corresponding
column of the data matrix X?) can be considered as an
unimportant column for problem (1). On the other hand,
X jg important when the corresponding W ;) is a nonzero
vector. Therefore, we can select columns C as x* , Where
7 C{1,...,p} represents the indices corresponding to the
nonzero row vectors of W. We note that although the above
problem handles the selection of C, Mairal et al. (2011) nat-
urally extended the problem to the simultaneous selection of
both R and C. Throughout the paper, we handle problem (1)
focusing on simplicity; however, our approach can be easily
applied to the problem of (Mairal et al., 2011) as described
in Section 3.6.

2.2. Coordinate Descent

Problem (1) is simply solved by using coordinate descent
(Bien et al., 2010). The algorithm iteratively updates each
parameter vector W;y corresponding to each row of the
parameter matrix W until W converges. Suppose that X
is normalized as |X(¥)|, = 1. Then, the following equation
is used to update W,):

Wiy =1 = lzil2) 2, 2)
where
L=A/lzi]2, it 1=A/]zi]2>0
(Mo, =] p Il L0

In these equations, z; € RI*P ig computed as follows:
z; = XOT(X=3" XUIW;)). 4)

Algorithm 1 shows the pseudocode of coordinate descent.
The inner loop (lines 3—4) performs Equation (2) to update
each row of W, and the outer loop (lines 2—5) repeats the
update process until W converges. The computation cost

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

of Equation (4) is O(p?n) time. Therefore, Equation (2)
also requires O(p?n) time. Equation (2) can be modified
to have O(p?) or O(pn) time as described in (Huang et al.,
2012). However, in any case, the computation cost is still
large because p? or pn is prohibitive for a large data matrix.

3. Proposed Approach

This section presents our fast deterministic CUR. First, we
provide an overview of our ideas in Section 3.1. Next, we
provide their full descriptions in Sections 3.2, 3.3, and 3.4.
We then describe our algorithm in Section 3.5. Finally, we
introduce an extension of our algorithm for the simultaneous
selection of both R and C in Section 3.6. The omitted proofs
can be found in the supplementary file.

3.1. Ideas

To obtain the solution of CUR, coordinate descent requires
a long processing time since the computation cost of Equa-
tion (2) is high, and the equation is performed for all the
parameter vectors at every iteration until convergence.

To speed up coordinate descent, we safely skip the compu-
tations for the rows of W that must be zero vectors during
the optimization. Our approach can effectively reduce the
computation cost by skipping unnecessary computations
of Equation (2). To identify the unnecessary rows of W,
we approximately evaluate the optimality conditions for the
parameter vectors to be zero vectors. In particular, we com-
pute the upper bounds of the optimality condition scores
instead of the exact scores, which require O(p?) or O(pn)
time. Because the computation of the upper bound requires
only O(p) time, we can effectively reduce the processing
time of the coordinate descent.

Another idea is to preferentially update the parameter vec-
tors W ;y that must be nonzero vectors. Since these nonzero
parameter vectors correspond to the columns C, as explained
in Section 2.1, we can expect the algorithm to effectively
optimize the objective by intensively updating the parame-
ter vectors. We utilize the lower bounds of the optimality
condition scores for the parameter vectors to be zero vectors
to identify such parameter vectors. Because the additional
computation cost is O(p) time, we can efficiently identify
the parameter vectors that must be nonzero vectors.

3.2. Approximations of Optimality Condition Score

This section introduces the key approximations of the opti-
mality condition scores for the parameter vectors to be zero
vectors: the upper and lower bounds of the scores. As de-
scribed in Section 3.1, the upper and lower bounds are used
to identify the parameter vectors that must be zero vectors
and nonzero vectors at the optimal solutions, respectively.
First, we introduce the lemma of the optimality condition

for the zero parameter vector and its score as follows:

Lemma 1 (Optimality Condition for Zero Parameter)
Let K; := |z;|2 be the optimality condition score for W(;),
where z; is computed using Equation (4). Then, we have
Wiy = 0ifand only if K; < A

We can check whether W,y is a zero vector by using
Lemma 1. However, z; in Lemma 1 incurs a high com-
putation cost: it requires O(p?) or O(pn) time as described
in Section 2.2. As a result, the computation cost of the
optimality condition score K is also O(p?) or O(pn) time.
To overcome this problem, we approximately compute the
optimality condition score. In particular, we evaluate two
types of approximated scores instead of the exact score: the
upper and lower bounds of the optimality condition score.
These bounds are defined as follows:

Definition 1 (Upper and Lower Bounds) Let K; and K,
be the upper and lower bounds of the optimality condition
score K; in Lemma 1, respectively. K; and W denote the
optimality condition score and the parameter matrix before
entering the inner loop (lines 3—4 in Algorithm 1) of the
coordinate descent, respectively. Then, K; and K, are
respectively defined as follows:

K; = K + [AW) |2 + [G) 2| AW £, ©)
and

K; = Ki = [AWl2 = |Gy |2 [AW, (6)
where AW(Z-) = W(i) — W(i) and AW = W — W G(i) S
RY%P s the i-th row vector of G :== X' X € RP*P,

Note that we can precompute K; and |G;)|» before enter-
ing the inner loop and outer loop, respectively. Although
the upper and lower bounds still require O(p?) time, we
introduce an efficient computation for these bounds in Sec-
tion 3.3 and 3.4. The following lemma shows that K; and
K, are the upper and lower bounds of K, respectively:

Lemma 2 (Upper and Lower Bounds) We have K; >
K; and K; < K; for the upper and lower bounds given in
Definition 1.

We use the upper and lower bounds as the approximations
of the optimality condition score. The error bounds of the
approximations are given as follows:

Lemma 3 (Error Bound) Let € be an error bound defined
as 2|AW |2 + 2|G) |2| AW| . Then, we have |K; —
K;| < eand |K,; — K;| < €for the upper and lower bounds,
respectively.

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

3.3. Skipping Computations

This section introduces our first idea to skip the computa-
tions for the rows of W that must be zero vectors during the
optimization. Because Equation (2) requires a high com-
putation cost, we expect the coordinate descent to reduce
the processing time by skipping the computations. To iden-
tify W;) that must be a zero vector, we utilize the upper
bound of the optimality condition score K ; in Definition 1.
Specifically, we utilize the following property of the upper
bound:

Lemma 4 (Rows with Zero Vectors) When K; < \
holds, we have W(i) = 0 for the i-th row vector.

According to Lemma 4, we can identify the rows that must
be zero vectors by using the upper bounds K ;. However, the
computation cost of the upper bound is still high because
Equation (5) requires O(p?) time even if we precompute
K; and |G 4|2 due to the computation of |AW| . Since
the previous approaches require O(p?) or O(pn) times for
Equation (2), the computation of the upper bound is not very
efficient. Therefore, we introduce an efficient computation
for the upper bound. In particular, we perform an online
update for |[AW|r in the upper bound when a parameter
vector is updated as follows:

Lemma 5 (Online Update) When Wy is updated to W,
an upper bound ?i#j is computed as follows:

iy

K; = K; + |AWy|2 + 6]Giy |, (7
where

5= \JIAWIE — [AWG) 3 + AW 3. ®

The above online updating scheme' requires the following
computation cost:

Lemma 6 (Computation Cost for Online Update)
Given precomputed K; and |G ;) |2, the computation cost
of Equation (7) is O(p) time when W ;y is updated.

Lemma 6 shows that our online updating scheme can com-
pute the upper bound within O(p) time, which is lower
than O(p?) or O(pn) times for Equation (2) in the previ-
ous approaches. Therefore, we can efficiently identify the
rows that must be zero vectors, and skip the computation of
Equation (2), which incurs a high computation cost.

Although the upper bound can be efficiently computed, the
error bound of the upper bound € in Lemma 3 is also im-
portant for reducing the processing time. This is because it

'We note that JAW{, |2 is used instead of [AW ;|2 in Equa-
tion (7) when ¢ = j; however, this case would not be obtained in
our algorithm because the coordinate descent updates the parame-
ter vectors in a cyclic order.

is difficult to maintain the condition K; <) in Lemma 4
if € is large. As a result, the number of skipped rows may
be moderate. To increase the number of skipped rows, e
should be small. Fortunately, the error bounds of the upper
and lower bounds have the following advantage:

Lemma 7 (Convergence of Error Bound) If W reaches
convergence by the coordinate descent, we have ¢ = (
for the error bound. Namely, the upper bound K ; and the
lower bound K ; converge to the exact optimality condition
score I(; when W converges.

