
InstaHide: Instance-hiding Schemes for Private Distributed Learning

Yangsibo Huang
1

Zhao Song
2

Kai Li
1

Sanjeev Arora
2

Abstract

How can multiple distributed entities collabora-
tively train a shared deep net on their private data
while preserving privacy? This paper introduces
InstaHide, a simple encryption of training im-
ages, which can be plugged into an existing dis-
tributed deep learning pipeline. The encryption
is efficient and has minor effect on test accuracy.
InstaHide encrypts each training image with a
“one-time secret key” which consists of mixing
a number of randomly chosen images and apply-
ing a random pixel-wise mask. Other contribu-
tions of this paper include: (a) Using a large pub-
lic dataset (e.g. ImageNet) for mixing during its
encryption, which improves security. (b) Exper-
imental results to show effectiveness in preserv-
ing privacy against known attacks with only mi-
nor effects on accuracy. (c) Theoretical analysis
showing that successfully attacking privacy re-
quires attackers to solve a difficult computational
problem. (d) Demonstrating that Mixup alone is
insecure (as contrary to recent proposals), by pre-
senting some efficient attacks. (e) Release of a
challenge dataset1 to encourage new attacks.

1. Introduction

In many applications, multiple parties or clients with sen-
sitive data want to collaboratively train a neural network.
For instance, hospitals may wish to train a model on their
patient data. However, aggregating data to a central server
may violate regulations such as Health Insurance Portabil-
ity and Accountability Act (HIPAA) (Act, 1996) and Gen-
eral Data Protection Regulation (GDPR) (Voigt & Von dem
Bussche, 2018).

Federated learning (McMahan et al., 2016; Konečnỳ et al.,
2016) proposes letting participants train on their own data

1Princeton University 2Princeton University and Institute
for Advanced Study. Correspondence to: Yangsibo Huang
<yangsibo@princeton.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1https://github.com/Hazelsuko07/InstaHide Challenge.

in a distributed fashion and share only model updates —
i.e., gradients—with the central server. The server aggre-
gates these updates (typically by averaging) to improve a
global model and then sends updates to participants. This
process runs iteratively until the global model converges.
Merging information from individual data points into ag-
gregated gradients intuitively preserves privacy to some de-
gree. On top of that, it is possible to add noise to gradi-
ents in accordance with Differential Privacy (DP) (Dwork
et al., 2006; Dwork & Roth, 2014), though careful calcu-
lations are needed to compute the amount of noise to be
added (Abadi et al., 2016; Papernot et al., 2019). How-
ever, the privacy guarantee of DP only applies to the trained
model (i.e., approved use of data) and does not apply to
side-channel computations performed by curious/malicious
parties who are privy to the communicated gradients. Re-
cent work (Zhu et al., 2019) suggests that eavesdropping
attackers can recover private inputs from shared model up-
dates, even when DP was used. A more serious issue
with DP is that meaningful guarantees involve adding so
much noise that test accuracy reduces by over 20% even on
CIFAR-10 (Papernot et al., 2019).

Cryptographic methods such as secure multiparty com-
putation of (Yao, 1982) and fully-homomorphic encryp-
tion (Gentry, 2009) can ensure privacy against arbitrary
side-computations by adversary during training. Unfortu-
nately it is a challenge to use them in modern deep learn-
ing settings, owing to their high computational overheads
and their needs for special setups (e.g finite field arithmetic,
public-key infrastructure).

Here we introduce a new method InstaHide, inspired
by a weaker cryptographic idea of instance hiding
schemes (Abadi et al., 1987). We only apply it to image
data in this paper and leave other data types (e.g., text) for
future work. InstaHide gives a way to transform input x
to a hidden/encrypted input ex in each epoch such that: (a)
Training deep nets using the ex’s instead of x’s gives nets
almost as good in terms of final accuracy; (b) Known meth-
ods for recovering information about x out of ex are com-
putationally very expensive. In other words, ex effectively
hides information contained in x except for its label.

InstaHide encryption has two key components. The first is
inspired by Mixup data augmentation method (Zhang et al.,

https://github.com/Hazelsuko07/InstaHide_Challenge

InstaHide: Instance-hiding Schemes for Private Distributed Learning(PET[RVKQP�QH�����������

Ȝ��[��Ȝ��[

���3XEOLF�ĺ�RII�WKH�VKHOI
���/DUJH�ĺ�JLYHV�PRUH�VHFXULW\

)OLS�SL[HO�
VLJQV�UDQGRPO\

����Ȝ������Ȝ��
��������&DW����&DU

3ULYDWH�WUDLQ�VHW�

������������
��������&DW

PL[�ZLWK�LPDJHV�IURP�SULYDWH�DQG�SXEOLF�GDWDVHWV� RQH�WLPH�UDQGRP�PDVN�WKDW�ćLSV�VLJQ

��Ȝ��[

������������
�����������������&DU

��Ȝ��[

�3XEOLF��GDWDVHW�
�ODUJH��H�J��,PDJH1HW�

Figure 1: Applying InstaHide (k = 4) to the leftmost private image consists of mixing with another (private) image
randomly chosen from the training set and two images randomly chosen from a fixed large public dataset. This is followed
by a random sign-flipping mask on the composite image. To encrypt another image, different random choices will get used
(“one-time key”).

2018), which trains deep nets on composite images created
via linear combination of pairs of images (viewed as vec-
tors of pixel values). In InstaHide the first step when en-
crypting image x (see Figure 1) is to take its linear com-
bination with k � 1 randomly chosen images from either
the participant’s private training set or from a large pub-
lic dataset (e.g., ImageNet (Deng et al., 2009)). The sec-
ond step of InstaHide involves applying a random pattern
of sign flips on the pixel values of this composite image,
yielding encrypted image ex, which can be used as-is in ex-
isting deep learning frameworks. Since the set of random
images for mixing and the random sign flipped mask are
used only once, together as a one-time key, and never used
for another encryption.

The idea of random sign flipping2 is inspired by classic
Instance-Hiding over finite field GF(2), which involves
adding a random vector r to an input x. (See Appendix B
for background.) Adding 1 over GF(2) is analogous to a
sign flip over R. (Specifically, the groups (GF(2),+) and
({±1},⇥) are isomorphic.) The use of a public dataset
in InstaHide plays a role reminiscent of random oracle in
cryptographic schemes (Canetti et al., 2004) —the larger
this dataset, the better the conjectured security level (see
Section 4). A large private dataset would suffice too for
security, but then would require prior coordination/sharing
among participants.

