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Abstract

Deep neural networks exhibit complex learn-
ing dynamics due to their non-convex loss land-
scapes. Second-order optimization methods fa-
cilitate learning dynamics by compensating for
ill-conditioned curvature. In this work, we in-
vestigate how curvature correction modifies the
learning dynamics in deep linear neural networks
and provide analytical solutions. We derive a
generalized conservation law that preserves the
path of parameter dynamics from curvature cor-
rection, which shows that curvature correction
only modifies the temporal profiles of dynamics
along the path. We show that while curvature
correction accelerates the convergence dynamics
of the input-output map, it can also negatively
affect the generalization performance. Our analy-
sis also reveals an undesirable effect of curvature
correction that compromises stability of param-
eters dynamics during learning, especially with
block-diagonal approximation of natural gradient
descent. We introduce fractional curvature cor-
rection that resolves this problem while retaining
most of the acceleration benefits of full curvature
correction.

1. Introduction

The non-convex loss landscapes of deep neural networks
exhibit ill-conditioned curvature and saddle-points where
gradient-based first-order optimization methods can perform
poorly (Martens, 2010; Dauphin et al., 2014), which pro-
duces complex nonlinear learning dynamics (Saxe et al.,
2013). Second order methods, such as natural gradient
descent (NGD) (Amari, 1998), compensate for the effect
of curvature by using the distance metric intrinsic to the
space of input-output functions (Pascanu & Bengio, 2013;
Martens, 2014; Botev et al., 2017; Bernacchia et al., 2018).
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While recent advances in approximate NGD methods (e.g.
K-FAC) have dramatically improved the computational ef-
ficiency for practical scale applications (Ba et al., 2016;
Grosse & Martens, 2016; Botev et al., 2017; Martens et al.,
2018; Osawa et al., 2019), however, it remains largely un-
known how curvature correction actually modifies the learn-
ing dynamics in deep networks. Do the curvature-corrected
learning rule simply accelerate convergences towards the
same minimum solutions as gradient descent, or do they
impose bias toward qualitatively different solutions?

As a first step toward establishing theoretical understanding
of these questions, we analyze the learning dynamics of deep
linear networks under a spectrum of curvature-corrected
update rules. Deep linear networks provide an excellent
mathematical framework for developing theoretical insights
on the complex inner workings of deep nonlinear networks
(Goodfellow et al., 2016). Despite their simplicity, deep
linear networks capture the essential nonlinear relationship
between network’s input-output maps and their parameters.
Recently, many works have analyzed the learning trajec-
tories of deep linear networks under gradient descent to
compute the convergence rate under various initial condi-
tions and architectures (Arora et al., 2018a;b; Bartlett et al.,
2019; Du & Hu, 2019), revealed decoupled modes of conver-
gence dynamics to explain the origin of multiple stage-like
loss profiles (Saxe et al., 2013), and showed implicit biases
for regularization (Du et al., 2018; Arora et al., 2019) and
resistance to overfitting (Advani & Saxe, 2017; Lampinen
& Ganguli, 2018; Poggio et al., 2018). Yet, it is unknown
how these properties of convergence dynamics generalize
beyond the first-order update rules.

Our contribution The main results are summarized as
follows.

1. We show that the path of parameter dynamics is pre-
served under curvature correction by deriving a gen-
eralized conservation law that dictates the path shape.
Consequently, curvature correction only affects the
temporal profile of dynamics along the paths.

2. We show a trade-off between the accelerated dynamics
of network’s input-output map and the stability of pa-
rameter dynamics during learning: The process of full
curvature correction, which completely removes the



Curvature-corrected deep learning dynamics

non-linearity of map dynamics, produces exploding
parameter dynamics at saddle points.

3. We introduce a fractional curvature-corrected up-
date rule called vNGD, which resolves the vanish-
ing/exploding speed problems of SGD/NGD. This
makes the map dynamics moderately nonlinear, but
no more so than that of one-hidden-layer networks
under gradient descent.