Lemma 7 indicates that the upper bound matches the opti-
mality condition score when the parameter converges. Intu-
itively, the upper bound becomes increasingly tighter during
the optimization as the bound depends on AW ;) and AW.
Since € becomes increasingly smaller during the optimiza-
tion, the upper bounds can accurately identify the rows that
must be zero vectors as the optimization progresses. As a
result, we can effectively skip the computations of the rows
by using the upper bound.

3.4. Selective Update

This section presents our second idea to preferentially up-
date W ;) that must be a nonzero vector. Since the nonzero
parameter vectors correspond to the columns C, we can
expect the coordinate descent to effectively optimize the
objective by intensively updating the nonzero parameter
vectors. Specifically, we first construct the set including
rows that must be nonzero vectors. Next, we perform coor-
dinate descent on the set. We then update all the parameter
vectors via the coordinate descent with the upper bounds
until convergence.

To find W(i) that must be a nonzero vector, we utilize the
lower bound of the optimality condition score K ; in Defini-
tion 1. Similar to the upper bound, the lower bound has the
following property:

Lemma 8 (Rows with Nonzero Vectors) When K, > A
holds, we have W ;y # 0 for the i-th row vector.

Lemma 8 shows that we can identify a row that must have a
nonzero vector by using the lower bound K ;. We define a
subset of the rows on the basis of Lemma 8 as follows:

Definition 2 (Row Set M) We define the set M by using the
lower bound K as follows:

M= {i e {1,...p}|K; > A} ©)

The set M has the following property:

Lemma 9 (Row Set M) The set M contains the rows that
must be nonzero vectors.

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

As shown in Definition 2, the computation cost to construct
the set M depends on the computation cost of the lower
bound K ;. Similar to that in the case of the upper bound,
the lower bound requires O(p?) time for the original compu-
tation of Equation (6) and O(p) time for the online updating
scheme similar to Lemma 5. Since we must check the con-
dition of Lemma 8 for each row to construct the set M, we
need O(p?) time even if we use the online updating scheme.
This is the motivation behind the lower bound computation
using the upper bound. In particular, after the upper bound
is updated by following Lemma 5, we compute the lower
bound by utilizing the error bound of Lemma 3 as follows:

Lemma 10 (Computation using Upper Bound) Afer
the upper bound K ; is computed by using Equations (7)
and (8), the lower bound K is computed as follows:

K,=K; - 2|AW e [2 — 201Gy 2- (10)

The computation cost of Equation (10) is as follows:

Lemma 11 (Computation Cost for Lower Bound) After
the upper bound is computed using Equations (7) and (8),
Equation (10) requires O(1) time.

Lemma 11 shows that the lower bound can be efficiently
computed after the computation of the upper bound. This is
because we can reuse the computed variables of the upper
bounds for the computation of the lower bounds. Finally,
we obtain the cost of constructing the set M as follows:

Lemma 12 (Computation Cost for Set M) We can con-
struct the set M in Lemma 9 at O(p) time after the upper
bounds are computed.

The computation cost of O(p) time is significantly lower
compared with the original computation based on Equation
(6), which requires O(p*) time to construct the set M.

3.5. Algorithm

Algorithm 2 shows the pseudocode of our algorithm,
namely Fast Deterministic CUR, which utilizes the above-
mentioned definitions and lemmas. The algorithm utilizes
two ideas as described in the previous sections: i) it safely
skips the computations for the rows of W that must be
zero vectors by using the upper bounds K ;, and ii) it pref-
erentially updates the parameter vectors corresponding to
the row set Ml, which must be nonzero vectors. Since the
original deterministic CUR has the regularization constant
A as described in problem (1), we tune the regularization
constant by using the sequential rule (Ghaoui et al., 2012)
with a warm start (Friedman et al., 2007), which is a stan-
dard approach for the optimization with sparsity-inducing
norms (Wang & Ye, 2014; Ndiaye et al., 2017; Ida et al.,
2019). Specifically, it sequentially tunes the regularization

Algorithm 2 Fast Deterministic CUR

LA={1,..,p5,W«0,W«0G « X'X
2: for each ¢ € A do

3: compute |G |2;

4: for¢g=0to @ — 1do

5. M=
6

7

8

for each ¢ € A do
compute the lower bound K ; by Equation (10);
if K, >)\, then

9 add ¢ to M

10 repeat

11 for each i € M do

12 update W ;) by Equation (2);

13: until W converges

14: repeat

15 W W,

16 for each i € A do

17 compute K;;

18 for each i € A do L

19 compute the upper bound K'; by Equation (7);

20: if K; <)\, then

21: W(i) <+~ 0;

22: else

23: update W ;) by Equation (2);
24: update § by Equation (8);

25: until W converges

constant A with respect to the sequence (/\q)ngol, where
Ao > A1 > ... > Ag—1. The parameter matrices W are
sequentially optimized for each regularization constant by
using the coordinate descent, and the initial parameter ma-

trix of the current), is the result of the previous A\g_i.