Experiments on MNIST, CIFAR-10, CIFAR-100 and Ima-
geNet datasets (see Section 5) suggest that InstaHide is an
effective approach to hide training images from attackers.
It is much more effective at hiding images than Mixup alone
and provides better trade-off between privacy preservation
and accuracy than DP. To enable further rigorous study of

2Note that randomly flipping signs of coordinates in vector x
can be viewed alternatively as retaining only absolute value of
each pixel in the mixed image. In other words, for each pixel c
in the original image, we scale it by � and add some value ⌘ to
it which is the pixel value in images it is mixed with, and we are
retaining |�c+ ⌘|. Figure 5 gives an illustration.

We choose to take the viewpoint of random sign flips because
this is more useful in extensions of InstaHide, which are forth-
coming.

attacks, we release a challenge dataset of images encrypted
using InstaHide.

Enhanced functionality due to InstaHide. As hinted
above, InstaHide plugs seamlessly into existing distributed
learning frameworks such as federated learning: clients en-
crypt their inputs on the fly with InstaHide and participate
in training (without using DP). Depending upon the level
of security needed in the application (see Section 4.1), In-
staHide can also be used to present enhanced functionality
that are unsafe in current distributed frameworks. For in-
stance, in each epoch, computationally limited clients can
encrypt each private input x to ex and ship it to the central
server for all subsequent computation. The server may ran-
domize in the pooled data to create its own batches to deal
with special learning situations when distributed data are
not independent and identically distributed.

Rest of the Paper: Section 2 recaps Mixup and suggests
it alone is not secure. Section 3 presents two InstaHide
schemes, and Section 4 analyzes their security and provides
suggestions for practical use. Section 5 shows experiments
for InstaHide’s efficiency, efficacy, and security. We review
related work in Section 7 and conclude in Section 8.

2. Mixup and Its Vulnerability

This section reviews Mixup method (Zhang et al., 2018) for
data augmentation in deep learning and shows —using two
plausible attacks— that it alone does not assure privacy.
For ease of description, we consider a vision task with a
private dataset X ⇢ Rd of size n. Each image xi 2 X , i 2
[n] is normalized such that

Pd
j=1 xi,j = 0 and kxik2 = 1.

See Algorithm 1. Given an original dataset, in each epoch
of the training the algorithm generates a Mixup dataset on
the fly, by linearly combining k random samples, as well as
their labels (lines 9, 10). Mixup suggests that training with
mixed samples and mixed labels serves the purpose of data
augmentation, and achieves better test accuracy on normal
images.

We describe the algorithm as an operation on k images, but
previous works mostly used k = 2.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Algorithm 1 Mixup (Zhang et al., 2018)
1: procedure MIXUP(W,T,X ,Y)
2: W : the weights of the deep neural network; T: number of

epochs; X = {x1, · · · , xn},Y = {y1, · · · , yn}: the original
dataset.

3: Initialize W
4: for t = 1! T do

5: Generate ⇡1 such that ⇡1(i) = i, 8i 2 [n], and k � 1
random permutations ⇡2, · · · , ⇡k : [n]! [n] . [n] denotes
{1, 2, · · · , n}

6: Sample �1, · · · ,�n ⇠ [0, 1]k uniformly at random,
and for all i 2 [n] normalize �i such that k�ik1 = 1.

7: eD ;
8: for i = 1! n do . Generate Mixup dataset
9: exmix

i
Pk

j=1(�⇡j(i))jx⇡j(i) . Mix images
10: eyi

Pk
j=1(�⇡j(i))jy⇡j(i) . Mix labels

11: eD eD [(exi, eyi)
12: end for

13: Train W using the Mixup dataset eD
14: end for

15: end procedure

2.1. Attack on Mixup within a Private Dataset

We propose an attack to the Mixup method when a private
image is mixed up more than once during training. In fact,
in Algorithm 1, each image is used kT times during train-
ing, where k is the number of samples to mix, and T is the
number of training epochs.

Assume that pairs of images in X are fairly independent at
the pixel level, so that the inner product of a random pair of
images (viewed as vectors) has expectation 0 (expectation
can be nonzero but small). We can think of each pixel is
generated from some distribution with standard deviation
1/

p
d and describe attacks with this assumption. (Section 5

shows that these attacks do work in practice.)

Suppose we have two Mixup images ex1 and ex2 which are
derived from two subsets of private images, S1,S2 ⇢ X
and |S1| = |S2| = k. If ex1 and ex2 contain different private
images, namely S1\S2 = ;, then the expectation of ex1 ·ex2

is 0. However, if S1 \ S2 6= ;, and ex1 and ex2 have coeffi-
cients �1 and �2 for the common image in these two sets,
then the expectation of hex1, ex2i is �1�2/k, which means
by simply checking the inner products between two ex’s, the
attacker can determine with high probability whether they
are derived from the same image. Thus if the attacker finds
multiple such pairs, they can average the ex’s to start getting
a good estimate of x. (Note that the rest of images in the
pairs are with high probability distinct and so average to 0.)

2.2. Attack on Mixup Between a Private and a Public

Dataset

To defend against the previous attack, it seems that a possi-
ble method is to modify the Mixup method to mix a private

Setting Secure?

x is mixed in multiple ex’s No
x is mixed in a single ex, with a public dataset No
x is mixed in a single ex, with a private dataset Maybe

Table 1: Security of Mixup alone.
image x with k� 1 images only once to get a single ex, and
use this ex as surrogate for x in all epochs. To ensure x 2 X
is used only once, it uses an additional public dataset X 0

(e.g. ImageNet). In other words, for every x 2 X , it pro-
duces ex by using Mixup between x and k � 1 random im-
ages from a large public dataset.

This extension of the Mixup method seems secure at first
glance, as naively one can imagine that to violate privacy,
the adversary must do exhaustive search over (k�1)-tuples
of public images to determine which were mixed into ex,
and try all possible k-tuples of coefficients, and then sub-
tract the corresponding sum from ex to extract x. If this
is true, it would suggest that extracting x or any approxi-
mation to it requires

� N
k�1

�
⇡ N

k�1 work, where N is the
number of images in the public dataset. This work becomes
infeasible even for k = 4. However, we sketch an attack
below that runs in O(Nk) time.

It again uses the above assumption about the pairwise in-
dependence property of a random image pair. Recall that
standard deviation of pixels is 1/

p
d. Namely, to deter-

mine the images that went into the mixed sample ex =
�1x1 +

Pk
i=2 �ixi, it suffices to go through each image

z in the dataset and examine the inner product z · ex. If z
is not one of the xi’s then this inner product is of the order
at most

p
k/d (see part 1 of Theorem C.3), whereas if it is

one of the xi’s then it is of the order at least 1
k (1�

p
k/d)

(see part 2 of Theorem C.3). Thus if k
3 ⌧ d (which is

true if the number of pixels d is a few thousand) then the
inner product gives a strong signal whether z is one of the
xi’s. Once the correct xi’s and their coefficients have been
guessed, we obtain x up to a linear scaling. Thus the above
attack works with good probability and in time proportional
to the size of the dataset. We provide results for this attack
in Section 5.