4. The widely-used block-diagonal approximations of
NGD breaches the aforementioned conservation law,
and results in highly divergent parameter update dy-
namics. In contrast, block-diagonalization of +VNGD
preserves the stability of parameter update dynamics,
yielding efficient and stable learning algorithms.

5. NGD makes the learning dynamics prone to overfitting
by simultaneously learning the signal and the noise di-
mensions of data. In contrast, v/ NGD retains the gradi-
ent descent’s resistance to overfitting by preferentially
learning the signal dimensions first before learning the
noise dimensions.

2. Setup and notations

Consider a linear neural network of depth d, whose pa-
rameters are the weight matrices w = {w;}%_ ;. The
network’s input-output map is given by the total weight
W = H?lei = wgq -+ - wy, such that fo,(z) = wz = g,
which learns the statistics of a dataset D = {2*, y*}/__; by
minimizing the [, loss

1, _
L(w) =Ep | s - ol
1
=Tr [QAEIAT} + const, (1)

where Ep, is the expectation over dataset D, ¥, = Ep[zzT]
is the input correlations, w, = Ep[yzT] £, ! is the desired
map, and A = w — w, denotes the displacement between
w and w,. For the ease of exposition, we consider pre-
whitened input dataset such that >, = I.

Gradient and Hessian, We use array representations
and bold symbols to denote the derivatives of network pa-

rameters: For example, gradient descent is expressed as
wy A

2
Aw]
the continuous-time weight update and the gradient of a
depth d = 2 network.

w = —ng, where w = Bl} and g = [ ] represent
2

In vectorized notations, gradient and Hessian of eq (1) can
be expressed as g = JA and H = JJT + J'A, where J
is the Jacobian tensor, i.e. the derivative of the input-output
map J; = 0w/0w;, and J’ is the second derivative.

Hessian operates on weight update to produce the gradient
update (i.e. Hessian-vector product):

T A T
Huo = g — [sz—i—sz]' 2

Aw] + Au]

Most second order methods use positive semi-definite (PSD)
approximations of Hessian (e.g. Fisher matrix (Amari,
1998; Heskes, 2000; Martens & Grosse, 2015), Generalized-
Gauss-Newton matrix (Martens, 2014; Botev et al., 2017))
to guarantee convergence to local minima. This corresponds
to discarding the second term of Hessian, i.e. H, = JJ7,
whose operation on weight update is

wiﬂ

T
Aw{

Hob = JJ T = { 3)

sinc.e JTu') =w=A. H, isindeed PSD, since w- H,w =
Tr[AAT] > 0 (Dot-product: a - b = 2?21 Tr[a;b]]).

Symmetries and Null-updates Deep linear networks ex-
hibit inherent symmetries that the input-output map w is
invariant under transformations that multiply an arbitrary
square matrix m to one layer and its inverse to the next:

[wl] — {mwl_l]. Equivalently, wg = { mwl] are the
wao wa2Mm —wWa2M
continuous-time transformations that yield the invariance
W = walgy + Wgow; = 0, which form the null-space
of Hessian,: wg - Hywg = 0. Due to this degeneracy,
H., is non-invertible. Therefore, natural gradient must be
computed via the Moore-Penrose pseudo-inverse, which
preserves orthogonality to the null-space of Hessian,.

3. Parameter dynamics

In this section, we analyze the learning dynamics of network
parameters w under a family of curvature-corrected update
rules to discover the shared fundamental property among
them.

Steepest gradient descent (SGD) We begin by reproduc-
ing the prior analysis on the learning dynamics under gradi-
ent descent. SGD update of deep linear networks is given
by (d = 2 example, 7: learning rate)

w1 +nwd

u';ernAwJ =0 @

w—&—ng:{

which involves nonlinear coupling terms across layers.

