
InstaHide: Instance-hiding Schemes for Private Distributed Learning

Appendix

A. Related Work

Mixup. See Section 2. Mixup can improve both generalization and adversarial robustness (Verma et al., 2019). It has also
been adapted to various learning tasks, including semi-supervised data augmentation (Berthelot et al., 2019), unsupervised
image synthesis (Beckham et al., 2019), and adversarial defense at the inference stage (Pang et al., 2019). Recently, (Fu
et al., 2019) combined Mixup with model aggregation to defend against inversion attack, and (Liu et al., 2019) proposed a
novel method using Mixup for on-cloud privacy-preserving inference.
Differential privacy. Differential privacy for deep learning involves controlling privacy leakage by adding noise to the
learning pipeline. If the noise is drawn from certain distributions, say Gaussian or Laplace, it is possible to provide
guarantees of privacy (Dwork et al., 2006; Dwork & Roth, 2014). Applying differential privacy techniques to distributed
deep learning is non-trivial. Shokri and Shmatikov (Shokri & Shmatikov, 2015) proposed a distributed learning scheme
by directly adding noise to the shared gradients. However, the amount of privacy guaranteed drops with the number of
training epochs and the size of shared parameters. DPSGD (Abadi et al., 2016) was proposed to dynamically keep track
of privacy spending based on the composition theorem (Dwork, 2009). However, it still leads to an accuracy drop of about
20% on CIFAR-10 dataset. Also, to control privacy leakage, DPSGD has to start with a model pre-trained using nonprivate
labeled data, and then carefully fine-tunes a few layers using private data.
Privacy using cryptographic protocols. In distributed learning setting with multiple data participants, it is possible
for the participants to jointly train a model over their private inputs by employing techniques like homomorphic encryp-
tion (Gentry, 2009; Graepel et al., 2012; Li et al., 2017) or secure multi-party computation (MPC) (Yao, 1982; Beimel,
2011; Mohassel & Zhang, 2017; Dolev et al., 2019). Recent work proposed to use cryptographic methods to secure feder-
ated learning by designing a secure gradients aggregation protocol (Bonawitz et al., 2016) or encrypting gradients (Aono
et al., 2017). These approaches slow down the computation by orders of magnitude, and may also require special security
environment setups.

Instance Hiding. See Appendix B.

B. Instance Hiding

In the classical setting of instance hiding (Abadi et al., 1987) in cryptography, a computationally-limited Alice is trying to
get more powerful computing services Bob1 and Bob2 to help her compute a function f on input x, without revealing x.
The simplest case is that f is a linear function over a finite field (e.g., integers modulo a prime number). Then Alice can
pick a random number r and “hide” the input x by asking Bob1 for f(x+ r) and Bob2 for f(r), and then infer f(x) from
the two answers. When all arithmetic is done modulo a prime, it can be shown that neither Bob1 nor Bob2 individually
learns anything (information-theoretically speaking) about x. This scheme can also be applied to compute polynomials
instead of linear functions.

InstaHide is inspired by the special case where there is a single computational agent Bob1. Alice has to use random values
r such that she knows f(r), and simply ask Bob1 to supply f(x+ r). Note that such a random value r would be use-once
(also called nonce in cryptography); it would not be reused when trying to evaluate a different input.

C. Attacks on Mixup

Here we provide more details for the attacks discussed in Section 2.

Notations. We use hu, vi to denote the inner product between vector u and v. We use 0 to denote the zero vector. For a
vector x, we use kxk2 to denote its `2 norm. For a positive integer n, we use [n] to denote set {1, 2, · · · , n}. We use Pr[]
to denote the probability, use E[] to denote the expectation. We use N (µ,�2) to denote Gaussian distribution. For any two
vectors x, y, we use hx, yi to denote the inner product.

C.1. Don’t mix up the same image multiple times

Let us continue with the vision task. This attack argues that given a pair of Mixup images ex1 and ex2, by simply checking
hex1, ex2i, the attacker can determine with high probability whether ex1 and ex2 are derived from the same image. We show
this by a simple case with k = 2 in Theorem C.1, where k is the number of images used to generate a Mixup sample.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Theorem C.1. Let X ⇢ Rd with |X | = n and 8x 2 X , we sample x ⇠ N (0,�2
I) where �

2 = 1/d. Let X1, X2 and X3

denote three disjoint sets such that X1 [X2 [X3 = X , with probability 1� �, we have:
Part 1. For x1 2 X1, x2, x

0
2 2 X2, x3 2 X3, hx3 + x1, x2 + x

0
2i  c1 · 4�2

p
d log2(dn/�).