In Algorithm 2, we first precompute |G ;) |2 for computing
the upper bounds and lower bounds (lines 2-3). We next
enter the loop of the sequential rule (lines 4-25). In the
loop, we construct the set M by using the lower bounds
of the optimality condition scores (lines 5-9). If the lower
bound K, is larger than A\, we add the index of the row to
M (lines 8-9). It should be noted that when K, is computed,
we use the f{i, AW(i), and § used in the last computation
of the upper bound in the previous loop of the sequential
rule. If ¢ = 0, we compute the lower bounds by the original
definition of Equation (6). Another strategy for computing
the lower bounds in the case of ¢ = 0 is to run lines 15—
24 one time first and compute the lower bounds by using
Equation (10). After constructing the set M, we perform
coordinate descent on the set (lines 10—13). We then enter
the loop of the coordinate descent with the upper bounds
of the optimality condition scores (lines 14-25). We set W
in line 15 and compute K; (lines 16-17). The computation
results are used to compute the upper bounds K ; (line 19).
If the upper bound is less than or equal to A\, W ;) turns to
be 0 (lines 20-21). In other cases, W ;) is updated as usual
(lines 22-23). Subsequently, we update § by following the
online updating scheme of Lemma 5 (line 17).

The computation cost of Algorithm 2 is given as follows:

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Theorem 1 (Computation Cost) Let t,, be the total num-
ber of outer loops for the coordinate descent with the upper
bounds. Suppose that S is the ratio of updates to the total
number of inner loops, which is un-skipped by the upper
bounds. If ty, is the total number of inner loops for the set
M, Algorithm 2 requires O(p{n(tm + ptu.S) + Q}) time.

We expect the algorithm to reduce t,, by preferentially up-
dating the parameter vectors on the basis of the set M in
Lemma 9. In addition, S would be small when the algo-
rithm skips a large number of updates by utilizing the upper
bounds in Lemma 4. As a result, the total computation cost
would be effectively reduced.

In terms of the optimization result, Algorithm 2 has the
following property:

Theorem 2 (Optimization Result) Suppose that Algo-
rithm 2 has the same regularization constants as those of
the original algorithm, and the coordinate descent updating
the parameter vectors with a cyclic order converges. Then,
Algorithm 2 converges to the same objective values as those
of the original algorithm.

The aforementioned theorem suggests that our algorithm
achieves the same accuracy as that of the original algorithm.
Therefore, we expect Algorithm 2 to speed up the determin-
istic CUR without degrading the accuracy.

3.6. Extension

We propose Algorithm 2 on the basis of problem (1) by
following (Bien et al., 2010). Although it only selects the
columns C, Mairal et al. (2011) naturally extended the prob-
lem to achieve simultaneous selection of both rows R and
columns C by using the row-wise and column-wise regular-
ization terms. Although these regularization terms overlap,
we can handle the terms by using the overlapping norm
(Jacob et al., 2009). Specifically, we define the follow-
ing optimization problem for the simultaneous selection by
combining the extension of (Mairal et al., 2011) and the
overlapping norm (Jacob et al., 2009):

wgﬂ{éﬁf”x—XWX“FH ZHV< 2+ A ZIIH(”Mz (1)
1=1 j=1

where V € RP*™ and H € RP*™ are latent variables: the
parameter matrix is decomposed into a sum of the latent
variables as W=V + H; 37, [V(y 2 and 3°7_, [HD |,
are the overlapping norms, which correspond to row-wise
and column-wise regularization terms, respectively; and
Ary Ae > 0 are regularization constants for the norms.

To solve problem (11), we perform row-wise and column-
wise coordinate descents. Therefore, we have two types of
condition scores for the parameters to be zeros as follows:

Lemma 13 (Optimality Condition for Zero Parameter)
Let Ry = [XYT{X - (XW — XV;))X}X"|> and

= |X"{X-X(WX — HYX ;))}X (|2 be the optimal-
ity condition scores for the parameters to be zeros for V ;)
and HY), respectively. Then we obtain V) = 0 if and
only if R; < A\, and HY) = =0 ifand only if C; < A..