Saxe et al. (2013) showed that the complex dynamics of
eq (4) can be decomposed into a set of independent singular
mode dynamics', where each singular mode can be seen
as a width-1 chain network that consists of 1 neuron and a
scalar weight o; at each layer. Multiplying all of the scalar
weights produces the input-output map of the singular mode
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Figure 1. Singular mode dynamics of depth d = 2 networks under
SGD, vNGD and NGD. Contour lines visualize constant levels of
displacement: oa = o102 — 7+«. The optimal solution oA = 0 is
shown in black. The vector field visualizes the update vectors nor-
malized by the displacement: [, 62]/|oa|. All update dynamics
trail hyperbolic paths that conserve o — o3 (red lines), orthogonal
to the null-space of Hessian, (contour lines), but with different
update speed. SGD’s update speed linearly scales with Jacobian
amplitude ||j]] = v/o? + o2 which vanishes for small weights,
while NGD’s speed scales in a reciprocal manner. In constrast,
v/ NGD’s update speed remains constant with respect to ||7]|.

o= Hle o;, and 7, is the corresponding singular value of
the desired target map.

A singular mode dynamics of eq (4) is®
gi+noaji =0 (&)

where op = 6 — 74, and j; = Hk# or = &/o; are the
singular values of the displacement and the Jacobian, re-
spectively. This dynamics can be intuitively understood in
terms of its path, which trails a hyperbolic curve

o? —o? "1 = constant, Vi (6)

and the update speed along the path

ol o< loalllll, (7

. f—d . . 4.
where |[o]| = /3i_, 67, and ||j|| = \ > i1 7. Note

that the update speed of SGD vanishes for small Jacobian
amplitude || ||, exhibiting the vanishing speed problem.

Natural gradient descent (NGD) We generalize the
above analysis to curvature-corrected learning rules. Natu-
ral gradient descent is given by the minimum-norm solution

"This decomposition assumes the condition Vii 1 = U;
Vi = Vi, Ug = U,, between the left and right singular vec-
tors of matrices w. = U.A.VJT, w; = U; A;VT, where A,
Aj;’s are the singular value matrices with 0., 0;’s on the diagonal.
This condition is closely satisfied by networks with small initial
weights, which exhibit balanced weights (w;w] ~ w], ;wit1),
and is widely used for analysis of deep linear networks (Saxe et al.,
2013; Lampinen & Ganguli, 2018; Arora et al., 2018a).

*Networks with narrow bottleneck layers have singular modes
that are inactive, which remain frozen without exhibiting any learn-
ing dynamics: ¢; = 0. Eq (5),(10) only describe the active modes.

min ||| that satisfies the constraint
. wl (A +nA)
H = 2 =0 8

which yields the Moore-Penrose pseudo-inverse solution
. _|wr + nw; Al
w—l—nJA—[11.)2+77AwI =0, 9)
(See S.I.). Note that NGD update eq (9) is remarkably
similar to the SGD update eq (4) except for the Lagrange
multiplier A replacing A as the normalized displacement.
Note that natural gradient retains orthogonality to the null-

space of Hessian,: wg - JA = Tr[wTA] = 0.

The singular mode dynamics of eq (9) is
ogi+nonji =0 (10)

where oy = oa/||7||? is the singular value of the normalized
displacement. (See S.I.). Note that this dynamics follows
the same hyperbolic paths eq (6) as SGD, but with different
update speed (See Fig 1C)

o) oc 12l (an

1511
which inversely scales with [|j||. Therefore, NGD’s update

speed explodes for small Jacobian amplitude, reciprocal to
SGD’s vanishing speed problem.

