
Multigrid Neural Memory: Supplementary Material

Tri Huynh 1 Michael Maire 1 Matthew R. Walter 2

A. Information Routing
Proposition 1: For the setup in Figure 1, suppose that the
convolutional kernel size is 3 × 3, and upsampling is 2×
nearest-neighbor sampling. Consider location (1, 1) of the
source grid at [layer 1, level 1]. For a target grid at [layer
m, level n], where m ≥ n, the information from the source
location can be routed to any location (i, j), where 1 ≤ i,
j ≤ (m− n+ 2) · 2n−1 − 1.

Proof of Proposition 1: Induction proof on level n.

• For level n = 1: Each convolution of size 3 × 3 can
direct information from a location (i, j) at layer k to any
of its immediate neighbors (i′, j′) where i − 1 ≤ i′ ≤
i + 1, j − 1 ≤ j′ ≤ j + 1 in layer k + 1. Therefore,
convolutional operations can direct information from
location (1, 1) in layer 1 to any locations (i′, j′) in layer
k = m where 1 ≤ i′ , j′ ≤ m = (m−1+2) ·20−1 =
(m− n+ 2) · 2n−1 − 1.

• Assume the proposition is true for level n (∀m ≥ n), we
show that it is true for level n+ 1. Consider any layer
m+ 1 in level n+ 1, where m+ 1 ≥ n+ 1:

We have, m + 1 ≥ n + 1 ⇒ m ≥ n. Therefore, we
have that at [layer m, level n], the information from
the source location can be routed to any location (i, j),
where 1 ≤ i, j ≤ (m−n+2) ·2n−1−1. Now, consider
the path from [layer m, level n] to [layer m + 1, level
n+ 1]. This path involves the upsampling followed by
a convolution operator, as illustrated in Figure 1.

Nearest-neighbor upsampling directly transfers informa-
tion from index i to 2 · i and 2 · i − 1, and j to 2 · j
and 2 · j − 1 by definition. For simplicity, first consider
index i separately. By transferring to 2 · i, informa-
tion from location 1 ≤ i ≤ (m − n + 2) · 2n−1 − 1
in level n will be transferred to all even indices in
[2, ((m − n + 2) · 2n−1 − 1) · 2] at level n + 1. By
transferring to 2 · i− 1, information from location 1 ≤

1University of Chicago, Chicago, IL, USA 2Toyota Technolog-
ical Institute at Chicago, Chicago, IL, USA. Correspondence to:
Tri Huynh <trihuynh@uchicago.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

i ≤ (m−n+2) ·2n−1−1 in level n will be transferred
to all odd indices in [1, ((m−n+2) ·2n−1−1) ·2−1] at
level n+1. Together, with 2 · i and 2 · i− 1 transferring,
the nearest-neighbor upsampling transfers information
from location 1 ≤ i ≤ (m− n+ 2) · 2n−1 − 1 in level
n to all indices in [1, ((m − n + 2) · 2n−1 − 1) · 2] at
level n+ 1.

Furthermore, the following convolution operator with
3 × 3 kernel size can continue to transfer information
from [1, ((m−n+2) ·2n−1−1) ·2] to [1, ((m−n+2) ·
2n−1−1) ·2+1] at level n+1. We have ((m−n+2) ·
2n−1−1)·2+1 = (m+1−(n+1)+2)·2n−1. Taking
together indices i and j, information from location (i, j)
where 1 ≤ i, j ≤ (m − n + 2) · 2n−1 − 1 in level n
can be transferred to (i′, j′) in level n+1, where 1 ≤ i′,
j′ ≤ (m+ 1− (n+ 1) + 2) · 2n − 1. �

B. Experiment Details
B.1. Spatial Navigation

B.1.1. ARCHITECTURE

All experiments related to spatial navigation tasks use multi-
grid writer-reader(s) architectures. Figure 2 visualizes this
architecture and problem setup. At each time step during
training, the agent takes a one-step action (e.g., along a spi-
ral trajectory) and observes its 3 × 3 surroundings. This
observation, together with its location relative to the starting
point, are fed into the writer, which must learn to update its
memory. The agent has no knowledge of its absolute loca-
tion in the world map. Two random 3× 3 and 9× 9 patches
within the explored map are presented to the agent as queries
(some experiments use only 3× 3 queries). These queries
feed into two readers, each viewing the same memory built
by the writer; they must infer which previously seen loca-
tions match the query. Since the agent has no knowledge
of its absolute location in the world map, the agent builds
a map relative to its initial position (map re-centered in
Figure 2) as it navigates.