This attack of course requires that x is being mixed in with
images from a public dataset X 0. In the case that X 0 is
private and diverse enough, it is conceivable that Mixup is
safe. (MNIST for example may not be diverse enough but
ImageNet probably is.) We leave it as an open question.

2.3. Discussions

Table 1 summarizes the security of Mixup. Only Mixup
with single ex for each private x and within a private
dataset(s) has not been identified vulnerable to potential at-
tacks. But this does not necessarily mean it is secure. In

InstaHide: Instance-hiding Schemes for Private Distributed Learning

addition, the test accuracy in this case is not comparable
to vanilla training; it incurs about 20% accuracy loss with
CIFAR-10 tasks.

Potentially insecure applications of Mixup. Recently, a
method called FaceMix (Liu et al., 2019) applies Mixup
at the representation level (i.e. intermediate output of deep
models) during inference. Given a representation function
h : Rd ! Rl and a secret x 2 Rd, the paper assumed a
threat model that the attacker is able to reconstruct x given
h(x). Therefore, FaceMix proposed to protect the privacy
of x by generating eh1(x) = �1h(x) +

Pk
i=2 �ih(xi), and

run inference on eh(x). A similar but different idea was
shown in (Fu et al., 2019), which proposed to generate ex =
�1x+

Pk
i=2 �ixi and use eh2(x) = h(ex) for training.

Both methods may be vulnerable to the attacks presented
in this section: when h is linear (one example in (Liu et al.,
2019)), we have eh1(x) = eh2(x), which means the attacker
can reconstruct the Mixup image ex = �1x +

Pk
i=1 xi

from eh1(x) and run attacks on Mixup. For a nonlinear h,
eh1(x) ⇡ eh2(x) may also hold.

3. InstaHide

This section first presents two schemes: Inside-dataset In-
staHide and Cross-dataset InstaHide, and then describes
their inference.

The Inside-dataset InstaHide mixes each training image
with random images within the same private training
dataset. The Cross-dataset InstaHide, arguably more se-
cure (see Section 4), involves mixing with random images
from a large public dataset like ImageNet.

3.1. Inside-Dataset InstaHide

Algorithm 2 shows Inside-dataset InstaHide. Its encryp-
tion step includes mixing the secret image x with k � 1
other training images followed by an extra random pixel-
wise sign-flipping mask on the composite image. Note that
random sign flipping changes the color of a pixel. The mo-
tivation for random sign flips was described around Foot-
note 2.

Definition 3.1 (random mask distribution ⇤d
±). Let ⇤d

± de-
note the d-dimensional random sign distribution such that
8� ⇠ ⇤d

±, for i 2 [d], �i is independently chosen from
{±1} with probability 1/2 each.

To encrypt a private input xi, we first determine the random
coefficient �’s for image-wise combination, but with the
constraint that they are at most c to avoid dominant leak-
age of any single image (line 6 in Algorithm 2). Then we
sample a random mask �i ⇠ ⇤d

± and apply � � x, where �
is coordinate-wise multiplication of vectors (line 10 in Al-
gorithm 2). Note that the random mask �i and the k � 1

Algorithm 2 Inside-dataset InstaHide
1: procedure INSTAHIDE(W,T,X ,Y) . This paper
2: W : weights of the neural network; T: number of epochs;

X = {x1, · · · , xn}: data; Y = {y1, · · · , yn}: labels.
3: Initialize W
4: for t = 1! T do

5: Generate ⇡1 such that ⇡1(i) = i, 8i 2 [n], and k � 1
random permutations ⇡2, · · · , ⇡k : [n]! [n]

6: Sample �1, · · · ,�n ⇠ [0, 1]k uniformly at random,
and for all i 2 [n] normalize �i 2 Rk such that k�ik1 = 1
and k�ik1  c. . c 2 [0, 1] is a constant that upper bounds
a single coefficient

7: Sample �1, · · · ,�n ⇠ ⇤d
± uniformly at random. .

Definition 3.1
8: eD ;
9: for i = 1! n do . Generate InstaHide dataset

10: exi �i �
Pk

j=1(�⇡j(i))jx⇡j(i) . Encryption
11: eyi

Pk
j=1(�⇡j(i))jy⇡j(i) . Mix labels

12: eD eD [(exi, eyi)
13: end for

14: Train W using the InstaHide dataset eD
15: end for

16: end procedure

images used for mixing with xi, will not be reused to en-
crypt other images. They constitute a “random one-time
private key.”

A priori. It may seem that using a different mask for each
training sample would completely destroy the accuracy of
the trained net, but as we will see later it has only a small
effect when k is small. Mathematically, this seems remi-
niscent of the phase retrieval problem (Candes et al., 2013;
Li & Nakos, 2018) (see Appendix E).

3.2. Cross-Dataset InstaHide

Cross-Dataset InstaHide extends the encryption step of Al-
gorithm 2 by mixing k images from the private training
dataset Dprivate and a public dataset Dpublic, and a random
mask as a random one-time secret key.

Although the second dataset can be private, there are sev-
eral motivations to use a public dataset: (a) Some privacy-
sensitive datasets, (e.g. CT or MRI scans), feature images
with certain structure patterns with uniform backgrounds.
Mixing among such images as in Algorithm 2 would not
hide information effectively. (b) Drawing mixing images
from a larger dataset gives greater unpredictability, hence
better security (see Section 4). (c) Public datasets are freely
available and eliminate the need for special setups among
participants in a distributed learning setting.

To mix k images in the encryption step, we randomly
choose dk/2e images from Dprivate and the other bk/2c
from Dpublic, and apply InstaHide to all these images. The
only difference in the Cross-dataset scheme is that, the
model is trained to learn only the (mixed) label of Dprivate
images. We assume Dpublic images are unlabelled.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

We advocate preprocessing a public dataset in two steps to
obtain Dpublic for better security. The first is to randomly
crop a number of patches from each image in the public
dataset to form Dpublic. This step will make Dpublic much
larger than the original public dataset. The second is to
filter out the “flat” patches. In our implementation, we de-
sign a filter using SIFT (Lowe, 1999), a feature extraction
technique to retain patches with more than 40 key points.

3.3. Inference with InstaHide

Either scheme above by default applies InstaHide during
inference, by averaging predictions of multiple encryptions
(e.g. 10) of a test sample. This idea is akin to existing
cryptographic frameworks for secure evaluation on a pub-
lic server via homomorphic encryption (e.g. (Mishra et al.,
2020)). Since the encryption step of InstaHide is very effi-
cient, the overhead of such inference is quite small.