Part 2. For x1 2 X1, x2 2 X2, x3 2 X3, hx3 + x1, x3 + x2i � (c2 ·
p
log(n/�) + d)�2 � c1 · 3�2

p
d log2(dn/�). where

c1, c2 > 0 are two universal constants.

Proof. Part 1. First, we can expand hx3 + x1, x2 + x
0
2i,

hx3 + x1, x2 + x
0
2i = hx3, x2i+ hx1, x2i+ hx3, x

0
2i+ hx1, x

0
2i

For each fixed u 2 {x3, x1} and each fixed v 2 {x2, x
0
2}, using Lemma C.8, we have

Pr
h
|hu, vi| � c1 · �2

p
d log2(dn/�)

i
 �/n

2
.

where c1 > 1 is some sufficiently large constant.

Since x1, x2, x2, x3 are independent random Gaussian vectors, taking a union bound over all pairs of u and v, we have
Lemma C.8, we have

Pr[|hx3 + x1, x2 + x
0
2i| � c1 · 4�2

p
d log2(dn/�)

i
 4�/n2

. (1)

Part 2.

We can lower bound |hx3 + x1, x3 + x2i| in the following sense,

|hx3 + x1, x3 + x2i| = |hx3, x3i+ hx3, x2i+ hx1, x3i+ hx1, x2i|
� |hx3, x3i|� |hx3, x2i+ hx1, x3i+ hx1, x2i|

For a fixed x3, we can lower bound kx3k22 with Lemma C.5,

Pr
h
kx3k22 > (c2 ·

p
log(n/�) + d)�2

i
� 1� �/n

2
.

Since x1, x2, x3 are independent random Gaussian vectors, using Lemma C.8, we have

Pr[|hx3, x2i+ hx1, x3i+ hx1, x2i| � c1 · 3�2
p
d log2(dn/�)

i
 3�/n2

. (2)

where c1 > 1 is some sufficiently large constant.

Thus, for a fixed x3, we have

|hx3 + x1, x3 + x2i| � (c2 ·
p

log(n/�) + d)�2 � c1 · 3�2
p
d log2(dn/�)

holds with probability 1� �/n
2 � 3�/n2 = 1� 4�/n2.

Corollary C.2. Let X ⇢ Rd with |X | = n and 8x 2 X , we sample x ⇠ N (0,�2
I) where �

2 = 1/d. Let X1, X2 and X3

denote three disjoint sets such that X1 [X2 [X3 = X .
For any � > 1, if (2�)�1 ·

p
d log2(nd/�) � 4, then with probability 1� � , we have :

for x1 2 X1, x2, x
0
2 2 X2, x3 2 X3,

|hx3 + x1, x3 + x2i| � � · |hx3 + x1, x2 + x
0
2i|.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Proof. With Theorem C.1, we have with probability 1� �, we have :

|hx3 + x1, x3 + x2i|
|hx3 + x1, x2 + x0

2i|
�

(c2 ·
p
log(n/�) + d)�2 � c1 · 3�2

p
d log2(dn/�)

c1 · 4�2
p
d log2(nd/�)

=
c2 ·

p
log(n/�) + d� c1 · 3

p
d log2(nd/�)

c1 · 4
p
d log2(nd/�)

=
1 + c2/(c1 · d) ·

p
log(n/�)� 3/

p
d · log2(nd/�)

4/
p
d · log2(nd/�)

� 1� 3/
p
d · log2(nd/�)

4/
p
d · log2(nd/�)

� 1� 1/(2�)

1/(2�)
= 2� � 1 � �,

where the forth step follows from choice c1 and c2, the fifth step follows from assumption in Lemma statement, and the
last step follows from � > 1.

Thus, we complete the proof.

C.2. Attacks that run in |X | time

This attack says that, if a cross-dataset Mixup sample ex is generated by mixing 1 sample from a privacy-sensitive original
dataset and k � 1 samples from a public dataset (say ImageNet (Deng et al., 2009)), then the attacker can crack the k � 1
samples from the public dataset by simply checking the inner product between ex and all images in the public dataset. We
show this formally in Theorem C.3.