During training, the writer learns to organize and update
memory from localization losses simultaneously backprop-
agated from the two readers. During inference, only the
writer updates the memory at each time step, and the read-
ers simply view (i.e., without modification) the memory to

Multigrid Neural Memory: Supplementary Material

Figure 1. Information routing. Top: Paths depicting information flow in a multigrid architecture. Progressing from one layer to the
next, information flows between grids at the same level (via convolution, green), as well as to adjacent grids at higher resolution (via
upsampling and convolution, red) and lower resolution (via downsampling and convolution, orange). Information from a sample location
(26, 26) (blue) of the source grid at [layer 1, level 4] can be propagated to all locations rendered in blue in subsequent layers and levels,
following the indicated paths (among others). Information quickly flows from finer levels to coarser levels, and then to any location in just
a few layers. Receptive field size grows exponentially with depth. In practice, the routing strategy is emergent—routing is determined by
the learned network parameters (convolutional filters). Multigrid connectivity endows the network with the potential to quickly route from
any spatial location to any other location just a few layers deeper. Bottom: Information flow in a standard architecture. Without multigrid
connections, information from the same source location is propagated much more slowly across network layers. Receptive fields expand
at a constant rate with depth, compared to the multigrid network’s exponential growth.

infer the query locations. It is also worth noting that only
3× 3 patches are fed into the writer at each time step; the
agent never observes a 9 × 9 patch. However, the agent
successfully integrates information from the 3× 3 patches
into a coherent map memory in order to correctly answer
queries much larger than its observations. Figure 4 in the
main document shows that this learned memory strikingly
resembles the actual world map.

B.1.2. LOSS

Given predicted probabilities and the ground-truth location
mask (Figure 2), we employ a pixel-wise cross-entropy loss
as the localization loss. Specifically, letting S be the set of
pixels, pi be the predicted probability at pixel i, and yi be the
binary ground-truth at pixel i, the pixel-wise cross-entropy

loss is computed as follows:

−
∑
i∈S

yi log(pi) + (1− yi) log(1− pi) (1)

B.2. Algorithmic Tasks

B.2.1. ARCHITECTURE

Priority Sort Tasks: We employ encoder-decoder archi-
tectures for the priority sort tasks.

• Standard variant. The encoder is a 5-layer multigrid
memory architecture, structured similar to the writer
in Figure 2, progressively scaling 3 × 3 inputs at the
coarsest resolution into 24 × 24 resolution. For the
decoder, the first half of the layers (MG-conv-LSTM)
resemble the encoder, while the second half employ

Multigrid Neural Memory: Supplementary Material

Explored Map

Map Re-centered

Groundtruth Locations

(3x3 Query)

Groundtruth Locations

(9x9 Query)

+
agent’s

relative location

Observation

3x3 Query

9x9 Query

x2

M
G

-
c
o

n
v

x2

M
G

-
c
o

n
v

x2

M
G

-
c
o

n
v

x1

M
G

-
c
o

n
v

x2

M
G

-
c
o

n
v

x2

M
G

-
c
o

n
v

x2

M
G

-
c
o

n
v

M
G

-
c
o

n
v

lossReader

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

M
G

-
c
o

n
v

lossReader

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

M
G

-
c
o

n
v

-
L

S
T

M

Writer

Figure 2. Multigrid memory writer-reader(s) architecture for spatial navigation. At each time step, the agent moves to a new
location and observes the surrounding 3× 3 patch. The writer receives this 3× 3 observation along with the agent’s relative location
(with respect to the starting point), updating the memory with this information. Two readers receive randomly chosen 3× 3 and 9× 9
queries, view the current map memory built by the writer, and infer the possible locations of those queries.

MG-conv layers to progressively scale down the output
to 3× 3.

• MNIST sort + classification. Figure 8 in the main
document depicts the encoder-decoder architecture for
the MNIST variant.

Associative Recall Tasks: We employ writer-reader ar-
chitectures for the associative recall tasks. The architectures
are similar to those for the spatial navigation and priority
sort tasks depicted in Figure 2, with some modifications
appropriate to the tasks:

• Standard variant. In the standard version of the task,
the writer architecture is similar to the encoder in the
standard variant of the priority sort task. For the reader,
after progressing to the finest resolution corresponding
to the memory in the writer, the second half of MG-

conv layers progressively scale down the output to 3×3
to match the expected output size.

• MNIST recall + classification. For the MNIST vari-
ant, we resize the 28× 28 images to three scales from
3 × 3 to 12 × 12 and maintain the same three-scale
structure for five layers of the writer. The writer archi-
tecture is similar to the encoder architecture in MNIST
priority sort task, as depicted in Figure 8 in the main
document. The reader for the MNIST variant is simi-
lar to the reader in the standard variant, with the final
layer followed by a fully connected layer to produce a
10-way prediction vector over MNIST classes.

B.2.2. LOSS

Standard variants: We use pixel-wise cross-entropy loss
for the standard variants, as described in Section B.1.2.