Fractional Natural Gradient Descent (v NGD) Above
results can be generalized to fractional curvature-corrected
update rules, given by the minimum norm solution to the
constraint /H,w + ng = 0, where ¢/ H, denotes the
fractional matrix-power of Hessian, for ¢ > 1. The solution
can be expressed as w + nJ A, = 0, whose singular mode
dynamics

& +mnoaji /|31 =0, (12)

interpolates between NGD (¢ = 1) and SGD (¢ — o0).
This dynamics follows the hyperbolic paths eq (6) with the
update speed

&[] o< foalll7)F—2/9. (13)

Note that for ¢ = 2, termed +/NGD, the update speed be-
comes constant with respect to Jacobian amplitude

]l =mnloal, (14)

which resolves the vanishing/exploding speed problems of
SGD and NGD (See Fig 1B).
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3.1. Conservation laws of learning dynamics

The preservation of path shape under curvature correction
can be more generally understood in terms of conserva-
tion laws. As mentioned in section 2, curvature correction
preserves the orthogonality of learning dynamics to the null-
space of Hessian,, which originates from the continuous
symmetries of deep linear networks. This leads to the fol-
lowing conservation laws.

Theorem 1. Curvature-corrected update dynamics con-
serve the following quantities
Ci = wiw] — W] Wit (15)

between the adjacent layers of a deep linear network.

Proof. The dot-product between w and an arbitrary null
transform wg can be expressed as

ww@—g Trwl

for arbitrary square matrices m;. Therefore, orthogonality
of curvature-corrected dynamics to the null-space w - wg =
0, Vm implies the conservation: ¢ = 0. O

1,
0T wi)m] = 5 éom

Note that the singular mode representation of the conser-
vation law eq (15) yields the hyperbolic paths of eq (6). A
restricted case of eq (15) under SGD was shown in Arora
et al. (2018b).

This result shows that the path shape of parameter dynam-
ics derives from the intrinsic symmetries of deep network
architecture, whereas the temporal profile along the path
varies with the specifics of how the update rule handles the
curvature.

4. Map dynamics

So far, we focused on the dynamics of weight parameters
during learning. In this section, we analyze the dynamics
of the input-output map w = J T, whose singular-mode
representation is

d
é:Za‘zjl_

where the vV NGD update eq (12) is considered. Previously,
Saxe et al. (2013) analyzed the effect of depth on map dy-
namics under SGD update, which is generalized here to
include the effect of curvature correction.

o) l7IPE Y9, 16)

Note that the effect of curvature is entirely contained in the
Jacobian amplitude term, where as the displacement term
drives the map dynamics toward the target map strength o,.

Although the Jacobian amplitude term depends on individual
layer weights o, the main characteristics of how it scales
with the overall weight strength can be concisely captured
by considering the balanced condition ¢; = 0, in which the
layer weights share the value o; = &'/%3. In this condition,
eq (16) reduces to

2(d—-1)(¢—1)
dq

o=-n(G—0ad.)a" (p ) (17)

where 77 = 1d' '/ is the depth-calibrated learning rate.
The exponent p indicates the combined effect of depth and
curvature correction on the nonlinearity of map dynamics
(See Table 1). Figure 2 shows the following notable closed-
form solutions, as well as the p = 2 case:

Ty =0.(1—e™ ) (p=0)

(1) = 0« tanh*(7/5.t/2) (p=1/2)

Gy = _ O — (p=1)
L+ (0./F@0) — 1)eT

where zero initial condition () = 0 is assumed for p < 1.

4.1. Shallow networks (d = 1, p = 0)

Shallow networks exhibit linear map dynamics for all levels
of curvature correction. Also, it exhibits a constant conver-
gence rate 7 for all singular modes regardless of their target
map strength 7.

4.2. Deep networks (d > 2)

NGD (¢ = 1,p = 0) NGD continues to exhibit linear
map dynamics for deep networks and constant time-scale of
learning 1/ for all singular modes regardless of the target
map strength ... Note that the exploding parameter update
speed is necessary to sustain the finite map convergence
rate at saddle-points where gradient vanishes. Thus, NGD’s
smooth map dynamics entails sacrificing the stability of
parameter dynamics.

SGD (¢ — oo, p =2 —2/d) SGD exhibits highly non-
linear map dynamics with the exponent p ranging from

3The balanced condition is closely satisfied by networks trained
from small initial weights. See section 7.