Theorem C.3. Let X ⇢ Rd with |X | = n and 8x 2 X , we sample x ⇠ N (0,�2
I). Let ex =

Pk
i=1 xi, where xi 2 X , with

probability 1� �, we have:
Part 1. For all t0 2 [n]\[k], hex, xt0i  c1 · k�2

p
d log2(nd/�).

Part 2. For all t 2 [k], hex, xti � (c2 ·
p
log(n/�) + d)�2 � c1 · (k � 1)�2

p
d log2(nd/�).

where c1, c2 > 0 are two universal constants.

We remark that the proof of Theorem C.3 is similar to the proof of Theorem C.1.

Proof. Part 1. We can rewrite hex, xt0i as follows:

hex, xt0i =
kX

i=1

hxi, xt0i,

which implies

|hex, xt0i| 
kX

i=1

|hxi, xt0i|.

For each fixed i 2 [k] and each fixed t
0
/2 [k], using Lemma C.8, we have

Pr
h
|hxi, xt0i| � c1 · �2

p
d log2(dn/�)

i
 �/n

2
.

where c1 > 1 is some sufficiently large constant.

Since x1, x2, · · · , xk, xt0 are independent random Gaussian vectors, taking a union over all i 2 [k], we have

Pr
h
|hex, xt0i| � c1 · k�2

p
d log2(dn/�)

i
 �k/n

2
.

Taking a union bound over all t0 2 [n]\[k], we have

Pr
h
8t0 2 [n]\[k], |hex, xt0i| � c1 · k�2

p
d log2(dn/�)

i
 �(n� k)k/n2

.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Part 2.

We can lower bound |hex, xti| as follows:

|hex, xti| =
���hxt, xti+

X

i2[k]\{t}

hxi, xti
��� � |hxt, xti|�

���
X

i2[k]\{t}

hxi, xti
���

� |hxt, xti|�
X

i2[k]\{t}

|hxi, xti|.

First, we can bound kxtk22 with Lemma C.5,

Pr
h
kxtk22 > (c2 ·

p
log(n/�) + d)�2

i
� 1� �/n

2
.

For each i 2 [k]\{t}, using Lemma C.8, we have

Pr
h
|hxi, xti| � c1 · �2

p
d log2(dn/�)

i
 �/n

2
.

where c1 > 1 is some sufficiently large constant.

Taking a union bound over all i 2 [k]\{t}, we have

Pr
h X

i2[k]\{t}

|hxi, xti| � c1 · (k � 1)�2
p
d log2(dn/�)

i
 �(k � 1)/n2

.

Thus, for a fixed t 2 [k], we have

|hex, xti| � (c2 ·
p
log(n/�) + d)�2 � c1 · (k � 1)�2

p
d log2(dn/�)

holds with probability 1� �/n
2 � �(k � 1)/n2 = 1� �k/n

2.

Taking a union bound over all t 2 [k], we complete the proof.

Corollary C.4. Let X ⇢ Rd with |X | = n and 8x 2 X , we sample x ⇠ N (0,�2
I). Let ex =

Pk
i=1 xi, where xi 2 X .

For any � > 1, if k  (2�)�1 ·
p
d log2(nd/�), then with probability 1� � , we have :

for all t0 2 [n]\[k] and all t 2 [k]

|hex, xti| � � · |hex, xt0i|.

Proof. With Theorem C.3, we have with probability 1� �, we have : for all t 2 [k] and t
0
/2 [k],

|hex, xti|
|hex, xt0i|

�
(c2 ·

p
log(n/�) + d)�2 � c1 · (k � 1)�2

p
d log2(nd/�)

c1 · k�2
p
d log2(nd/�)

=
c2 ·

p
log(n/�) + d� c1 · (k � 1)

p
d log2(nd/�)

c1 · k
p
d log2(nd/�)

=
1 + c2/(c1 · d) ·

p
log(n/�)� (k � 1)/

p
d · log2(nd/�)

k/
p
d · log2(nd/�)

� 1� k/
p
d · log2(nd/�)

k/
p
d · log2(nd/�)

� 1� 1/(2�)

1/(2�)
= 2� � 1 � �,

where the forth step follows from the choice of c1 and c2, the fifth step follows from the assumption in the Lemma
statement, and the last step follows from � > 1.

Thus, we complete the proof.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

C.3. Chi-square concentration and Bernstein inequality

We state two well-known probability tools in this section. One is the concentration inequality for Chi-square and the other
is Bernstein inequality.