Multigrid Neural Memory: Supplementary Material

MNIST variants: For MNIST variants, we use cross-
entropy loss over a softmax prediction of the classes. Specifi-
cally, letting C be the set of available classes, pc the softmax
output for class c, and y a one-hot vector of the ground-truth
label, we compute the loss as:

−
∑
c∈C

yc log(pc) (2)

B.3. Question Answering

B.3.1. ARCHITECTURE

We employ a 1D multigrid memory architecture for question
answering tasks, where the spatial dimensions progressively
scale from 1× 1 to 1× 16 through MG-conv-LSTM layers,
and gradually scale back to 1× 1 through MG-conv layers,
as demonstrated in Figure 9 in the main document. Inputs
and outputs are 1× 1× |V | tensors representing the word
vectors, where V is the set of words in the vocabulary and
|V | = 159. All 20 question answering tasks are jointly
trained, with batch size 1, and sequence-wise normalization.
At each time step, the model receives a word input and
generates the next word in the sequence. During training,
only the losses from words corresponding to answers are
backpropagated, others are masked out, as specified next.

B.3.2. LOSS

Let V be the set of words in the vocabulary, and y ∈
{0, 1}|V | be a one-hot vector that represents the ground-
truth word. For a word sequence S, we define a mask m as:

mi =

{
1 if word i in the sequence S is an answer
0 otherwise

(3)

Letting p ∈ (0, 1)|V | be the softmax output, we compute
the loss for question answering as follows:

−
|S|∑
i=1

mi

|V |∑
j=1

yij log(p
i
j) (4)

C. DNC Details
We use the official DNC implementation (https://
github.com/deepmind/dnc), with 5 controller heads
(4 read heads and 1 write head). For spatial naviga-
tion and algorithmic tasks, we use a memory vector of
16 elements, and 500 memory slots (8K total), which
is the largest memory size permitted by GPU resource
limitations. Controllers are LSTMs, with hidden state
sizes chosen to make total parameters comparable to
other models in Table 1 and Table 2 in the main docu-

Figure 3. Visualization of DNC memory in mapping task. Due
to its defined addressing mechanism, the DNC always allocates a
new continuous memory slot at each time-step. It does not appear
to maintain an interpretable structure of the map.

ment. DNC imposes a relatively small cap on the address-
able memory due to the quadratic cost of the temporal
linkage matrix (https://github.com/deepmind/
dnc/blob/master/dnc/addressing.py#L163).

A visualization of DNC memory in the spatial mapping task
(15× 15 map) is provided in Figure 3.

For question answering tasks, the DNC memory is com-
prised of 256 memory slots, with a 64-element vector for
each slot (16, 384 total). The use of a smaller number of
memory slots and batch size allows for the allocation of
larger total memory.

D. Runtime
On spatial mapping (with 15 × 15 world map), the run-
times for one-step inference with the Multigrid Memory
architecture (0.12M parameters and 8K memory) and DNC
(0.75M parameters and 8K memory) are (mean ± std):
0.018± 0.003 seconds and 0.017± 0.001 seconds, respec-
tively. These statistics are computed over 10 runs on a
NVIDIA Geforce GTX Titan X.

E. Demos
• Instructions for interpreting the video demos:
https://drive.google.com/file/d/

18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG

• Mapping & localization in spiral trajectory, with 3× 3
queries:
https://drive.google.com/file/d/

1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd

• Mapping & localization in spiral trajectory, with 3× 3
and 9× 9 queries:
https://drive.google.com/file/d/

18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF

• Mapping & localization in random trajectory:

https://github.com/deepmind/dnc
https://github.com/deepmind/dnc
https://github.com/deepmind/dnc/blob/master/dnc/addressing.py#L163
https://github.com/deepmind/dnc/blob/master/dnc/addressing.py#L163
https://drive.google.com/file/d/18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG
https://drive.google.com/file/d/18gvQRhNaEbdiV8oNKOsuUXpF75FEHmgG
https://drive.google.com/file/d/1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd
https://drive.google.com/file/d/1VGPGHqcNXBRdopMx11_wy9XoJS7REXbd
https://drive.google.com/file/d/18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF
https://drive.google.com/file/d/18lEba0AzpLdAqHhe13Ah3fL2b4YEyAmF

Multigrid Neural Memory: Supplementary Material

https://drive.google.com/file/d/

19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO

• Joint exploration, mapping & localization:

https://drive.google.com/file/d/

1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM

https://drive.google.com/file/d/19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO
https://drive.google.com/file/d/19IX93ppGeQ56CqpgvN5MJ2pCl46FjgkO
https://drive.google.com/file/d/1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM
https://drive.google.com/file/d/1UdTmxUedRfC-E6b-Kz-1ZqDRnzXV4PMM

	Information Routing
	Experiment Details
	Spatial Navigation
	Architecture
	Loss

	Algorithmic Tasks
	Architecture
	Loss

	Question Answering
	Architecture
	Loss

	DNC Details
	Runtime
	Demos