One can also choose not to apply InstaHide during infer-
ence. We found in our experiments (Section 5) that it works
for low-resolution image datasets such as CIFAR-10 but it
does not work well with a high-resolution image dataset
such as ImageNet.

4. Security Analysis

This section considers the security of InstaHide in dis-
tributed learning, specifically the Cross-dataset version.

Attack scenario: In each epoch, all clients replace each
(image, label)-pair (x, y) in the training set with some
(ex, ey) using InstaHide. Attackers observe h(ex, ey) for some
function h: in federated learning h could involve batch
gradients or hidden-layer activations computed using input
ex, ey as well as other inputs.

Argument for security consists of two halves: (1) To
recover significant information about an image x from
communicated information, computationally limited eaves-
droppers/attackers have to break InstaHide encryption
(Section 4.1). (2) Breaking InstaHide is difficult (Sec-
tion 4.2).

4.1. Secure Encryption Implies Secure Protocol

Suppose an attacker exists that compromises an image x in
the protocol. We do the thought experiment of even provid-
ing the attacker with encryptions of all images belonging
to all parties, as well as model parameters in each itera-
tion. Now everything the attacker sees during the protocol
it can efficiently compute by itself, and we can convert the
attacker to one that, given ex, extracts information about x.
We conclude in this thought experiment that a successful
attack on the protocol also yields a successful attack on the
encryption. In other words, privacy loss during protocol is
upper bounded by privacy loss due to the encryption itself.

Of course, this proof allows the possibility that the proto-
col —due to aggregation of gradients, etc.—ensures even
greater privacy than the encryption alone.
Dealing with multiple encryptions of same x: In our
protocol each image x is re-encrypted in each epoch. This
seems to act as a data augmentation and improves accu-
racy. The above argument translated to this setting shows
that privacy violation requires solving the following prob-
lem: Private images x1, x2, . . . , xm were each encrypted
T times (m is size of the private training set, T is number
of epochs), each time using a new private key. Attacker is
given these mT encryptions. Weaker task: Attacker has
to identify which of them came from x1. Stronger task:
Attacker has to identify x1.

We conjecture both tasks are hard. Visualization (see
Figure 8) as well as the Kolmogorov–Smirnov test (Kol-
mogorov, 1933; Smirnov, 1948) (see Appendix F) suggest
that statistically, it is difficult to distinguish among distribu-
tions of encryptions of different images. Thus, effectively
identifying multiple ex’s of same x and using them to run
attacks seems difficult.

4.2. Hardness of Attacking InstaHide Encryption

Now we consider the difficulty of recovering information
about x given a single encryption ex.

Security estimates of naive attack. We start by consid-
ering the naive attack, which would involve the attacker to
either figure out the set of all k images, or to compromise
the mask � and run attacks on Mixup. This should take
min{|X [X 0|k/2, 2d} time. For inside-dataset InstaHide
(i.e., X 0 = ;), the size of the private dataset X is usually
of order 105, thus the attack takes 102.5k. For cross-dataset
InstaHide with a large public dataset (e.g. ImageNet), the
computation cost of attack will increase to 103.5k. For both
cases, k = 4 already makes the attack hard.

Now we suggest reasons why the naive attack may be best
possible.

For worst-case pixel-vectors, finding the k-image set is

hard. Appendix F shows that for worst-case choices of
images (i.e., when an “image” is allowed to be an arbi-
trary sequence of pixel values) the computational complex-
ity of this problem is related to the famous k-VECTOR SUB-
SET SUM problem3, whose complexity is conjectured to be
|X [X 0|k/2 under a strong form of the P vs NP conjecture.
Thus when X 0 is a large public dataset and k � 4, the com-
putational effort to recover the image ought to be at least
quadratic in the dataset size, which should be of the order
of 1010 or more.

3Given a set of N public vectors v1, · · · vN 2 Rd and
Pk

j vij ,
the sum of a secret subset i1, · · · , ik of size k, k-VECTOR SUBSET
SUM aims to find i1, · · · , ik.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Of course, images are not worst-case vectors. Thus an at-
tack must leverage this fact somehow. The obvious idea to-
day is to use a deep net for the attack, and the experiments
below will suggest the obvious ideas do not work.

Compromising the mask is also hard. As previously
discussed, the pixel-wise mask � ⇠ ⇤d

± (Def. 3.1) in In-
staHide is kept private by each client, which is analogous
to a private key (assuming the client never shares its own
� with others, and the generation of � is statistically ran-
dom). Brute-force algorithm consumes 2d time to figure
out �, where d can be several thousands in vision tasks.

5. Experiments

We have conducted experiments to answer three questions:

1. How much accuracy loss does InstaHide suffer (Sec-
tion 5.1)?

2. How is the accuracy loss of InstaHide compared to
differential privacy approaches (Section 5.2)?

3. Can InstaHide defend against known attacks (Sec-
tion 5.3)?

We are particularly interested in the cases where k = 4.

Datasets and setup. Our main experiments are image
classification tasks on four datasets MNIST (LeCun et al.,
2010), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and
ImageNet (Deng et al., 2009). We use ResNet-18 (He
et al., 2016) architecture for MNIST and CIFAR-10, Nas-
Net (Zoph et al., 2018) for CIFAR-100, and ResNeXt-
50 (Xie et al., 2017) for ImageNet. The implementation
uses the Pytorch (Paszke et al., 2019) framework. Note that
we convert greyscale MNIST images to be 3-channel RGB
images in our experiments. Hyper-parameters are provided
in Appendix F.

5.1. Accuracy Results of InstaHide

We evaluate the following InstaHide variants:

• Inside-dataset InstaHide with different k’s, where k is
chosen from {1, 2, 3, 4, 5, 6}.

• Cross-dataset InstaHide with k = 4. For MNIST,
we use CIFAR-10 as the public dataset; for CIFAR-
10 and CIFAR-100, we use the resized ImageNet as
the public dataset. We do not test Cross-dataset In-
staHide on ImageNet since its sample size is already
large enough for good security.

The computation overhead of InstaHide in terms of extra
training time in our experiments is smaller than 5%.

Accuracy with different k’s. Figure 2 shows the test
accuracy of vanilla training, and inside-dataset InstaHide
with different k’s on MNIST, CIFAR-10 and CIFAR-100
benchmarks. Compared with vanilla training, InstaHide
with k = 4 only suffers small accuracy loss of 1.3%, 3.4%,
and 4.7% respectively. Also, increasing k from 1 (i.e., ap-
ply mask on original images, no Mixup) to 2 (i.e., apply

mask on pairwise mixed images) improves the test accu-
racy for CIFAR datasets, suggesting that Mixup data aug-
mentation also helps for encrypted InstaHide data points.
Inside-dataset v.s. Cross-dataset. We also evaluate the
performance of Cross-dataset InstaHide, which does en-
cryption using random images from both the private dataset
and a large public dataset. As shown in Table 2, Cross-
dataset InstaHide incurs an additional small accuracy loss
comparing with inside-dataset InstaHide. The total accu-
racy losses for the three cases are 1.4%, 5.5%, and 5.8% re-
spectively. As previously suggested, a large public dataset
provides a stronger notion of security.