First, we state a concentration inequality for Chi-square:
Lemma C.5 (Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000)). Let X ⇠ X 2

k be a chi-squared
distributed random variable with k degrees of freedom. Each one has zero mean and �

2 variance. Then

Pr[X � k�
2 � (2

p
kt+ 2t)�2]  exp(�t), and Pr[k�2 �X � 2

p
kt�

2]  exp(�t).

We state the Bernstein inequality as follows:
Lemma C.6 (Bernstein inequality (Bernstein, 1924)). Let X1, · · · , Xn be independent zero-mean random variables. Sup-
pose that |Xi| M almost surely, for all i 2 [n]. Then, for all t > 0,

Pr

"
nX

i=1

Xi > t

#
 exp

� t

2
/2Pn

j=1 E[X2
j] +Mt/3

!
.

C.4. Inner product between a random Gaussian vector a fixed vector

The goal of this section is to prove Lemma C.7. It provides a high probability bound for the absolute value of inner product
between one random Gaussian vector with a fixed vector.
Lemma C.7 (Inner product between a random Gaussian vector and a fixed vector). Let u1, · · · , ud denote i.i.d. random
Gaussian variables where ui ⇠ N (0,�2

1).

Then, for any fixed vector e 2 Rd, for any failure probability � 2 (0, 1/10), we have

Pr
u

h
|hu, ei| � 2�1kek2

p
log(d/�) + �1kek1 log1.5(d/�)

i
 �.

Proof. First, we can compute E[ui] and E[u2
i]

E[ui] = 0, and E[u2
i] = �

2
1 .

Next, we can upper bound |ui| and |uiei|.

Pr
u
[|ui � E[ui]| � t1]  exp(�t21/(2�2

1)).

Take t1 =
p
2 log(d/�)�1, then for each fixed i 2 [d], we have, |ui| 

p
2 log(d/�)�1 holds with probability 1� �/d.

Taking a union bound over d coordinates, with probability 1� �, we have : for all i 2 [d], |ui| 
p
2 log(d/�)�1.

Let E1 denote the event that, maxi2[d] |uiei| is upper bounded by
p
2 log(d/�)�1kek1. Pr[E1] � 1� �.

Using Bernstein inequality (Lemma C.6), we have

Pr
u
[|hu, ei| � t]  exp

⇣
� t

2
/2

kek22 E[u2
i] + maxi2[d] |uiei| · t/3

⌘

 exp
⇣
� t

2
/2

kek22�2
1 +

p
2 log(d/�)�1kek1 · t/3

⌘
 �,

where the second step follows from Pr[E1] � 1� � and E[u2
i] = �

2
1 , and the last step follows from choice of t:

t = 2�1kek2
p
log(d/�) + �1kek1 log1.5(d/�)

Taking a union bound with event E1, we have Pr[|hu, ei| � t]  2�. Finally, rescaling � finishes the proof.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

C.5. Inner product between two random Gaussian vectors

The goal of this section is to prove Lemma C.8. It provides a high probability bound for the absolute value of inner product
between two random (independent) Gaussian vectors.

Lemma C.8 (Inner product between two random Gaussian vectors). Let u1, · · · , ud denote i.i.d. random Gaussian vari-
ables where ui ⇠ N (0,�2

1) and e1, · · · , ed denote i.i.d. random Gaussian variables where ei ⇠ N (0,�2
2).

Then, for any failure probability � 2 (0, 1/10), we have

Pr
u,e

h
|hu, ei| � 104�1�2

p
d log2(d/�)

i
 �.

Proof. First, using Lemma C.5, we compute the upper bound for kek22

Pr
e
[kek22 � d�

2
2 � (2

p
dt+ 2t)�2

2]  exp(�t).

Take t = log(1/�), then with probability 1� �,

kek22  (d+ 3
p
d log(1/�) + 2 log(1/�))�2

2  4d log(1/�)�2
2 .

Thus

Pr
e
[kek2  4

p
d log(1/�)�2] � 1� �.

Second, we compute the upper bound for kek1 (the proof is similar to Lemma C.7)

Pr
e
[|kek1 

p
log(d/�)�2] � 1� �.

We define t and t
0 as follows

t = 4 · (�1kek2
p
log(d/�) + �1kek1 log1.5(d/�)), and t

0 = 8 · (�1�2

p
d log(d/�) + �1�2 log

2(d/�))

From the above calculations, we can show

Pr
e
[t0 � t] � 1� 2�.