The columns C and the rows R are selected on the basis of
the indices corresponding to the nonzero rows and columns
in V and H, respectively. The detail can be found in the
supplementary file. Then, we can define the upper and lower
bounds for the condition scores as follows:

Definition 3 (Upper and Lower Bounds) Let R; and R,
be the upper and lower bounds of the optimality con-
dition score R;, respectively. R; denotes the optimal-
ity condition score before entering the inner loop of
the coordinate descent. Then, R; and R, are respec-
tively deﬁned as R;=R; +pi and R, =R, —p;, where
pit= (,»)HAV D2lFlr+1G o |2l AWl |F|F, and F :=
XXT ¢ R™ ™. Similarly, the upper bound 6 and the
lower bound C; of the optimality condition score C are re-
spectively deﬁned as C; C +o0jand C; C

-—||G||F|\AH<J>||2F<J>+||G||F|\AW||F||F .

—o0j, where

The bounds in Definition 3 can realize our two ideas as
described in the paper: i) safely skipping the computations
for rows and columns by using the upper bounds, and ii)
prioritizing the update order by using the lower bounds.

4. Related Work

The deterministic CUR is a convex optimization problem
with sparsity-inducing norms as shown in problem (1). As
these norms correspond to the group-level regularizations
used in group Lasso (Yuan & Lin, 2006), we can use several
techniques for group Lasso to speed up CUR.

To efficiently solve group Lasso, screening rules (Tibshi-
rani et al., 2012; Wang et al., 2013; Bonnefoy et al., 2015;
Ndiaye et al., 2017) are popular methods, which eliminate
several parameters before achieving optimization. Since
they reduce the size of the problem, we can expect the op-
timization algorithm to reduce the processing time. Dual
Polytope Projections (DPP) is a screening rule that utilizes
the geometric property of the dual solution (Wang et al.,
2013). Unfortunately, DPP may eliminate parameters incor-
rectly because it theoretically requires the exact solution of
the previous) in the sequential rule, which is not practically
available in the iterative optimization algorithm. Bonnefoy
et al. (2015) proposed a dynamic method of screening: it
eliminates the parameters, not only before the optimization
but also during the optimization. As a result, it can be ex-
pected to eliminate a large number of parameters. However,

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Table 1. Wall clock times on each dataset. We omit some computation results, which could not finish within a month.

Wall clock time (s) Reduction ratio (%)
Dataset
origin SSR SSR+WS ours (ours/origin)

colon-cancer 1.384 x 106 - - 4.793 x 10° 34.64
Bioresponse ~ 1.461 x 106 - - 9.908 x 10° 67.80
QSAR-TID-52 9.628 x 10° 1.301 x 10* 8.875 x 10° 6.323 x 103 65.67
Madelon 2.555 x 103 1.194 x 10 1.008 x 10®> 1.006 x 103 39.36
Slashdot 1.827 x 10 2.122 x 10 1.636 x 10> 8.592 x 102 47.04

if the number of eliminated parameters is small, the process-
ing time can increase due to the overhead of the screening
process (Ida et al., 2019).

Sequential strong rule (SSR) (Tibshirani et al., 2012) is a
heuristic strategy for screening, which approximately elimi-
nates the parameters. Although it can eliminate parameters
incorrectly, this can be avoided by checking the Karush—
Kuhn-Tucker (KKT) condition after the optimization. In
spite of the fact that SSR is a relatively old method, it still
achieves the state-of-the-art results compared with the recent
screening methods (Ndiaye et al., 2017).

Although our idea of selective update using lower bounds
in Section 3.4 can be seen as a screening, we utilize an-
other idea of skipping computations using upper bounds in
Section 3.3. As a general problem, screenings could not
speed up the optimization when the number of eliminated
features is small (Johnson & Guestrin, 2016; 2017; Ida et al.,
2019). On the other hand, our method can effectively skip
updates by using upper bounds during the optimization even
if lower bounds cannot eliminate so many features because
our bounds become increasingly tighter during the optimiza-
tion as shown in Lemma 7. In addition, our screening using
lower bounds is efficient because it only requires O(p) time
as shown in Lemma 12.

Ida et al. (2019) proposed a fast block coordinate descent
algorithm that focuses on sparse group Lasso. It checks
whether the parameter vector of each group is a zero vec-
tor by using bound approximations similar to our method.
However, because their bounds specialize in models whose
parameters take the form of a vector, it does not apply to
CUR whose parameters are in a matrix form. In theory, their
lower bounds do not converge to the exact value while our
bounds guarantee the convergences as shown in Lemma 7.

