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A. Proof of Lemma 1
Proof From subgradients at optimality (Sra et al., 2011),
W(i) = 0 is an optimal solution if and only if the following
condition holds for the objective in problem (1):

−zi + λvi = 0, (A.1)

where vi is an element of the subdifferential of ||W(i)||2. The
subdifferential for the l2-norm is represented as ∂||W(i)||2 =
{vi ∈ R1×p|||vi||2 ≤ 1} if W(i) = 0 (Sra et al., 2011).
Therefore, we obtain the condition Ki ≤ λ in Lemma 1 by
using Equation (A.1) and the condition ||vi||2 ≤ 1. �

We note that Lemma 1 is the known result from the opti-
mality condition with the subdifferential (see (Hastie et al.,
2015; Yuan & Lin, 2006; Simon et al., 2013; Friedman et al.,
2010; Sra et al., 2011) in detail).

B. Proof of Lemma 2
Proof From Equation (4) and ||X(i)||2 = 1, we obtain

zi = G(i)−G(i)W + W(i). (B.1)

If z̃i := G(i)−G(i)W̃ + W̃(i) is zi before entering the inner
loop of the coordinate descent, Equation (B.1) is trans-
formed into the following form:

zi = G(i)−G(i)W̃ + W̃(i)−G(i)∆W + ∆W(i)

= z̃i−G(i)∆W + ∆W(i). (B.2)

From the aforementioned equation and the triangle equality,
we obtain the following inequality:

||zi||2 ≤ ||̃zi||2 + ||∆W(i)||2 + ||G(i)∆W||2. (B.3)

1NTT Software Innovation Center, Tokyo, Japan 2Department
of Intelligence Science and Technology, Kyoto University, Kyoto,
Japan 3NTT Communication Science Laboratories, Kyoto, Japan
4RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
Correspondence to: Yasutoshi Ida <yasutoshi.ida@ieee.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

For the term ||G(i)∆W||2, we obtain the following inequality
by using the Cauchy–Schwarz inequality:

||G(i)∆W||2 ≤ ||G(i)||2||∆W||F . (B.4)

From Equation (B.3) and (B.4), we obtain the following
upper bound in the lemma:

Ki ≤ K̃i + ||∆W(i)||2 + ||G(i)||2||∆W||F = Ki. (B.5)

We obtain ||zi||2 ≥ ||̃zi||2 − ||∆W(i)||2 − ||G(i)∆W||2 for the
lower bound by using Equation (B.2) and the triangle in-
equality, similar to that in the case of the upper bound.
From the inequality and Equation (B.4), we obtain the lower
bound in the lemma:

Ki ≥ K̃i − ||∆W(i)||2 − ||G(i)||2||∆W||F = Ki, (B.6)

which completes the proof. �

C. Proof of Lemma 3
Proof From Lemma 2, we haveKi ≤ Ki ≤ Ki. Therefore,
the error bound of the upper bound is |Ki −Ki| ≤ |Ki −
Ki| = 2||∆W(i)||2 + 2||G(i)||2||∆W||F = ε. Similar to that
for the upper bound, we obtain |Ki−Ki| ≤ |Ki−Ki| = ε
for the lower bound. �

D. Proof of Lemma 4
Proof When Ki ≤ λ holds, we have Ki ≤ Ki ≤ λ from
Lemma 2. Therefore, we have W(i) = 0 from Lemma 1 as
Ki ≤ λ holds. �

E. Proof of Lemma 5
Proof For the term ||G(i)||2||∆W||F in Equation (5), since
we have ||∆W||2F = ||[||∆W(1)||2, ..., ||∆W(p)||2]||22 =

||∆W(1)||22 + ... + ||∆W(p)||22, we can update ||∆W||2F by
using the following equation:

||∆W||2F − ||∆W(j)||22 + ||∆W′(j)||22 = δ2 (E.1)

Therefore, we obtain Equation (7) by using δ instead of
||∆W||F in Equation (5). �
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F. Proof of Lemma 6
Proof We can precompute K̃i and ||G(i)||2 before entering
the inner loop and outer loop, respectively. In addition,
we have ||∆W(i)||2 and ||∆W||F as scalars. Thus, we ob-
tain the terms K̃i, ||G(i)||2, ||∆W(i)||2, and ||∆W||F at O(1)
times. When ∆W(j) is updated to ∆W′(j), the computation
of ||∆W′(j)||2 in Equation (8) requires O(p) time. Therefore,
the total computation cost of Equation (7) is O(p) time. �

G. Proof of Lemma 7
Proof If W converges, we have ∆W(i) = 0 and ∆W = 0.
Since the error bound ε is 2||∆W(i)||2 + 2||G(i)||2||∆W||F in
Lemma 3, we obtain ε = 0. In addition, because we have
K̃i = Ki when W converges, the upper bound Ki and the
lower bound Ki converge to the condition score Ki from
Equations (5) and (6). �

H. Proof of Lemma 8
Proof When Ki > λ holds, we have Ki ≥ Ki > λ from
Lemma 2. Therefore, sinceKi > λ holds, we have W(i) 6= 0
from Lemma 1. �

I. Proof of Lemma 9
Proof Lemma 9 holds since the set M includes indices of
rows that must be nonzero vectors from Lemma 8. �

J. Proof of Lemma 10
Proof Since Ki ≥ Ki from Lemma 2, the lower bound
is computed as Ki = Ki − ε from the proof of Lemma 3.
Since we have ε = |Ki − Ki| = 2||∆W(i)||2 + 2δ||G(i)||2
after W(j) is updated to W′(j), we obtain Equation (10). �

K. Proof of Lemma 11
Proof The terms K̃i, ||∆W(i)||2, δ = ||∆W||F , and ||G(i)||2
in Equation (6) have already been computed in Equations
(7) and (8). Since we obtain these terms at O(1) times, the
computation cost of Equation (8) is O(1) time. �

L. Proof of Lemma 12
Proof Lemma 12 holds from Lemma 11 since the compu-
tation of the construction for the set M checks Ki, which
requires O(1) time, for p rows. �

M. Proof of Lemma 13
Proof Suppose that L(W) := 1

2 ||X−XWX||2F in prob-
lem (11). By following the property of the overlapping

norm (Jacob et al., 2009), W is an optimal solution of
problem (11) if and only if the following conditions hold
for any rows and columns: (i) W can be decomposed as
W = V + H, (ii) if V(i) = 0 then ||∇iL(W)||2 ≤ λr,
(iii) if V(i) 6= 0 then ∇iL(W) = −λrV(i)/||V(i)||2, (iv) if
H(j) = 0 then ||∇jL(W)||2 ≤ λc, and (v) if H(j) 6= 0 then
∇jL(W) = −λcH(j)/||H(j)||2, where ∇iL(·) and ∇jL(·)
are the partial gradients of L(·) with respect to the parame-
ters in i-th row and j-th column, respectively. We consider
conditions (ii) and (iv) since Lemma 13 handles the condi-
tion for zero parameters. By using the covariate duplication
method (Obozinski et al., 2011), if V(i) = 0, ∇iL(W) in
condition (ii) is computed as follows:

∇iL(W) = X(i)T{X−(XW− X(i)V(i))X}XT. (M.1)

Therefore, we obtain the condition Ri ≤ λr for V(i) = 0 in
Lemma 13 from ||∇iL(W)||2 = Ri and condition (ii). Simi-
larly, if H(j) = 0,∇jL(W) in condition (iv) is computed as
follows:

∇jL(W) = XT{X−X(WX−H(j)X(j))}XT
(j). (M.2)

From ||∇jL(W)||2 = Cj and condition (iv), we obtain the
condition Cj ≤ λc in Lemma 13. �

We can solve problem (11) by combining Lemma 13 and
coordinate descent with the covariate duplication method
(Obozinski et al., 2011). We note that the columns C and the
rows R are selected on the basis of the indices correspond-
ing to the nonzero rows in V and nonzero columns in H,
respectively. Namely, if I ⊆ {1, ..., p} and J ⊆ {1, ..., n}
are the indices corresponding to the nonzero rows in V and
nonzero columns in H respectively, we obtain XI and XJ
as the columns C and the rows R, respectively.

Similar to the proof of Lemma 2, we obtain the upper and
lower bounds of Ri and Cj in Definition 3 from Lemma 13.
We note that the assumption of ||X(i)||2 = 1 in Lemma 2 is
not required for Definition 3.

N. Proof of Theorem 1
Proof The precomputations of XTX and ||G(i)||2 for all the
rows require O(p2n) and O(p2) times, respectively. Since
the lower bound Ki is computed at O(1) time from Lemma
11, the construction of the set M requires O(p) time as
shown in Lemma 12. According to the sequential rule, the
total cost of the construction is O(pQ) time. Since com-
putation of all the rows of K̃i requires O(p2n) time, the
total cost is O(p2ntu) time for all the outer loops of the
coordinate descent with the upper bounds. From Lemma
6, the total computation cost of the upper bounds Ki is
O(p2tu) because O(p2) time is required to compute the up-
per bounds of all the rows. To update the parameter vectors,
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we need O(pntm) time for the coordinate descent on the
set M. For the coordinate descent with the upper bounds,
O(p2ntuS) time is required for the updates. This is because
the total number of inner loops is ptu, and the updates are
performed only when they are unskipped by the upper bound.
Thus, Algorithm 2 needs O(p{n(tm+ptuS)+Q}) time. �

O. Proof of Theorem 2
Proof Since Algorithm 2 preferentially updates the rows
that must be nonzero vectors (lines 5–13), the updating or-
der is different from that of the original algorithm. On the
other hand, after lines 5–13, Algorithm 2 performs coor-
dinate descent, which updates the parameter vectors in a
cyclic order the same as the original algorithm (lines 14–
25). In other words, Algorithm 2 performs cyclic coordinate
descent the same as the original algorithm with different
initial parameters. In addition, from Lemma 4, Algorithm
2 safely skips the computations of the cyclic coordinate
descent (lines 20–21). Since we assume that the cyclic coor-
dinate descent converges in the theorem and that problem
(1) is a convex optimization problem (Bien et al., 2010),
Algorithm 2 converges to the same objective values as those
of the original algorithm if their regularization constants
are the same. �
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