By Lemma C.7, for fixed e, we have

Pr
u
[|hu, ei| � t]  �

Overall, we have

Pr
e,u

[|hu, ei| � t
0]  3�

Therefore, rescaling � completes the proof.

D. Computational hardness results of d-dimensional k-SUM

The basic components in InstaHide schemes are inspired by computationally hard problems derived from the classic
SUBSET-SUM problem: given a set of integers, decide if there is a non-empty subset of integers whose integers sum
to 0. It is a version of knapsack, one of the Karp’s 21 NP-complete problems (Karp, 1972). The k-SUM (Erickson, 1995)
is the parametrized version of the SUBSET-SUM. Given a set of integers, one wants to ask if there is a subset of k integers
sum to 0. The k-SUM problem can be solved in O(ndk/2e) time. For any integer k � 3 and constant ✏ > 0, whether

InstaHide: Instance-hiding Schemes for Private Distributed Learning

k-SUM can be solved in O(nbk/2c�✏) time has been a long-standing open problem. Patrascu (Patrascu, 2010), Abboud
and Lewi (Abboud & Lewi, 2013) conjectured that such algorithm doesn’t exist.

It is natural to extend definition from one-dimensional scalar/number case to the high-dimensional vector case. For d-
dimensional k-sum over finite field, Bhattacharyya, Indyk, Woodruff and Xie (Bhattacharyya et al., 2011) have shown
that any algorithm that solves this problem has to take min{2⌦(d)

, n
⌦(k)} time unless Exponential Time Hypothesis is

false. Here, Exponential Time Hypothesis is believed to be true, it states that there is no 2o(n) time to solve 3SAT with n

variables.

In this work, we observe that privacy of InstaHide can be interpreted as d-dimensional k-SUM problem and thus could be
intractable and safe. For real field, d-dimensional is equivalent to 1-dimensional due to (Abboud et al., 2014). Therefore,
Patrascu (Patrascu, 2010), Abboud and Lewi (Abboud & Lewi, 2013)’s conjecture also suitable for d-dimensional k-SUM
problem, and several hardness results in d = 1 also can be applied to general d > 1 directly.

D.1. k-SUM

We hereby provide a detailed explanation for the d-dimensional k-SUM problem. Let us start with the special case of
d = 1 and all values are integers.

Definition D.1 (SUBSET-SUM). Given a set of integers, if there is a subset of integers whose integers sum to 0.

SUBSET-SUM is a well-known NP-complete problem.

The k-SUM is the parameterized version of the SUBSET-SUM,

Definition D.2 (k-SUM). Given a set of integers, if there is a subset of k integers whose integers sum to 0.

The k-SUM problem can be solved in O(ndk/2e) time. For k = 3, Baran, Demaine and Patrascu (Baran et al., 2008)
introduced algorithm that takes O(n2

/ log2 n) time. It has been a longstanding open problem to solve k-SUM for some k

in time O(ndk/2e�✏). Therefore, complexity communities made the following conjecture,

Conjecture D.3 (The k-SUM Conjecture, (Abboud & Lewi, 2013)). There does not exist a k � 2, an ✏ > 0, and a
randomized algorithm that succeeds (with high probability) in solving k-SUM in time O(ndk/2e�✏).

Although the n
d(k/2)e hardness for k-SUM is not based on anything else at the moment, an n

⌦(k) lower bound under
ETH is already known due to Abboud and Lewi (Abboud & Lewi, 2013). Recently, Abboud (Abboud, 2019) also shows a
weaker n⌦(k/ log k) lower bound under the Set Cover Conjecture, but it has the advantage that it holds for any fixed k > 2.

D.2. k Vector Sum over Finite Field

Now we move onto the d-dimensional k vector sum problem.

Definition D.4 (d-dimensional k-VEC-SUM over finite field). Given a set of n vectors in Fd
q , if there is a subset of k

vectors such that the summation of those k vectors is an all 0 vector.

A more general definition that fits the InstaHide setting is called k-VEC-T-SUM (where T denotes the “target”),

Definition D.5 (d-dimensional k-VEC-T-SUM over finite field). Given a set of n vectors in Fd
q , if there is a subset of k

vectors such that the summation of those k vectors is equal to some vector z in Fd
q .

d-dimensional k-VEC-T-SUM and d-dimensional k-VEC-SUM are considered to have the same hardness. Bhattacharyya,
Indyk, Woodruff and Xie (Bhattacharyya et al., 2011) proved hardness result for the problem defined in Definition D.4 and
Definition D.5. Before stating the hardness result, we need to define several basic concepts in complexity. We introduce
the definition of 3SAT and Exponential Time Hypothesis(ETH). For the details and background of 3SAT problem, we refer
the readers to (Arora & Barak, 2009).