All the aforementioned methods including our method can
further improve the efficiency by utilizing a warm start
strategy (Friedman et al., 2007; Ndiaye et al., 2017). The
warm start uses the solution of the previous A as the initial
parameters of the current A in the sequential rule. As a
result, it empirically speeds up the optimization algorithm.

5. Experiment

We evaluated the processing times and values of the ob-
jectives. We compared our method with the original de-
terministic CUR (origin) (Bien et al., 2010), the sequential
strong rule (SSR) (Tibshirani et al., 2012), and the sequential
strong rule with warm start (SSR+WS) (Ndiaye et al., 2017).
We tuned) for all the approaches based on the sequential
rule by following the methods in (Tibshirani et al., 2012;
Wang & Ye, 2014; Ndiaye et al., 2017; Ida et al., 2019).
The search space was a non-increasing sequence of) pa-
rameters (Aq)(‘;?:}} defined as Ay = Ao 10779971 N0
is the smallest A\ for which all the parameters are zeros at
the optimal solutions and it was computed by following
(Tibshirani et al., 2012). We used v = 4 and Q = 100
(Wang & Ye, 2014; Ndiaye et al., 2017; Ida et al., 2019).
We stopped the algorithm for each A\, when the relative
tolerance of the parameter matrix dropped below 1075 for
all the approaches (Johnson & Guestrin, 2016; 2017; Ida
et al., 2019). We stopped the sequential rule when all the
parameters were nonzeros since our purpose is to select
the subset of the columns. We conducted the experiments
on five datasets from the LIBSVM? (Chang & Lin, 2011)
and OpenML3 (Vanschoren et al., 2013) websites, namely
colon-cancer, Bioresponse, QSAR-TID-52, Madelon, and
Slashdot, and the sizes of the data matrices were 62 x 2000,
3751 x 1776, 877 x 1024, 2000 x 500, and 3782 x 1079,
respectively. Each experiment was conducted with one CPU
core and 264 GB of main memory on a 2.20 GHz Intel Xeon
server running Linux.

5.1. Processing Time

We evaluated the processing times of the sequential rules
for each method. Table 1 shows the wall clock times for
the five datasets. Note that the processing times include
precomputation times for a fair comparison. Our method
was faster than the previous methods for all the datasets. It
reduced the processing time by up to 34.64% compared to

https://www.csie.ntu.edu.tw/~cjlin/
libsvm/
Shttps://www.openml.org/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.openml.org/

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Table 2. Numbers of updates for Eq. (2). Our method effectively
reduces the number of bottleneck computations.

of updates for Eq. (2)

Dataset
origin ours
colon-cancer 8.344 x 107 4.181 x 107
Bioresponse 9.048 x 107 7.655 x 107
QSAR-TID-52 1.991 x 10 1.131 x 108
Madelon 1.847 x 106 2.162 x 10°
Slashdot 6.571 x 105 1.898 x 10°

the original method. Although SSR+WS was competitive
in comparison to our method on the Madelon dataset, our
method was faster than SSR+WS on the other datasets. This
is because the speed-up of SSR+WS is moderate due to
the overheads of checking the KKT conditions when the
number of eliminated parameters is small. Unfortunately,
SSR and SSR+WS could not finish the computations within
a month on the colon-cancer and Bioresponse datasets due
to the over heads. On the other hand, our method quickly
extracts the parameter vectors that must be nonzero vectors
at O(p) time. In addition, it efficiently skips the parameter
vector that must be a zero vector at O(p). Thanks to the
small overheads, our method reduces the processing times
even on datasets that are not suitable for SSR and SSR+WS.

Table 2 shows the numbers of updates of Equation (2) for
the original method and our method on each dataset. The
results suggest that our approximations of the upper and
lower bounds effectively reduced the number of updates by
skipping unnecessary updates and preferentially updating
the parameters. Since Equation (2) is the main bottleneck
as described in Section 2.2, our method could effectively
reduce the processing time as shown in Table 1.