Inference with and without InstaHide. As mentioned in
Sec 3.3, by default, InstaHide is applied during inference.
In our experiments, we averaging predictions of 10 encryp-
tions of a test image. We found that for high-resolution
images, applying InstaHide during inference is important.
The results of using Inside-dataset InstaHide on ImageNet
in Table 2 show that the accuracy of inference with In-
staHide is 72.6%, whereas that without InstaHide is only
1.4%.

5.2. InstaHide vs. Differential Privacy approaches

Although InstaHide is qualitatively different from differen-
tial privacy in terms of privacy guarantee, we would like to
provide hints for their relative accuracy (Question 2).
Comparison with DPSGD. DPSGD (Abadi et al., 2016)
injects noise to gradients to control private leakage. Table 2
shows that DPSGD leads to an accuracy drop of about 20%
on CIFAR-10 dataset. By contrast, InstaHide gives models
almost as good as vanilla training in terms of test accuracy.
Comparison with adding random noise to images. We
also compare InstaHide (i.e., adding structured noise) with
adding random noise to images (another typical approach
to preserve differential privacy). Specifically, given the
original dataset X , and a perturbation coefficient ↵ 2
(0, 1), we test a) InstaHideinside,k=2: exi = ��((1�↵)xi+
↵xj), where xj 2 X , j 6= i, and b) adding random Laplace
noise e: exi = (1� ↵)xi + e, where E[kek1] = E[k↵xjk1].

As shown in Figure 3, by increasing ↵ from 0.1 to 0.9, the
test accuracy of adding random noise drops from ⇠ 94% to
⇠ 10%, while the accuracy of InstaHide is above 90%.

5.3. Vulnerability Against Attacks

To answer the question how well InstaHide can defend
known attacks, here we report our findings with a se-
quence of attacks on InstaHide encryption ex to recover
original image x, including gradient-matching attack (Zhu
et al., 2019), demasking using GAN (Generative Adversar-
ial Network), averaging multiple encryptions, and uncover-
ing public images with similarity search.
Gradient-matching attack (Zhu et al., 2019). Here at-
tacker observes gradients of the loss generated using a

InstaHide: Instance-hiding Schemes for Private Distributed Learning

(a) MNIST (b) CIFAR-10 (c) CIFAR-100
Figure 2: Test accuracy (%) on MNIST, CIFAR-10 and CIFAR-100 for vanilla training and inside-dataset InstaHide with
different k’s. InstaHide with k  4 only suffers small accuracy loss.

MNIST CIFAR-10 CIFAR-100 ImageNet Assumptions

Vanilla training 99.5± 0.1 94.8± 0.1 77.9± 0.2 77.4 -

DPSGD
⇤ 98.1 72.0 N/A N/A A labeled public dataset for pre-training

InstaHideinside,k=4, in inference 98.2± 0.2 91.4± 0.2 73.2± 0.2 72.6 -
InstaHideinside,k=4 98.2± 0.3 91.2± 0.2 73.1± 0.3 1.4 -
InstaHidecross,k=4, in inference 98.1± 0.2 89.3± 0.2 72.1± 0.3 - Using a large unlabelled public dataset
InstaHidecross,k=4 98.0± 0.2 89.2± 0.3 72.1± 0.3 -

Table 2: Test accuracy (%) on MNIST, CIFAR-10, CIFAR-100 and ImageNet for vanilla training, DPSGD (Abadi et al.,
2016) and InstaHide, including the mean and standard deviation of test accuracy across 5 runs except for ImageNet.
⇤DPSGD results are from (Papernot et al., 2019), which does not have results for CIFAR-100 and Imagenet. Results
marked with “in inference” applies InstaHide during inference. InstaHide methods incur minor accuracy reductions.

user’s private image s while training a deep net (attacker
knows the deep net, e.g., as a participant in Federated
Learning) and tries to recover s by computing an image
s
⇤ that has similar gradients to those of s (see algorithm in

Appendix F). Figure 4 shows results of this attack on Mixup
and InstaHide schemes on CIFAR-10. If Mixup with k = 4
is used, the attacker can still extract fair bit of information
about the original image. However, if InstaHide is used the
attack isn’t successful.

Demask using GAN. InstaHide does pixel-wise random
sign-flip after applying Mixup (with public images, in the
most secure version). This flips the signs of half the pixels
in the mixed image. An alternative way to think about it is
that the adversary sees the intensity information (i.e. abso-
lute value) but not the sign of the pixel. Attackers could use
computer vision ideas to recover the sign. One attack con-
sists of training a GAN on this sign-recovery task4, using
a large training set of (z,� � z) where z is a mixed image
and � is a random mask. If this GAN recovers the signs
reliably, this effectively removes the mask, after which one
could use the attacks against Mixup described in Section 2.

In experiments this only succeeded in recovering half the
flipped signs, which means ⇠ 1/4 of the coordinates con-
tinued to have the wrong sign; see Figure 5. GAN train-
ing5 used 10,000 cross-dataset InstaHide examples gener-
ated with CIFAR-10 and ImageNet and k = 4. This level of

4We thank Florian Tramèr for suggesting this attack.
5We use this GAN architecture (designed for image coloriza-

tion): https://github.com/zeruniverse/neural-colorization.

sign recovery seems insufficient to allow the attack against
Mixup (Section 2) to succeed, nor the other attacks dis-
cussed below. Nevertheless, researchers trying to break
InstaHide may want to use such a demasking GAN as a
starting point.
Average multiple encryptions of the same image. We
further test if different encryptions of the same image (after
demasking) can be used to recover that hidden image by
running the attack in Section 2.1.

Assuming a public history of n ⇥ T encryptions, where n

is the size of the private training set, and T is the number
of epochs. We consider a stronger and a weaker version of
this attack.

• Stronger attack: the attacker already knows the set
of multiple encryptions of the same image x. He uses
GAN to demask all encryptions in the set, and aver-
ages images in the demasked set to estimate x.

• Weaker attack: the attacker does not know which
subset of the encryption history correspond to the
same original image. To identify that subset, he firstly
demasks all n ⇥ T encrytions in the history using
GAN. With an arbitrary demasked encryption (from
the history) for some unknown original image x, he
runs similarity search to find top-m closest images in
n ⇥ T � 1 other demasked encryptions (which may
also contain x), and averages these m + 1 images to
estimate x.