Table 1. Exponent p for given depth d and curvature correction g

P ‘qzl q=2 q— 00
d=1 0 0 0
d=2 0 1/2 1
d— 0 1 2
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Figure 2. Learning dynamics eq (17) of the input-output map under different exponents p. Top: Learning curves of the map strength
in singular mode representation: & ;). Dashed lines show the target map strengths .. Half-max points (black circles) are shown to
visualize the time-scale of learning, which scales with the target map strength as &, ¥. Bottom: Corresponding loss profiles. 7 = 1. Initial

conditions: &gy = 0 for p < 1, 5(g) = 7«/100 forp > 1.

p = 1 for one-hidden-layer networks to p — 2 in infinite
depth limit. Due to its vanishing speed problem near the
saddle-point, SGD’s escape-time from zero initial condition
(o(0) — 0) diverges as O(—log 7(¢)) for one-hidden-layer
networks and as O(1/ 62’0_)1) for deeper networks. This re-
sults in the characteristic, sigmoidal-shaped learning curves
(Fig 2 C,D). Moreover, the time-scale of learning scales as
1/76%, such that the singular modes with stronger targets
0« learn faster than the singular modes with weaker targets.
The combination of sigmoidal learning curves and wide
separation of time-scales produces the characteristic loss
profiles of deep learning that exhibit long plateaus followed
by rapid transitions (Fig 2 D).

VNGD (¢ =2, p=1-1/d) +/NGD exhibits moder-
ately nonlinear map dynamics with the exponent p ranging
from p = 1/2 for one-hidden-layer networks (Fig 2B) up
to p — 1 in infinite depth limit (Fig 2C). Due to its non-
vanishing update speed, vVNGD escapes from the saddle-
point within finite time for all depth, exhibiting polynomi-
ally growing learning curves near zero (t) oc t%/(1=P),
followed by gradual transitions to convergence. vNGD ex-
hibits differential learning time-scale across singular modes
proportional to 1/76%, although at milder levels than SGD’s.

4.3. Effective depth

Equation (17) shows that depth and curvature correction use
the same mechanism for adding and lessening the nonlin-
earity of map dynamics. Therefore, the effect of curvature
correction can be intuitively understood as reducing the

effective depth of the network,

dg

drq-1 1%

dess =
defined as the depth that yields the same degree of nonlin-
earity in the absence of curvature correction. The effective
depth approaches the actual depth dey — d in the SGD
limit ¢ — oo, and similarly, it approaches de;r — ¢ in the
infinite depth limit d — oo. Thus, d.g is upper-bounded
by g. For v/NGD, the nonlinearity of map learning dynam-
ics is always less than that of one-hidden-layer networks:
degr < 2.

5. Effect of block-diagonal approximations

Block-diagonal NGD (NGD-d) Due to the computa-
tional cost of numerically estimating and inverting Hessian,,
full implementation of NGD does not scale well to prac-
tical problems in deep learning applications. Instead,
most second-order methods use layer-restricted, or block-
diagonal approximations of Hessian, (Martens & Grosse,
2015; Ba et al., 2016; Grosse & Martens, 2016; Martens
et al., 2018; Bernacchia et al., 2018) that separately apply
curvature corrections for each layer while ignoring the curva-
ture relationship between layers (i.e. the off-block-diagonal
terms): i.e.

w; +nH; g /d =0, (19)
called NGD-d, whose singular mode dynamics is
G+ LA, 20)
d j;
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Figure 3. Same as Figure 1, but under block-diagonally approx-
imated curvature corrections. The vector fields are no longer
orthogonal to the contour lines. (A) NGD-d exhibits a radially
diverging vector field that conserves o1 /2. Note that its trajectory
traverses the contour lines at the same rate as NGD in Fig 1C (red
dots). (B) vNGD-d exhibits a parallel vector field of constant
direction and amplitude that conserves |o1| — |o2|.

where NGD’s Jacobian amplitude normalization factor ||5|?
in eq (10) is substituted by the layer-restricted factor j2.

