
A Main Theorem Proof

To reduce notation clutter we drop layer index l and re-state the theorem:

Theorem 3.1. Let G(m,y;θd) = Attn(m,y,m), assuming that ‖∂L/∂G‖ = Θ(1), then ∆G ,

G
(
m− η ∂L

∂m ,y;θd − η ∂L
∂θd

)
−G(m,y;θd) satisfies ‖∆G‖ = Θ(η/Ld) when:

‖v‖2‖w‖2 + ‖w‖2‖mi‖2 + ‖v‖2‖mi‖2 = Θ(1/Ld)

for all i = 1, . . . , n.

Proof. Since we are only considering the magnitude of the update, it is sufficiently instructive to
study the case where d = d′ = 1. In this case the projection matrices reduce to scalars k, q, v, w ∈ R,
andm is a n× 1 vector. Recall that for a single query y the attention block is defined as follows:

G(m, y;θd) = softmax

(
1√
d
yqkmT

)
mvw

Let si = e
kmiqy√

d∑n
j=1 e

kmjqy√
d

and δij = 0 if i = j and 0 otherwise, we have:

∂G

∂k
=

1√
d
vwqy

n∑
i=1

misi

mi −
n∑

j=1

sjmj


∂G

∂y
=

1√
d
vwqk

n∑
i=1

misi

mi −
n∑

j=1

sjmj


∂G

∂q
=

1√
d
vwyk

n∑
i=1

misi

mi −
n∑

j=1

sjmj


∂G

∂v
= w

n∑
i=1

simi

∂G

∂w
= v

n∑
i=1

simi

∂G

∂mi
= vwsi + vw

n∑
j=1

∂sj
∂mi

xj

= vwsi + vw

n∑
j=1

mjsj(δji − si)
1√
d
kqy

= vwsi +
1√
d
vwkqysi(mi −

n∑
j=1

mjsj)

Combining these expressions we get that the total change ∆G is given by:
∆G =

− η ∂L
∂G

v2w2

d

 n∑
i=1

simi

mi −
n∑

j=1

sjmj

2

(q2y2 + q2k2 + y2k2) +

(
n∑

i=1

simi

)2

(w2 + v2)

+ v2w2
n∑

i=1

s2
i

1 +
1

d
k2q2y2(mi −

n∑
j=1

sjmj)
2 +

1√
d
kqy(mi −

n∑
j=1

sjmj)


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By the assumption of the Theorem ‖η ∂L
∂G‖ = Θ(η), so we need to bound the term inside the main

parentheses by Θ( 1
L ). Note that si ≥ 0 and

∑
si = 1, which implies that each summation with s and

m is Θ(m). The desired magnitude Θ( 1
L ) is smaller than 1 so terms with lower power are leading:

v2w2, w2m2
i , v

2m2
i . The result follows.

B Derivation of Sufficient Conditions

In Section 3.2 we set the goal to make model update bounded in magnitude independent of model
depth:

GOAL: f(x,y;θ) is updated by Θ(η) per optimization step as η → 0. That is, ||∆f || = Θ(η),
where ∆f , f

(
x− η ∂L

x ,y − η
∂L
y ;θ − η ∂L

∂θ

)
− f(x,y;θ).

To achieve this, we study the forward and backward passes. Given the encoder fe and decoder fd,
the Transformer model can be written as f(x,y;θ) = fd(m,y;θd) where m = fe(x;θe) is the
memory output of the encoder. The total change after model update is then given by:

∆f = ∆fd
def
= fd

(
m̃,y − η ∂L

∂y
;θd − η

∂L
∂θd

)
− fd(m,y; θd)

where m̃ = fe

(
x− η ∂L

∂x ;θe − η ∂L
∂θe

)
is the updated memory. Analogous to Zhang et al. (2019b),

without loss of generality, we make the following assumptions to simplify derivations:

1. All relevant weights are positive with magnitude less than 1.

2. Encoder and decoder have the same number of layers N , with Le = 2N and Ld = 3N
blocks in the encoder and decoder respectively.

3. Embedding dimension d is 1 and the size of the input encoder sequence is n.

4. Derivative of f with respect to the loss function ∂L
∂fd

is of order Θ(1)

Forward Pass The Transformer encoder consists of Le residual blocks G1, . . . , GLe alternating
between self-attention and MLP blocks. Let x1 = x and xl+1 = xl +Gl(xl,θel) denote the output
of the l-th block such that m = xLe . When l is odd, Gl is a self-attention block with parameters
θel = {kel, qel, vel, wel}, and when l in even Gl is an MLP with parameters θel = {vel, wel}. We
have:

xl+1
Θ
= xl + velwelxl

xl
Θ
= x

(
1 +

l∑
i=1

veiwei

)

m
Θ
= x

(
1 +

Le∑
l=1

velwel

)