Figure 1 shows the mean and standard deviation for approx-
imation errors of the upper and lower bounds during the
optimization (lines 14-25 in Algorithm 2). The result was
obtained with \; = 1.2 on the Slashdot dataset; the ratio
of zero parameters was 80% in this setting. Similar results
were obtained for the other settings. This result suggests that
the error bounds become increasingly smaller during the
optimization; it supports our theoretical result of Lemma 7.
Namely, the upper and lower bounds become tight during
the optimization. Thanks to the small approximation errors,
our method effectively identifies the parameter vectors that
must be nonzero and zero vectors by using the lower and
upper bounds, respectively.

We also investigated the relationship between the processing
time and the size of the data matrix. We used the gene
expression data from (Ramaswamy et al., 2002), which is
a data matrix of 190 x 16063. We randomly sampled 100,

—— Mean approximation error of upper/lower bounds

Log approximation error

0 2 | 6 8 10 12 14 16
Number of outer loops

Figure 1. Mean and standard deviation for approximation errors
of the upper and lower bounds during optimization. Our bounds
become tight during the optimization.

108 I ours g2 SSR
SSR+WS [origin

22
2051

02029392

%

XX

R

R

o

oletoletolel
%
X

RRRRRK

oo
SR
o%e%a’e?

Log wall clock time [s]

%
ata¥atetetets!

2

RS

y JZ%W
10°

100

o2od

N
B

1 55
1000 5000 10000
Number of columns

/

(4]
o
o

Figure 2. Log wall clock time vs. number of columns with the
gene expression data. Our method is up to 10x and 4 x faster than
the original method and SSR+WS, respectively. We omit some
computation results, which could not finish within a month.

500, 1000, 5000, and 10000 columns from the data matrix,
and evaluated the processing times to select 1% of all the
columns from these five data matrices on two CPU cores. As
shown in Figure 2, our method was faster than the existing
methods for all sizes. Specifically, for 1000 columns, our
method was 10x and 4x faster than the original method
and SSR+WS, respectively. We omit the results of the
comparison methods for 10000 columns because they could
not finish the computations within a month. The results
show that our method achieves higher efficiency than the
existing methods.

5.2. Accuracy

We evaluated the value of the objective function to con-
firm the effectiveness of our method. Table 3 shows the
results: they are final values of the objective functions in
the sequential rules. The values of the objectives of our
method are the same as those of the original method. This
is because our method is guaranteed to yield the same value
of the objective function as that of the original method, as
described in Theorem 2. We note that SSR and SSR+WS
also achieved the same objectives as those of the original

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Table 3. Values of objectives. Our method converges to the same
objective as that of the original method.

Dataset Objective
origin ours
colon-cancer 1.336 1.336
Bioresponse ~ 9.683 x 101 9.683 x 10!
QSAR-TID-52 5.727 x 10% 5.727 x 102
Madelon 9.390 x 102 9.390 x 102
Slashdot 1.837 x 103 1.837 x 103

method for QSAR-TID-52, Madelon, and Slashdot datasets
because they are safe screening methods. However, they
could not finish the computations within a month on the
other datasets as shown in Table 1. Table 3 shows that our
method can maintain the accuracy while speeding up CUR.

6. Conclusion

We proposed a fast deterministic CUR matrix decomposi-
tion. The main bottleneck of the original method is the
coordinate descent, which requires a large number of pa-
rameter updates. Our method utilizes two ideas to tackle
this problem: i) it safely skips the updates by identifying
the parameters that must be zeros, and ii) it preferentially
updates the parameters that must be nonzeros. The key is
to approximately evaluate the optimality conditions for the
zero parameters by using the upper and lower bounds of the
optimality condition scores. In addition, it provably guaran-
tees the same results as those of the original method. The
experimental results showed that our method is up to 10x
faster than the original method, and up to 4x faster than
the state-of-the-art method without requiring any additional
hyperparameters or incurring any loss of accuracy.

Although we handle only matrix decomposition in this pa-
per, our method can be extended to tensor decomposition.
Furthermore, our ideas can be generalized for various types
of structured data such as graph, tree, and heterogeneous
data. These future works will enable a wide range of appli-
cations to be implemented more efficiently.

References

Bien, J., Xu, Y., and Mahoney, M. W. CUR from a Sparse
Optimization Viewpoint. In NeurlIPS, pp. 217-225, 2010.

Bonnefoy, A., Emiya, V., Ralaivola, L., and Gribonval,
R. Dynamic Screening: Accelerating First-Order Al-
gorithms for the Lasso and Group-Lasso. IEEE Trans.
Signal Processing, 63(19):5121-5132, 2015.