Note that NGD-d exhibits the same linear map dynamics
as NGD: 6 = 3%, 64 j; = —1 (5 — 7..), which was also
found in Bernacchia et al. (2018).

In parameter dynamics, however, block-diagonal approxi-
mation significantly modifies the path shape to be radially di-
verging to conserve o; /0,41 as constants of motion (Fig 3A).
It also further increases the update speed ||&||%gpq >
162 since 150 (j2)7 > (A0, 2)7! (Jensen’s
inequality). This difference is due to the significant non-
zero components in the null-space of Hessian, that do not
contribute to the network performance. Consequently, block-
diagonal NGD converges to less efficient, large norm solu-
tions that are highly sensitive to initial conditions and noise
during training (Fig 3A, red line).

Block-diagonal v NGD (vNGD-d) Block-diagonal ap-
proximation of v/NGD causes much milder modification of
parameter dynamics, whose singular mode dynamics

& + 1% sign(ji) = 0, @1)

Vd

generates straight parallel paths that conserve the absolute
difference of singular values across layers |o;| — |oj41]
as constants of motion* (Fig 3B). These non-diverging
paths yield stable parameter dynamics that converge to
close solutions to SGD’s solutions. Moreover, vV NGD-d re-
tains the non-vanishing/exploding update speed of +/NGD:
o]l = nloal.

*More generally, ¥/NGD-d conserves U?(lfl/q) - 02(171/‘1)
as constants of motion.

6. Numerical simulations

To test the main theoretical results, we conducted a sim-
ple synthetic data experiment, in which the training and
the testing datasets are generated from a random teacher
network as y* = Weacher* + 2*, where z# € RY is the
whitened input data, y* € RY is the output, z* € RY is
the noise (Lampinen & Ganguli, 2018). The input-output
map of the teacher network Wieacher € RY ¥ has a low-rank
structure (rank 3, Fig 4A) and the student is a depth d = 4
linear network of constant width N = 16. The number of
training dataset {z#,y"}_, is set to be P = N, which
makes the learning problem most susceptible to overfitting.
The student network is trained from small random initial
weights.

Hessian, blocks are computed as described in Bernacchia
et al. (2018); Botev et al. (2017) and combined to obtain
full Hessian,. NGD-d and vNGD-d only used the diago-
nal blocks. Numerical pseudo-inverses (and sqrt-inverses)
are computed via singular value decomposition (SVD).
For numerical stability, NGD and NGD-d used Levenberg-
Marquardt damping of ¢ = 10~° and update-speed clipping.
v/NGD and vNGD-d did not require such corrections.

Fig 5A,B show the learning trajectories of weight parame-
ters, which reflect the mixed dynamics of multiple singular
modes. Despite the seemingly different trajectories, SGD
and its curvature-corrected update rules (NGD, vNGD)
all conserve the same quantities of eq (15), as confirmed
in Figure 5C, indicating the same paths followed by their
underlying singular mode components. As a result, the pa-
rameter dynamics under SGD, NGD, and vNGD converge
to the same solution. Moreover, due to its non-diverging
dynamics, v NGD-d’s parameter dynamics stays close to
v/NGD dynamics, even though it does not obey the same
conservation law. In contrast, NGD-d’s parameter dynamics
quickly diverges from NGD dynamics, and tends to con-
verge to solutions with much larger parameter values. It
is also extremely sensitive to small differences in learning
conditions such as learning rate and clipping value.