The decoder computation is similar with the addition of encoder-attention blocks:

y2 = y1 +G1(y1;θd1)

y3 = y2 +G2(m,y2;θd2)

y4 = y3 +G3(y3;θd3)

...
fd(m,y;θd) = yLd

+GLd
(yLd

;θdLd
)
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where y1 = y. When l%3 6= 0, Gl is an attention block with parameters θdl = {kdl, qdl, vdl, wdl}.
Otherwise, Gl is an MLP with parameters θdl = {vdl, wdl}. We have:

y2
Θ
= y1 + vd1wd1y1

y3
Θ
= y2 + vd2wd2m

y4
Θ
= y3 + vd3wd3y3

...

f(m,y;θd)
Θ
= yLd

+ vdLd
wdLd

xLd

from which it follows that yl
Θ
= y

(
1 +

∑l
i=1

i%26=2
vdiwdi

)
+m

∑l
i=1

i%2=2
vdiwdi.

Backward Pass With θE = {x,θe} and θD = {x,θd} denoting full encoder and decoder parame-
ters (including input embeddings), by Taylor expansion we have:

∆f =
∂f

∂θD
∆θD +

∂f

∂θE
∆θE +O

(
||∆θD||2 + ||∆θE ||2

)
=

∂f

∂θd
∆θd +

∂f

∂θe
∆θe +

∂f

∂x
∆x+

∂f

∂y
∆y +O

(
η2
)

= −η ∂fd
∂θd

∂fd
∂θd

T ∂L
∂fd

T

− η ∂fd
∂fe

∂fe
∂θe

∂fe
∂θe

T ∂fd
∂fe

T ∂L
∂fd

T

− η ∂fd
∂y

∂fd
∂y

T ∂L
∂fd

T

− η ∂fd
∂fe

∂fe
∂x

∂fe
∂x

T ∂fd
∂fe

T ∂L
∂fd

T

+O(η2)

(1)

Note that to reach our goal, it is sufficient for each of the terms to be of order Θ(η). We derive neces-
sary conditions to achieve that by studying each partial derivative in Equation 1 and its contribution
to ∆f . By assumption 4 we have that ∂L

∂fd

Θ
= 1. From the additive block-based architecture of the

encoder:

fe(x;θe) = x1 +G1(x1;θe1) +G2(x2;θe2) + . . .+GLe
(xLe

;θeLe
)

we have that:

∂fe
∂x

=
∂x2

∂x
+
∂G2(x2;θe2)

∂x2

∂x2

∂x
+ . . .+

∂GLe
(xLe

;θeLe
)

∂xLe

· · · ∂x2

∂x

Θ
= 1 +

∂G1(x;θel)

∂x

so derivative magnitude is independent of the model depth. Following analogous derivation for ∂fe
∂θe

we get that for each layer l:

∂fe
∂θel

=
∂Gl(xl;θe1)

∂θel

+
∂Gl+1(xl+1;θe(l+1))

∂xl+1

∂Gl(xl;θe1)

∂θel
+ . . .

+
∂GLe

(xLe
;θeLe

)

∂xLe

· · · ∂Gl(xl;θe1)

∂θel

Θ
=
∂Gl(xl;θel)

∂θel

And it follows that the magnitude of ∂fe
∂θe

is bound by:

∂fe
∂θe

Θ
=

(
∂G1(x1;θe1)

∂θe1
,
∂G2(x2;θe2)

∂θe2
, · · · , ∂GLe

(xLe
;θeLe

)

∂θeLe

)
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with the corresponding inner product:

∂fe
∂θe

∂fe
∂θe

T
Θ
=

Le∑
l=1

∂Gl(xl;θel)

∂θel

∂Gl(xl;θel)

∂θel

T

(2)

Similar analysis for the decoder gives:

∂fd
∂θd

∂fd
∂θd

T
Θ
=

Ld∑
l=1

l%36=2

∂Gl(yl;θdl)

∂θdl

∂Gl(yl;θdl)

∂θdl

T

+

Ld∑
l=1

l%3=2

∂Gl(m,yl;θdl)

∂θdl

∂Gl(m,yl;θdl)

∂θdl

T

(3)

Finally, the order of the term ∂fd
∂fe

∂fe
∂θe

∂fe
∂θe

T ∂fd
∂fe

T
in Equation 1 depends on ∂fe

∂θe

∂fe
∂θe

T
and ∂fd

∂fe

∂fd
∂fe

T
.