Chang, C. and Lin, C. LIBSVM: A Library for Support

Vector Machines. ACM TIST, 2(3):27:1-27:27, 2011.

Drineas, P., Kannan, R., and Mahoney, M. W. Fast Monte
Carlo Algorithms for Matrices III: Computing a Com-
pressed Approximate Matrix Decomposition. SIAM J.
Comput., 36(1):184-206, 2006.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S.
Relative-Error CUR Matrix Decompositions. SIAM J.
Matrix Analysis Applications, 30(2):844-881, 2008.

Friedman, J., Hastie, T., Hofling, H., and Tibshirani, R.
Pathwise Coordinate Optimization. Ann. Appl. Stat., 1(2):
302-332, 12 2007.

Ghaoui, L. E., Viallon, V., and Rabbani, T. Safe Feature
Elimination for the Lasso and Sparse Supervised Learn-
ing Problems. Pacific Journal of Optimization, 8(4):667—
698, 2012.

Huang, J., Breheny, P., and Ma, S. A Selective Review of
Group Selection in High-Dimensional Models. Statistical
Science, 27(4):481-499, 2012.

Ida, Y., Fujiwara, Y., and Kashima, H. Fast Sparse Group
Lasso. In NeurIPS, pp. 1700-1708, 2019.

Jacob, L., Obozinski, G., and Vert, J. Group Lasso with
Overlap and Graph Lasso. In ICML, pp. 433—440, 2009.

Johnson, T. B. and Guestrin, C. Unified Methods for Exploit-
ing Piecewise Linear Structure in Convex Optimization.
In NeurIPS, pp. 4754-4762, 2016.

Johnson, T. B. and Guestrin, C. StingyCD: Safely Avoiding
Wasteful Updates in Coordinate Descent. In ICML, pp.
1752-1760, 2017.

Mackey, L. W., Talwalkar, A., and Jordan, M. I. Divide-
and-Conquer Matrix Factorization. In NeurIPS, pp. 1134—
1142, 2011.

Mahoney, M. W. and Drineas, P. CUR Matrix Decomposi-
tions for Improved Data Analysis. Proc. Natl. Acad. Sci.
U.S.A., 106(3):697-702, 2009.

Mahoney, M. W., Maggioni, M., and Drineas, P. Tensor-
CUR Decompositions for Tensor-based Data. In KDD,
pp- 327-336, 2006.

Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. R.
Convex and Network Flow Optimization for Structured
Sparsity. JMLR, 12:2681-2720, 2011.

Ndiaye, E., Fercoq, O., Gramfort, A., and Salmon, J. Gap
Safe Screening Rules for Sparsity Enforcing Penalties.
Journal of Machine Learning Research, 18(1):4671-4703,
2017.

Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance

Papailiopoulos, D. S., Kyrillidis, A., and Boutsidis, C. Prov-
able Deterministic Leverage Score Sampling. In KDD,
pp. 997-1006, 2014.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S.,
Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe,
E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., and
Lander, E. Multiclass Cancer Diagnosis using Tumor
Gene Expression Signatures. Proceedings of the National
Academy of Sciences, 98, 01 2002.

Sun, J., Xie, Y., Zhang, H., and Faloutsos, C. Less is More:
Compact Matrix Decomposition for Large Sparse Graphs.
In Proceedings of the Seventh SIAM International Con-
ference on Data Mining, pp. 366-377, 2007.

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon,
N., Taylor, J., and Tibshirani, R. J. Strong Rules for
Discarding Predictors in Lasso-type Problems. Journal
of the Royal Statistical Society Series B, 74(2):245-266,
2012.

Tong, H., Papadimitriou, S., Sun, J., Yu, P. S., and Faloutsos,
C. Colibri: Fast Mining of Large Static and Dynamic
Graphs. In KDD, pp. 686—694, 2008.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo,
L. OpenML: Networked Science in Machine Learning.
SIGKDD Explorations, 15(2):49-60, 2013.

Wang, J. and Ye, J. Two-Layer Feature Reduction for
Sparse-Group Lasso via Decomposition of Convex Sets.
In NeurIPS, pp. 2132-2140, 2014.

Wang, J., Zhou, J., Wonka, P., and Ye, J. Lasso Screening
Rules via Dual Polytope Projection. In NeurIPS, pp.
1070-1078, 2013.

Yuan, M. and Lin, Y. Model Selection and Estimation in
Regression with Grouped Variables. Journal of the royal
statistical society, series B, 68:49-67, 2006.