The stronger attack is conceivable if n is very small (say
a hospital only has 100 images), so via brute force the at-
tacker can effectively have a small set of encryptions of the

https://github.com/zeruniverse/neural-colorization

InstaHide: Instance-hiding Schemes for Private Distributed Learning

(a) Accuracy with different ↵’s. (b) Images generated by InstaHide and adding Laplace noise with different ↵’s.

Figure 3: Relative accuracy on CIFAR-10 (a) and visualization (b) of InstaHide and adding random Laplace noise with
different ↵’s, the coefficient of perturbation. InstaHide gives better test accuracy than adding random noise.

(a) Original (b) After mixing (c) Attack results

Figure 4: Visualization of (a) the original image, (b) Mixup
and InstaHide images, and (c) images recovered by the gra-
dients matching attack. InstaHide is more effective in hid-
ing the image than Mixup.

Figure 5: Undo sign-flipping using GAN. Rows: (1) Output
from Mixup algorithm (Algorithm 1, line 9); (2) Result of
applying random mask � on previous row (Algorithm 2,
line 10). Note that randomly flipping sign of a pixel still
preserves its absolute value. (3) Taking coordinate-wise
absolute value of previous row. (4) Output of demasking
GAN on previous row. The attack corrects about 1/4 of
the flipped signs but this doesn’t appear enough to allow
further attacks that recover the encrypted image.

same image. However, in practice, n is usually at least a
few thousand.

For simplicity, we test with n = 50 and T = 50 (a larger
n will make the attack harder). We use the structural sim-
ilarity index measure (SSIM) (Wang et al., 2004) as the
similarity metric, and set m to 5 after tuning.

We also run this attack directly on Mixup for comparison.

Figure 6: Average multiple encryptions (after demasking)
of the same image to attack (k = 4). In the stronger attack,
the attacker already knows the set of multiple encryptions
of the same image; in the weaker attack, the attacker has
to identify that set first. Rows: (1) Original images. (2-3)
Results of the stronger and the weaker attacks on Mixup.
(4-5) Results of the stronger and the weaker attacks on In-
staHide. Note that the attacker has to demask InstaHide en-
cryptions using GAN before running attacks, and the infor-
mation loss of this step makes it harder to attack InstaHide
than the plain Mixup.

As shown in Figure 6, if the original image is not flat (e.g.
the “deer”), the stronger attack may not work. For flat im-
ages (e.g. the “truck”) or images with strong contrast (e.g.
the “automobile” and the “frog”), the stronger attack is able
to vaguely recover the original image. However, as previ-
ously suggested, the stronger attack is conceivable for a
very small n.

Note that results here upper bound the privacy leakage in
real-world scenarios since we assume a perfect recovery of
ex from the gradients.

Uncover public images by similarity search. We also
run the attack in Section 2.2 after demasking InstaHide en-
cryptions using GAN, which tries to uncover the public im-
ages for mixing by running similarity search in the public

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Figure 7: Averaged hit rate of uncovering public images
for mixing among the top-m answers returned by similar-
ity search. Running this attack on InstaHide requires GAN-
demasking as the first step, and a wrongly demasked pixel
will make the similarity score less reliable and yield lower
hit rate. Mixing with random cropped patches of public
images augments the public dataset and gives more secu-
rity. It also disables similarity search using SSIM. Train a
deep model to predict similairty score also does not give a
promising hit rate.

dataset using the demasked encryption as the query.

We test with k = 4: mix 2 private images from CIFAR-10
with 2 public images from a set of 10,000 ImageNet images
(i.e. N = 10, 000). We consider the attack a ‘hit’ if at least
one public image for mixing is among the top-m answers
of the similarity search. The attacker uses SSIM as the de-
fault similarity metric for search. However, a traditional
alignment-based similarity metric (e.g SSIM) would fail in
InstaHide schemes which use randomly cropped patches of
public images for mixing (see Figure 7), so in that case, the
attacker trains a deep net (VGG (Simonyan & Zisserman,
2015) in our experiments) to predict the similarity score.

Note that to find the 2 correct public images for mixing,
the attacker has to try all

�m
2

�
combinations of the top-m

answers with different coefficients, and subtract the com-
bined image from the demasked InstaHide encryption to
verify. Figure 7 reports the averaged hit rate of this at-
tack on 50 different InstaHide images. As shown, even
with a relatively small public dataset (N = 10, 000) and
a large m =

p
N , the hit rate of this attack on InstaHide

(enhanced with random cropping) is around 0.1 (i.e. the at-
tacker still has to try

�m
2

�
= N/2 combinations to succeed

with probability 0.1). Also, it is conceivable that this attack
becomes much more expensive with the public dataset be-
ing the whole ImageNet dataset (N = 1.4⇥107) or random
images on the Internet.

6. InstaHide Deployment: Best practice

Based on our security analysis (sec 4 and sec 5.3), we sug-
gest the following:

• Consider Inside-dataset InstaHide only if the private
dataset is very large and images have varied, com-
plex patterns. If the images in the private dataset have

simple signal patterns or the dataset size is relatively
small, consider using Cross-dataset InstaHide.

• For Cross-dataset InstaHide, use a very large public
dataset. Follow the preprocessing steps advocated in
Sec 3.2 to randomly crop patches from each image in
the public dataset and filter out “flat” patches.

• Re-encrypt images in each epoch. This allows the
benefits of greater data augmentation for deep learn-
ing and hinders attacks (as suggested in Sec 5.3).

• Since images are re-encrypted in each epoch, for best
security (e.g, against gradient-matching attacks), each
participant should perform a random re-batching so
that batch gradients do not correspond to the same
subset of underlying images.

• Choose k = 4, 5 for a good trade-off between accu-
racy and security.

• Set a conservative upper threshold for the coefficients
in mixing (e.g. 0.65 in our experiments).

A challenge dataset. To encourage readers to design
stronger attacks, we release a challenge dataset6 of en-
crypted images generated by applying Cross-dataset In-
staHide with k = 4 on some private image dataset and a
preprocessed ImageNet as the public dataset. An attack is
considered to succeed if it substantially recovers a signifi-
cant fraction of original images.

7. Related Work

See Appendix A.

8. Conclusion

InstaHide is a practical instance-hiding method for image
data for private distributed deep learning.

InstaHide uses the Mixup method with a one-time se-
cret key consisting of a pixel-wise random sign-flipping
mask and samples from the same training dataset (Inside-
dataset InstaHide) or a large public dataset (Cross-dataset
InstaHide). The proposed method can be easily plugged
into any existing distributed learning pipeline. It is very
efficient and incurs minor reduction in accuracy.

We hope our analysis of InstaHide’s security on worst-case
vectors will motivate further theoretical study, including for
average-case settings and for adversarial robustness. In Ap-
pendix E, we suggest that although InstaHide can be for-
mulated as a phase retrieval problem, classical techniques
have failed as attacks.