Since encoder and decoder are linked by memory, we have:

∂fd
∂fe

∂fd
∂fe

T
Θ
=

Ld∑
l=1

l%3=2

∂Gl(m,yl;θdl)

∂m

∂Gl(m,yl;θdl)

∂m

T

(4)

Equations 2, 3 and 4 cover all the major terms in the total change ∆f , so we focus on them to derive
the target bound. Expanding the terms in Equation 2 and applying Theorem 3.1 we get the following:

∂fe
∂θe

∂fe
∂θe

T
Θ
=

Le∑
l=1

∂Gl(xl;θel)

∂θel

∂Gl(xl;θel)

∂θel

T

+
∂Gl(xl;θel)

∂xl

∂Gl(xl;θel)

∂xi

T

Θ
=

Le∑
l=1

(v2
el + w2

el)xlx
T
l + v2

elw
2
el1m×m

Θ
=

Le∑
l=1

(v2
el + w2

el)

(
1 +

l∑
i=1

veiwei

)2

xxT + v2
elw

2
el1m×m (5)

Similarly, expanding Equation 3 we get:

∂fd
∂θd

∂fd
∂θd

T
Θ
=

Ld∑
l=1

l%36=2

(
(v2

dl + w2
dl)yly

T
l + v2

dlw
2
dl1n×n

)
+

3N∑
l=1

l%3=2

((v2
dl + w2

dl)m
Tm+ v2

dlw
2
dl)1n×n

(6)

And finally for Equation 4 we have:

∂fd
∂fe

∂fd
∂fe

T
Θ
=

Ld∑
l=1

l%3=2

v2
dlw

2
dl1n×n (7)

To achieve the target goal it is sufficient to make Equations 5, 6 and 7 of order Θ(1). Assuming that
all weights are initialized to the same order of magnitude (vel = Θ(ve), wel = Θ(we) etc., for all l),
the sufficient condition for Equation 5 can be derived as follows:

1
Θ
=

Le∑
l=1

(v2
el + w2

el)

(
1 +

l∑
i=1

veiwei

)2

x2 + v2
elw

2
el

Θ
= Le

(v2
e + w2

e)

(
1 +

l∑
i=1

vewe

)2

x2 + v2
ew

2
e


Θ
= Le

(
‖ve‖2‖x‖2 + ‖we‖2‖x‖2 + ‖ve‖2‖we‖2

)
(8)
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Similar derivation for Equation 6 gives:

Ld(‖vd‖2‖wd‖2 + ‖vd‖2‖y‖2 + ‖wd‖2‖y‖2

+ ‖vd‖2‖wd‖2 + ‖vd‖2‖m‖2 + ‖wd‖2‖m‖2)
Θ
= 1 (9)

And for Equation 7 we have:
Ld(‖vd‖2‖wd‖2)

Θ
= 1 (10)

C Encoder Initialization

Recall that Le = 2N and Ld = 3N , substituting these into gradient expressions for the encoder and
decoder we get:

∂fe
∂θe

∂fe
∂θe

T
Θ
= 2N((v2

e + w2
e) (1 + 2Nvewe)

2
xxT + v2

ew
2
e1m×m)

∂fd
∂θd

∂fd
∂θd

T
Θ
= 2N

(
(v2

d + w2
d)yyT + v2

dw
2
d1n×n

)
+N((v2

d + w2
d)mTm+ v2

dw
2
d)1n×n

∂fd
∂fe

∂fd
∂fe

T
Θ
= 3Nv2

dw
2
d1n×n

Note that if ‖ve‖‖we‖ < Θ(1/N) then ‖m‖ Θ
= ‖x‖. With this in mind, we let ‖vd‖

Θ
= ‖wd‖

Θ
=

‖y‖ Θ
= ‖x‖ Θ

= (9N)−
1
4 , which by design gives:

∂fe
∂θe

∂fe
∂θe

T
Θ
= 2N((v2

e + w2
e)(9N)−

1
4 + v2

ew
2
e)1m×m

∂fd
∂θd

∂fd
∂θd

T
Θ
= 2N

(
(3(9N)−1

)
+N(3(9N)−1)1n×n

Θ
= 1n×n

∂fd
∂fe

∂fd
∂fe

T
Θ
= 3N(9N)−1 Θ

= 1n×n

We then solve for the magnitude of ve and we that achieves ∂fe
∂θe

∂fe
∂θe

T Θ
= 1n×n. Assuming that

‖ve‖ = ‖we‖ due to symmetry, we obtain ‖ve‖ = ‖we‖ =
(√

22−2
6

) 1
2

N−
1
4 ≈ 0.67N−

1
4 .

D Training Hyper-Parameters

Parameters IWSLT’14small WMT’18base WMT’17base WMT’17deep WMT’17big
De-En Fi-En En-De En-De En-De

Starting learning rate 0.0005 0.0006 0.0007 0.0004 0.0004
Decay steps 4000 4000 4000 4000 4000
Dropout 0.5 0.4 0.2 0.4 0.4
Batch size (tokens) 4k 80k 25k 25k 25k
Max updates 300k 90k 1M 500k 500k
Mixed precision No No No Yes Yes

Table 1: Hyper-parameters for T-Fixup models on each dataset.
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