Figure 4D shows the learning trajectories of the input-output
map, which closely matches the analytical predictions of
section 4, except that NGD and NGD-d no longer exhibit
exponential convergence due to the finite clipping of update-
speed. Due to differential time-scales of learning, SGD
preferentially learns the strong singular modes first, i.e. the
signal dimensions, before overfitting the small noise dimen-
sions. vVNGD and v/ NGD-d also exhibit differential learn-
ing time-scales across singular modes, and thus achieve low
generalization error via early-stopping (Fig 4C). In contrast,
NGD and NGD-d learn all singular modes at the same time,
and therefore overfit the noise dimensions from the very
beginning, which harms the generalization performance.
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Figure 4. Learing dynamics of the input-output map in teacher-student task. (A) Singular values of the target map " in training dataset.
(B) Train-loss profile. (C) Test-loss profile. (D) Singular mode dynamics of the input-output map (Similar to Fig 2). SGD, vVNGD,
v NGD-d learn the signal dimensions before the noise dimensions, which allows achieving low generalization error via early-stopping
(vertical dashed lines). NGD and NGD-d learn the noise dimensions from very beginning, simultaneously with the signal dimensions.
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Figure 5. Parameter dynamics during the time-course of learning. Only a subset of the weight matrix elements are plotted. (A,B) Weight
matrices of layer 2 and 3: wa, ws. (C) Squared-difference of the weights eq (15): ¢z = wew] — wlws. Due to small initial weights, the
networks are initialized at nearly balanced condition: ¢2(0) =~ 0. SGD, v/NGD, and NGD updates keeps this difference small (except for
numerical deviation due to finite update step size), which maintains weight balance across layers. v NGD-d maintains weight balance by
conserving a different quantity. (See text.) NGD-d does not maintain weight balance.
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7. Discussion

Our analysis shows that curvature correction preserves the
path of parameter dynamics, while modifying the tempo-
ral profile of map dynamics to reduce the nonlinear effect
of depth. This mechanism has important implications for
the stability and generalization properties of second-order
learning algorithms.

Parameter vs Map dynamics Curvature correction accel-
erates convergence by reducing the nonlinearity of learning
dynamics caused by network depth. However, this process
involves a trade-off between map dynamics and parameter
dynamics: While NGD’s full curvature correction com-
pletely remove the nonlinearity of input-output map’s dy-
namics, it risks the stability of parameter dynamics, which
explodes at saddle-points. In contrast, vV NGD’s fractional
curvature correction yields stable parameter dynamic by
eliminating the vanishing/exploding speed problems, while
exhibiting significantly reduced level of nonlinearity in map
dynamics.

Implicit bias for regularization SGD exhibits strong im-
plicit bias for efficiently extracting the low-rank statistics
in datasets, such as finding matrix factorizations with min-
imum nuclear norm (Gunasekar et al., 2017; Arora et al.,
2019), as well as avoiding overfitting in deep networks by
early stopping (Advani & Saxe, 2017; Lampinen & Ganguli,
2018), which is crucial for achieving good generalization
performance. This is due to SGD’s preference to learning
the stronger singular modes of dataset faster than weaker
modes (Saxe et al., 2013). Our analysis reveals that this
implicit bias can be affected by curvature correction. Es-
pecially, NGD is prone to overfitting by simultaneously
learning both the signal and the noise dimensions of data.
This explains the recent observation that second-order opti-
mization often leads to worse generalization performance
(Zhang et al., 2018). In contrast, vV NGD retains the differen-
tial time-scales of learning and achieves good generalization
performance.

Weight balance Another implicit regularization property
of SGD is in maintaining the weight balance across lay-
ers, which is essential for the stability of learning dynamics
and for convergence analysis (Du et al., 2018). We showed
that this property extends to all curvature corrected learning
dynamics as a direct consequence of the conservation law
eq (15) on path shape. However, the widely-used block-
diagonal approximation of NGD (e.g. K-FAC) (Ba et al.,
2016; Grosse & Martens, 2016; Martens et al., 2018) causes
the path shape to diverge, and thereby breaks the conser-
vation law. Consequently, under NGD-d, weight parame-
terization can potentially diverge to unbounded solutions,
even when trained from small initial weights. In contrast,

v/ NGD-d exhibits non-diverging path shape that maintains
balance across layers.

Our analysis provides deep theoretical insights for the effect
of curvature on the learning process of deep linear neural
networks, as well as implications for designing more robust
second-order algorithms for practical applications. Further
analysis is needed for networks with nonlinear activation
functions,
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