We have tried statistical and computational attacks against
InstaHide without success. To encourage other researchers
to try new attacks, we release a challenge dataset of en-
crypted images.

6https://github.com/Hazelsuko07/InstaHide Challenge.

https://github.com/Hazelsuko07/InstaHide_Challenge

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Acknowledgments

This project is supported in part by Princeton University
fellowship, Ma Huateng Foundation, Schmidt Foundation,
Simons Foundation, NSF, DARPA/SRC, Google and Ama-
zon AWS.

We would like to thank Amir Abboud, Josh Alman, Boaz
Barak, and Hongyi Zhang for helpful discussions, and
Mark Braverman, Matthew Jagielski, Florian Tramèr for
suggesting attacks.

References

Abadi, M., Feigenbaum, J., and Kilian, J. On hiding information
from an oracle. In Proceedings of the nineteenth annual ACM
symposium on Theory of Computing (STOC), 1987.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov,
I., Talwar, K., and Zhang, L. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 308–
318, 2016.

Abboud, A. Fine-grained reductions and quantum speedups for
dynamic programming. In 46th International Colloquium on
Automata, Languages, and Programming (ICALP), 2019.

Abboud, A. and Lewi, K. Exact weight subgraphs and the k-sum
conjecture. In International Colloquium on Automata, Lan-
guages, and Programming (ICALP), 2013.

Abboud, A., Lewi, K., and Williams, R. Losing weight by gaining
edges. In European Symposium on Algorithms (ESA), 2014.

Act, A. Health insurance portability and accountability act of
1996. Public law, 104:191, 1996.

Aono, Y., Hayashi, T., Wang, L., and Moriai, S. Privacy-
preserving deep learning via additively homomorphic encryp-
tion. IEEE Transactions on Information Forensics and Secu-
rity, 13(5):1333–1345, 2017.

Arora, S. and Barak, B. Computational complexity: a modern
approach. Cambridge University Press, 2009.

Baran, I., Demaine, E. D., and Pǎtraşcu, M. Subquadratic algo-
rithms for 3sum. Algorithmica, 50(4):584–596, 2008.

Beckham, C., Honari, S., Verma, V., Lamb, A., Ghadiri, F., Hjelm,
R. D., Bengio, Y., and Pal, C. On adversarial mixup resynthe-
sis. In NeurIPS, 2019.

Beimel, A. Secret-sharing schemes: a survey. In International
conference on coding and cryptology, pp. 11–46. Springer,
2011.

Bernstein, S. On a modification of chebyshev’s inequality and of
the error formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect.
Math, 1(4):38–49, 1924.

Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N.,
Oliver, A., and Raffel, C. MixMatch: A holistic approach to
semi-supervised learning. In Conference on Neural Informa-
tion Processing Systems (NeurIPS). http://arxiv.org/
pdf/1905.02249.pdf, 2019.

Bhattacharyya, A., Indyk, P., Woodruff, D. P., and Xie, N. The
complexity of linear dependence problems in vector spaces. In
ICS, pp. 496–508, 2011.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H. B., Patel, S., Ramage, D., Segal, A., and Seth, K. Practi-
cal secure aggregation for federated learning on user-held data.
In NIPS Workshop on Private Multi-Party Machine Learning,
2016.

Candes, E. J., Romberg, J. K., and Tao, T. Stable signal recov-
ery from incomplete and inaccurate measurements. Commu-
nications on pure and applied mathematics, 59(8):1207–1223,
2006.

Candes, E. J., Strohmer, T., and Voroninski, V. Phaselift: Exact
and stable signal recovery from magnitude measurements via
convex programming. Communications on Pure and Applied
Mathematics, 66(8):1241–1274, 2013.

Canetti, R., Goldreich, O., and Halevi, S. The random oracle
methodology, revisited. Journal of the ACM (JACM), 51(4):
557–594, 2004.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In CVPR,
pp. 248–255, 2009.

Dolev, S., Gupta, P., Li, Y., Mehrotra, S., and Sharma, S. Privacy-
preserving secret shared computations using mapreduce. IEEE
Transactions on Dependable and Secure Computing, 2019.

Donoho, D. L. Compressed sensing. IEEE Trans. Information
Theory, 52(4):1289–1306, 2006.

Dwork, C. The differential privacy frontier. In Theory of Cryp-
tography Conference, pp. 496–502. Springer, 2009.

Dwork, C. and Roth, A. The algorithmic foundations of differen-
tial privacy. Foundations and Trends in Theoretical Computer
Science, 9(3–4):211–407, 2014.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor,
M. Our data, ourselves: Privacy via distributed noise gen-
eration. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 486–503.
Springer, 2006.

Erickson, J. Lower bounds for linear satisfiability problems. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
388–395, 1995.

Fienup, J. R. Reconstruction of an object from the modulus of its
fourier transform. Optics letters, 3(1):27–29, 1978.

Fienup, J. R. Phase retrieval algorithms: a comparison. Applied
optics, 21(15):2758–2769, 1982.

Fu, Y., Wang, H., Xu, K., Mi, H., and Wang, Y. Mixup based pri-
vacy preserving mixed collaboration learning. In 2019 IEEE
International Conference on Service-Oriented System Engi-
neering (SOSE), pp. 275–2755, 2019.

Gentry, C. Fully homomorphic encryption using ideal lattices.
In Proceedings of the forty-first annual ACM symposium on
Theory of computing (STOC), pp. 169–178, 2009.

http://arxiv.org/pdf/1905.02249.pdf
http://arxiv.org/pdf/1905.02249.pdf

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Gilbert, A. C., Li, Y., Porat, E., and Strauss, M. J. Approximate
sparse recovery: optimizing time and measurements. SIAM
Journal on Computing 2012 (A preliminary version of this pa-
per appears in STOC 2010), 41(2):436–453, 2010.

Graepel, T., Lauter, K., and Naehrig, M. Ml confidential: Ma-
chine learning on encrypted data. In International Conference
on Information Security and Cryptology, pp. 1–21. Springer,
2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pp. 770–778,
2016.

Impagliazzo, R., Paturi, R., and Zane, F. Which problems have
strongly exponential complexity? In Proceedings of the
39th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 653–662, 1998.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. Faster dynamic
matrix inverse for faster lps. In arXiv preprint. https://
arxiv.org/pdf/2004.07470, 2020.

Karp, R. M. Reducibility among combinatorial problems. In
Complexity of computer computations, pp. 85–103. Springer,
1972.

Kolmogorov, A. Sulla determinazione empirica di una lgge di
distribuzione. Inst. Ital. Attuari, Giorn., 4:83–91, 1933.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh,
A. T., and Bacon, D. Federated learning: Strategies for im-
proving communication efficiency. In NIPS Workshop on Pri-
vate Multi-Party Machine Learning. http://arxiv.org/
pdf/1610.05492.pdf, 2016.