Definition D.6 (3SAT problem). Given n variables and m clauses conjunctive normal form CNF formula with size of
each clause at most 3, the goal is to decide whether there exits an assignment for the n boolean variables to make the CNF
formula be satisfied.

We state the definition of Exponential Time Hypotheis, which can thought of as a stronger assumption than P6=NP.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Hypothesis D.7 (Exponential Time Hypothesis (ETH) (Impagliazzo et al., 1998)). There is a � > 0 such that 3SAT
problem defined in Definition D.6 cannot be solved in O(2�n) running time.

Now, we are ready to state the hardness result.
Theorem D.8 ((Bhattacharyya et al., 2011)). Assuming Exponential Time Hypothesis (ETH), any algorithm solves k-VEC-
SUM or k-T-VEC-SUM requires min{2⌦(d)

, n
⌦(k)} time.

D.3. k Vector Sum over Bounded Integers

For the bounded integer case, we can also define the k-VEC-SUM problem,
Definition D.9 (d-dimensional k-VEC-SUM over bounded integers). For integers k, n, M , d > 0, the k-VEC-SUM
problem is to determine, given vectors x1, · · · , xn, x 2 [0, kM]d, if there is a size-k subset S ✓ [n] such that

P
i2S xi = z.

Abboud, Lewi, and Williams proved that the 1-dimensional k-VEC-SUM and d-dimensional k-VEC-SUM are equivalent
in bounded integer setting,
Lemma D.10 (Lemma 3.1 in (Abboud et al., 2014)). Let k, p, d, s,M 2 N satisfy k < p, pd � kM+1, and s = (k+1)d�1.
There is a collection of mappings f1, ·, fs : [0,M]⇥ [0, kM]! [�kp, kp]d, each computable in time O(poly logM+k

d),
such that for all numbers x1, · · · , xk 2 [0,M] and targets t 2 [0, kM],

kX

j=1

xj = t () 9i 2 [s]
kX

j=1

fi(xj , t).

Due to the above result, as long as we know a hardness result for classical k-SUM, then it automatically implies a hardness
result for d-dimensional k-VEC-SUM.

E. Phase Retrieval

E.1. Compressive Sensing

Compressive sensing is a powerful mathematical framework the goal of which is to reconstruct an approximately k-sparse
vector x 2 Rn from linear measurements y = �x, where � 2 Rm⇥n is called “sensing” or “sketching” matrix. The
mathematical framework was initiated by (Candes et al., 2006; Donoho, 2006).

We provide the definition of the `2/`2 compressive sensing problem.
Definition E.1 (Problem 1.1 in (Nakos & Song, 2019)). Given parameters ✏, k, n, and a vector x 2 Rn. The goal is to
design some matrix � 2 Rm⇥n and a recovery algorithm A such that we can output a vector x0 based on measurements
y = �x,

kx0 � xk2  (1 + ✏) min
k�sparse z2Rn

kz � xk2.

We primarily want to minimize m (which is the number of measurements), the running time of A(which is the decoding
time) and column sparsity of �.

The `2/`2 is the most popular framework, and the state-of-the-art result is due to (Gilbert et al., 2010; Nakos & Song,
2019).

E.2. Phase Retrieval

In compressive sensing, we can observe y = �x. However, in phase retrieval, we can only observe y = |�x|. Here, we
provide the definition of `2/`2 phase retrieval problem.
Definition E.2 ((Li & Nakos, 2018)). Given parameters ✏, k, n, and a vector x 2 Rn. The goal is to design some matrix
� 2 Rm⇥n and a recovery algorithm A such that we can output a vector x0 based on measurements y = |�x|,

kx0 � xk2  (1 + ✏) min
k�sparse z2Rn

kz � xk2.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

We primarily want to minimize m (which is the number of measurements), the running time of A (which is the decoding
time) and column sparsity of �.

The state-of-the-art result is due to (Li & Nakos, 2018).

The problem formulation of compressive sensing and phase retrieval have many variations, for more details we refer the
readers to several surveys (Price, 2013; Nakos, 2019; Song, 2019).

