
Meta-Learning with Shared Amortized Variational Inference
(Supplementary Material)

A. Network Architectures
We learn separate amortized inference networks to predict
the mean µ and log-variance lnσ2 of the latent classification
weight vectors wt. Both networks have the same architec-
ture, which depends on the feature extractor that is used.
The inference networks are shared between the prior and
approximate posterior distributions.

A.1. CONV-5 Feature Extractor

The embedding of the image returned by the CONV-5 fea-
ture extractor is a 256-dimensional vector. Each of the
inference networks for the mean and log variance of the
classifier weights wt consists of three fully connected layers
with 256 input and output features, and ELU non-linearity
(Clevert et al., 2016) between the layers. There are two
additional inference networks that predict the mean and log
variance of the classifier biases bt. Both of them consist
of two fully connected layers with 256 input and output
features followed by ELU non-linearity, and a fully con-
nected layer with 256 input and a single output feature. The
design is the same as used by Gordon et al. (2019) to ensure
comparability.

A.2. ResNet-12 Feature Extractor

With the ResNet-12 feature extractor, every image is em-
bedded into a 512-dimensional feature vector. Each of the
two inference networks consists of three fully connected
layers with 512 input and output features, with skip connec-
tions and swish-1 non-linearity (Ramachandran et al., 2017)
applied before addition in the first two dense layers.

B. Training Details for ResNet-12
For comparison with TADAM (Oreshkin et al., 2018) we
use the same optimization procedure, number of SGD up-
dates, and weight decay parameters for common parts of
the architecture as in the paper. For experiments with data
augmentation on miniImageNet we use 40k SGD updates
with momentum 0.9, and early stopping based on meta-
validation performance. We set the initial learning rate to
0.1, and decrease it by a factor ten after 20k, 25k and 30k up-
dates. On FC100 and CIFAR-FS, we use 30k SGD updates
with the same momentum and initial learning rate, and the
latter is decreased after 15k, 20k and 25k updates. We clip
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(b) 1-shot setup

gradients at 0.1, and set separate weight decay rates for the
feature extractor, TEN, fully connected layer in the auxiliary
task, and inference networks. For the feature extractor and
TEN the weight decay is 0.0005. For the fully connected
layer in the auxiliary task the weight decay is 0.00001 on
miniImageNet, and 0.0005 on FC100 and CIFAR-FS. In the
1-shot setup, the inference networks are regularized with the
weight decay equal to 0.0005, regardless of the dataset. In
the 5-shot setup, the weight decay parameter in the infer-
ence networks is 0.00001 on miniImageNet, and 0.00005
on FC100 and CIFAR-FS. We empirically find that the reg-
ularization coefficient β = K

Nd produces good results, and
use a value of β twice as large for the 1-shot setup without
the auxiliary co-training. Here d is the dimensionality of
the feature vector fθ, N is the number of classes in the task,
and K is the total number of query samples in the task.

For the 5-shot setup, mini-batches consist of two episodes,
each with 32 query images. For the 1-shot setup, we sample
5 episodes per mini-batch, and 12 query images per episode.
In both cases query images are sampled uniformly across
classes, without any restriction on the number per class. The
auxiliary 64-way classification task is trained with the batch
size 64.

C. Impact of β-scaling

Figure 1. Mean accuracy of the SAMOVAR-base classifiers sam-
pled from the prior and posterior as a function of β. While training,
we fix the random seed of the data to generate the same series
of miniImageNet tasks. The evaluation is performed over 5000
random tasks.

Typically, in autoencoders the dimensionality of the latent
space is smaller than of the observed. This is not the case
in the meta learning classification task where the output is
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(a) 5-shot setup.
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(b) 5-shot setup zoomed in.
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(c) 1-shot setup.
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(d) 1-shot setup zoomed in.

merely a one-hot-encoded label of the class, while the latent
space is of the same size as the output of the feature extrac-
tor. In our experiments we observe that the large KL term
suppresses the reconstruction term resulting in a weaker
performance. In particular, there is a trade off between these
parts of the objective function L̂(Θ) which can be regulated
by β-scaling of the KL term. Figure 1 shows the accuracy
of SAMOVAR-base with CONV-5 feature extractor as a
function of β. Even though in both setups there is a clear
maximum, overall, the model is relatively robust to the set-
ting of β. Let’s denote the optimum β as βopt. Then for
the 5-shot setup the range at least from 0.83βopt to 2βopt
produces results that are within the 1% interval from the
maximum accuracy at βopt. For the 1-shot setup, the same
holds true for the range at least from 0.66βopt to 2βopt.

D. Posterior Collapse in VERSA

Figure 2. Largest variance in VERSA as a function of the opti-
mization step. Results for optimization steps from Figure 2a and
Figure 2c that follow the first encounter of variance below 0.001
are zoomed in Figure 2b Figure 2d respectively.

While training VERSA, every 250 optimization steps we
keep track of the largest variance of the weights and biases
of the predicted classifier. Figure 2 shows how this variance
decreases with time. For example, the largest variance of
the weights first falls below 0.001 at the step 4000 in the
5-shot setup, and at the step 3000 in the 1-shot setup.
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