Krizhevsky, A. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

Laurent, B. and Massart, P. Adaptive estimation of a quadratic
functional by model selection. Annals of Statistics, pp. 1302–
1338, 2000.

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit
database. In ATT Labs, volume 2. http://yann.lecun.
com/exdb/mnist, 2010.

Li, P., Li, J., Huang, Z., Li, T., Gao, C.-Z., Yiu, S.-M., and Chen,
K. Multi-key privacy-preserving deep learning in cloud com-
puting. Future Generation Computer Systems, 74:76–85, 2017.

Li, Y. and Nakos, V. Sublinear-time algorithms for compressive
phase retrieval. In IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 2301–2305. https://arxiv.org/
pdf/1709.02917.pdf, 2018.

Liu, Z., Wu, Z., Zhu, L., Gan, C., and Han, S. Facemix: Privacy-
preserving facial attribute classification on the cloud. In Han
Lab Tech report, 2019.

Lowe, D. G. Object recognition from local scale-invariant fea-
tures. In Proceedings of the seventh IEEE international con-
ference on computer vision, volume 2, pp. 1150–1157. Ieee,
1999.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al.
Communication-efficient learning of deep networks from de-
centralized data. arXiv preprint arXiv:1602.05629, 2016.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and Popa,
R. A. Delphi: A cryptographic inference service for neural
networks. In 29th USENIX Security Symposium (USENIX Se-
curity 20), 2020.

Mohassel, P. and Zhang, Y. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Moravec, M. L., Romberg, J. K., and Baraniuk, R. G. Compres-
sive phase retrieval. In Wavelets XII, volume 6701, pp. 670120.
International Society for Optics and Photonics, 2007.

Nakos, V. Sublinear-Time Sparse Recovery, and Its Power in the
Design of Exact Algorithms. PhD thesis, Harvard University,
2019.

Nakos, V. and Song, Z. Stronger l2/l2 compressed sensing; with-
out iterating. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 289–297.
https://arxiv.org/pdf/1903.02742.pdf, 2019.

Pang, T., Xu, K., and Zhu, J. Mixup inference: Better exploiting
mixup to defend adversarial attacks. In International Confer-
ence on Learning Representations (ICLR). http://arxiv.
org/pdf/1909.11515, 2019.

Papernot, N., Chien, S., Song, S., Thakurta, A., and Erlings-
son, U. Making the shoe fit: Architectures, initializations,
and tuning for learning with privacy. In Manuscript. https:
//openreview.net/pdf?id=rJg851rYwH, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Py-
torch: An imperative style, high-performance deep learning li-
brary. In Conference on Neural Information Processing Sys-
tems (NeurIPS), pp. 8024–8035, 2019.

Patrascu, M. Towards polynomial lower bounds for dynamic
problems. In Proceedings of the forty-second ACM symposium
on Theory of computing (STOC), 2010.

Price, E. C. Sparse recovery and Fourier sampling. PhD thesis,
Massachusetts Institute of Technology, 2013.

Qian, N. On the momentum term in gradient descent learning
algorithms. Neural networks, 12(1):145–151, 1999.

Shokri, R. and Shmatikov, V. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security (CCS), pp. 1310–1321. ACM,
2015.

Simonyan, K. and Zisserman, A. Very deep convolutional net-
works for large-scale image recognition. In International
Conference on Learning Representations (ICLR). https://
arxiv.org/pdf/1409.1556, 2015.

Smirnov, N. Table for estimating the goodness of fit of empiri-
cal distributions. The annals of mathematical statistics, 19(2):
279–281, 1948.

Song, Z. Matrix theory: optimization, concentration, and algo-
rithms. PhD thesis, The University of Texas at Austin, 2019.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I.,
Lopez-Paz, D., and Bengio, Y. Manifold mixup: Better repre-
sentations by interpolating hidden states. In International Con-
ference on Machine Learning (ICML), pp. 6438–6447, 2019.

https://arxiv.org/pdf/2004.07470
https://arxiv.org/pdf/2004.07470
http://arxiv.org/pdf/1610.05492.pdf
http://arxiv.org/pdf/1610.05492.pdf
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://arxiv.org/pdf/1709.02917.pdf
https://arxiv.org/pdf/1709.02917.pdf
https://arxiv.org/pdf/1903.02742.pdf
http://arxiv.org/pdf/1909.11515
http://arxiv.org/pdf/1909.11515
https://openreview.net/pdf?id=rJg851rYwH
https://openreview.net/pdf?id=rJg851rYwH
https://arxiv.org/pdf/1409.1556
https://arxiv.org/pdf/1409.1556

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Voigt, P. and Von dem Bussche, A. The EU general data protec-
tion regulation (GDPR). Intersoft consulting, 2018.

Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P., et al.
Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated
residual transformations for deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2017.

Yao, A. C. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pp.
160–164, 1982.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup:
Beyond empirical risk minimization. In International Confer-
ence on Learning Representations (ICLR). http://arxiv.
org/pdf/1710.09412, 2018.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradi-
ents. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 14747–14756. http://arxiv.org/pdf/
1906.08935, 2019.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning trans-
ferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition (CVPR), pp. 8697–8710, 2018.

http://arxiv.org/pdf/1710.09412
http://arxiv.org/pdf/1710.09412
http://arxiv.org/pdf/1906.08935
http://arxiv.org/pdf/1906.08935

	Introduction
	Mixup and Its Vulnerability
	Attack on Mixup within a Private Dataset
	Attack on Mixup Between a Private and a Public Dataset
	Discussions

	InstaHide
	Inside-Dataset InstaHide
	Cross-Dataset InstaHide
	Inference with InstaHide

	Security Analysis
	Secure Encryption Implies Secure Protocol
	Hardness of Attacking InstaHide Encryption

	Experiments
	Accuracy Results of InstaHide
	InstaHide vs. Differential Privacy approaches
	Vulnerability Against Attacks

	InstaHide Deployment: Best practice
	Related Work
	Conclusion
	Related Work
	Instance Hiding
	Attacks on Mixup
	Don't mix up the same image multiple times
	Attacks that run in time
	Chi-square concentration and Bernstein inequality
	Inner product between a random Gaussian vector a fixed vector
	Inner product between two random Gaussian vectors

	Computational hardness results of -dimensional -SUM
	-SUM
	 Vector Sum over Finite Field
	 Vector Sum over Bounded Integers

	Phase Retrieval
	Compressive Sensing
	Phase Retrieval
	Comments on Phase Retrieval

	Experiments
	Network architecture and hyperparameters
	Details of attacks
	Results of the Kolmogorov–Smirnov Test