E.3. Comments on Phase Retrieval

We would like to point out that although InstaHide can be formulated as a phase retrieval problem, classical techniques
will fail as an attack.

To show the phase retrieval formulation of InstaHide, we first argue applying the random pixel-wise sign is equivalent to
taking the absolute value, namely (A): = � � fmix(x) is equivalent to (B): = |fmix(x)|, where fmix(·) denote the mixing
function. This is because, to reduce from B to A, we can just take absolute value in each coordinate; and to reduce from A
to B, we can just select a random mask (i.e., �) and apply it.

Classical phase retrieval (Fienup, 1978; 1982; Moravec et al., 2007) aims to recover x given y = |�x|, where � 2 Rm⇥n,
x 2 Rn and y 2 Rm. In the InstaHide setting, one can think of � as the concatcation of the private and public dataset,
where n = nprivate+npublic, and x is a k-sparse vector which selects k out of n data points to mixup. Therefore, y = |�x|
is the ‘encrypted’ sample using InstaHide. It has been shown that solving x can be formulated as a linear program (Moravec
et al., 2007). It is well-known that linear program can be solved in polynomial in number of constraints/variables (Jiang
et al., 2020) and thus m = O(k2 log(n/k2)) gives a polynomial-time optimization procedure. However, this result does
not naturally serve as an attack on InstaHide. First, � in phase retrieval needs to satisfy certain properties which may not
be true for � in InstaHide. More importantly, running LP becomes impossible for InstaHide case, since part of � remains
unknown.

F. Experiments

F.1. Network architecture and hyperparameters

Table 3 provides Implementation details of the deep models. All experiments are conducted on 24 NVIDIA RTX 2080 Ti
GPUs.

MNIST CIFAR-10 CIFAR-100

(LeCun et al., 2010) (Krizhevsky, 2009) (Krizhevsky, 2009)

Input normalization parameters
(normalized = (input-mean)/std)

mean: (0.50, 0.50, 0.50)
std: (0.50, 0.50, 0.50)

mean: (0.49, 0.48, 0.45)
std: (0.20, 0.20, 0.20)

mean: (0.49, 0.48, 0.45)
std: (0.20, 0.20, 0.20)

Number of Epochs 30 200 200

Network architecture ResNet-18 ResNet-18 NasNet
(He et al., 2016) (He et al., 2016) (Zoph et al., 2018)

Optimizer SGD (momentum = 0.9) (Qian, 1999)

Initial learning rate (vanilla training) 0.05 0.1 0.1

Initial learning rate (InstaHide) 0.05 0.1 0.1

Learning rate decay None by a factor of 0.1 at 100 and
150 epochs

by a factor of 0.2 at 60, 120
and 160 epochs

Regularization `2-regularization (10�4)

Batch size 128

Table 3: Implementation details of network architectures and training schemes.

F.2. Details of attacks

We hereby provide more details for the attacks in Section 5.3.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Algorithm 3 Gradients matching attack
1: Require :

2: The function F (x;W) can be thought of as a neural network, for each l 2 [L], we define Wl 2 Rml⇥ml�1 to be the
weight matrix in l-th layer, and m0 = di and ml = do. W = {W1,W2, · · · ,WL} denotes the weights over all layers.

3: Let (x0, y0) denote a private (image, label) pair.
4: Let L : Rdo⇥do ! R denote loss function
5: Let g(x, y) = rL(F (x;W), y) denote the gradients of loss function, and bg = g(x, y)|x=x0,y=y0 is the gradients

computed on x0 with label y0
6: procedure INPUTRECOVERYFROMGRADIENTS()
7: x

(1) N (0, 1), y(1) N (0, 1) . Random initialization of the input and the label
8: for t = 1! T do

9: Let Dg(x, y) = kg(x, y)� bgk22
10: x

(t+1) x
(t) � ⌘ ·rxDg(x, y)|x=x(t)

11: y
(t+1) y

(t) � ⌘ ·ryDg(x, y)|y=y(t)

12: end for

13: return x
(T+1), y(T+1)

14: end procedure

Figure 8: Empirical distributions of 3 statistics (first row) and 4 random locations (second row) for 400 InstaHide encryp-
tions of 10 different images (cross-dataset, k = 4). Distributions of encryptions of different images are indistinguishable.
Gradients matching attack. Algorithm 3 describes the gradients matching attack (Zhu et al., 2019). This attack aims
to recover the original image from model gradients computed on it. In the InstaHide setting, the goal becomes to recover
ex, the image after InstaHside. As we have shown in Section 4, the upper bound on the privacy loss in gradients matching
attack is the loss when attacker is given ex.

F.3. Results of the Kolmogorov–Smirnov Test

In order to further understand whether there is significant difference among distributions of InstaHide encryptions of
different x’, we run the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948).

Specifically, we randomly pick 10 different private xi’s, i 2 [10], and generate 400 encryptions for each xi (4,000 in total).
We sample exij , j 2 [400], the encryption of a given xi, and run KS-test under two different settings:

• exij v.s. all encryptions (All): KS-test(statistics of exij , statistics of all exuj’s for u 2 [10])

• exij v.s. encryptions of other xu’s, u 6= i (Other): KS-test(statistics of exij , statistics of all exuj’s for u 2 [10], u 6= i)

For each xi, we run the Kolmogorov–Smirnov test for 50 independent exij’s, and report the averaged p-value as below (a
higher p-value indicates a higher probability that exij comes from the tested distribution). We test 7 different statistics:
pixel-wise mean, pixel-wise standard deviation, total variation, and the pixel values of 4 random locations. KS-test results
suggest that, there is no significant differences among distribution of encryptions of different images.

InstaHide: Instance-hiding Schemes for Private Distributed Learning

Pixel-wise Mean Pixel-wise Std Total Variation Location 1 Location 2 Location 3 Location 4

All Other All Other All Other All Other All Other All Other All Other

x1 0.49 0.49 0.54 0.54 0.54 0.54 0.61 0.61 0.58 0.58 0.61 0.61 0.59 0.59
x2 0.53 0.52 0.49 0.49 0.49 0.49 0.65 0.65 0.56 0.56 0.61 0.61 0.74 0.74
x3 0.54 0.53 0.55 0.55 0.55 0.55 0.61 0.61 0.68 0.68 0.69 0.69 0.58 0.58
x4 0.49 0.48 0.49 0.49 0.49 0.49 0.48 0.48 0.40 0.41 0.70 0.70 0.70 0.70
x5 0.51 0.51 0.50 0.50 0.50 0.50 0.60 0.60 0.72 0.72 0.66 0.66 0.50 0.50
x6 0.44 0.43 0.52 0.51 0.52 0.51 0.66 0.66 0.69 0.69 0.52 0.52 0.60 0.59
x7 0.45 0.45 0.48 0.48 0.48 0.47 0.62 0.62 0.52 0.52 0.64 0.65 0.67 0.66
x8 0.46 0.46 0.50 0.49 0.50 0.49 0.75 0.76 0.69 0.69 0.63 0.63 0.73 0.73
x9 0.53 0.53 0.53 0.53 0.53 0.53 0.60 0.60 0.67 0.67 0.54 0.54 0.59 0.59
x10 0.44 0.44 0.37 0.37 0.38 0.37 0.66 0.67 0.65 0.65 0.67 0.67 0.65 0.65

Table 4: Averaged p-values for running KS-test on 50 encryptions for each xi, i 2 [10]. For each row, ‘All’ and ‘Other’
tests give similar p-values, suggesting there is no significant differences among distribution of encryptions of different
images.

	Introduction
	Mixup and Its Vulnerability
	Attack on Mixup within a Private Dataset
	Attack on Mixup Between a Private and a Public Dataset
	Discussions

	InstaHide
	Inside-Dataset InstaHide
	Cross-Dataset InstaHide
	Inference with InstaHide

	Security Analysis
	Secure Encryption Implies Secure Protocol
	Hardness of Attacking InstaHide Encryption

	Experiments
	Accuracy Results of InstaHide
	InstaHide vs. Differential Privacy approaches
	Vulnerability Against Attacks

	InstaHide Deployment: Best practice
	Related Work
	Conclusion
	Related Work
	Instance Hiding
	Attacks on Mixup
	Don't mix up the same image multiple times
	Attacks that run in time
	Chi-square concentration and Bernstein inequality
	Inner product between a random Gaussian vector a fixed vector
	Inner product between two random Gaussian vectors

	Computational hardness results of -dimensional -SUM
	-SUM
	 Vector Sum over Finite Field
	 Vector Sum over Bounded Integers

	Phase Retrieval
	Compressive Sensing
	Phase Retrieval
	Comments on Phase Retrieval

	Experiments
	Network architecture and hyperparameters
	Details of attacks
	Results of the Kolmogorov–Smirnov Test

