A Main Theorem Proof

To reduce notation clutter we drop layer index [ and re-state the theorem:
Theorem 3.1. Let G(m,y;0,) = Attn(m,y, m), assuming that ||0L/0G|| = ©(1), then AG =
G (m - n%, Y;04 — n%) — G(m,y; 0,) satisfies | AG|| = O(n/Lq) when:
[0l llwl® + [lwl|lmi]* + [lv]*|lm:|* = ©(1/La)
foralli=1,....n
Proof. Since we are only considering the magnitude of the update, it is sufficiently instructive to

study the case where d = d’ = 1. In this case the projection matrices reduce to scalars k, ¢, v, w € R,
and m is an x 1 vector. Recall that for a single query y the attention block is defined as follows:

1
G(m,y;04) = softmax < qka> muow
(m,y;6q) N
km;qy
Lets; = 67% and d;; = 0if ¢ = j and O otherwise, we have:
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Combining these expressions we get that the total change AG is given by:
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By the assumption of the Theorem ||n2% || = ©(n), so we need to bound the term inside the main
parentheses by ©(1). Note that s; > 0 and 5 s; = 1, which implies that each summation with s and
m is ©(m). The desired magnitude ©(+) is smaller than 1 so terms with lower power are leading:
v2w?, w?m?2, v2m?2. The result follows. O

B Derivation of Sufficient Conditions

In Section 3.2 we set the goal to make model update bounded in magnitude independent of model
depth:

GOAL: f(x,y;0) is updated by ©(n) per optimization step as 7 — 0. That is,
where Af £ f (w —n% .y —n%;0 - n%) — f(z,y;0).

Afll = M),

To achieve this, we study the forward and backward passes. Given the encoder f. and decoder fy,
the Transformer model can be written as f(x,y;0) = fq(m,y;04) where m = f.(x;0.) is the
memory output of the encoder. The total change after model update is then given by:
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where m = f, (a: — 77%? 0. — 7]%) is the updated memory. Analogous to Zhang et al. (2019b),
without loss of generality, we make the following assumptions to simplify derivations:
1. All relevant weights are positive with magnitude less than 1.

2. Encoder and decoder have the same number of layers N, with L, = 2N and Ly = 3N
blocks in the encoder and decoder respectively.

3. Embedding dimension d is 1 and the size of the input encoder sequence is n.

4. Derivative of f with respect to the loss function g—é is of order ©(1)

Forward Pass The Transformer encoder consists of L. residual blocks G, ..., Gy, alternating
between self-attention and MLP blocks. Let ¢1 = @ and x;+; = @; + G;(x;, 8.;) denote the output
of the [-th block such that m = x1,_. When [ is odd, G is a self-attention block with parameters
0.1 = {keis Gel, Vel, Wer } and when [ in even G is an MLP with parameters 0,; = {ve;, we; }. We
have:
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The decoder computation is similar with the addition of encoder-attention blocks:

Yo = Y1 +G1(yy;0a1)
Y3 = Yo + Ga(m, ys; 042)
Yy =Ys + G3(y3;6a3)

fa(m,y;04) =y, +Gr,(yr,;0ar,)



where y; = y. When [%3 # 0, G| is an attention block with parameters 04 = {kai, qa1, Var, Wai }-
Otherwise, G; is an MLP with parameters 04 = {vq;, wq; }. We have:
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®

Yy = Y3 + Va3WdsYs

e
f(m,y;04) =y, +var,war, L,

from which it follows that y, e Yy (1 + Zl i=1 vdiwdi) +m Zl i=1 VgiWd;.
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Backward Pass With Oz = {x,0.} and 6p = {x, 0.} denoting full encoder and decoder parame-
ters (including input embeddings), by Taylor expansion we have:
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Note that to reach our goal, it is sufficient for each of the terms to be of order ©(7). We derive neces-
sary conditions to achieve that by studying each partial derivative in Equation 1 and its contribution
to Af. By assumption 4 we have that g—fﬁd © 1. From the additive block-based architecture of the
encoder:
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fe(x;0.) = 1 + G1(21;0c1) + Ga(22;002) + ... + G, (21, ;0cL.)

we have that:
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so derivative magnitude is independent of the model depth. Following analogous derivation for g{;ﬁ
we get that for each layer [:
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And it follows that the magnitude of g%'z is bound by:
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with the corresponding inner product:
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Similar analysis for the decoder gives:
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Finally, the order of the term g—}cd gge gge g—}cd in Equation 1 depends on gge ggﬂ and gfc‘i g{c‘i .

Since encoder and decoder are linked by memory, we have:
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Equations 2, 3 and 4 cover all the major terms in the total change A f, so we focus on them to derive
the target bound. Expanding the terms in Equation 2 and applying Theorem 3.1 we get the following:
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Similarly, expanding Equation 3 we get:
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And finally for Equation 4 we have:
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To achieve the target goal it is sufficient to make Equations 5, 6 and 7 of order ©(1). Assuming that
all weights are initialized to the same order of magnitude (ve; = O(v.), we = O(w,) etc., for all 1),
the sufficient condition for Equation 5 can be derived as follows:
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Similar derivation for Equation 6 gives:
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And for Equation 7 we have:
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C Encoder Initialization

Recall that L, = 2N and Ly = 3N, substituting these into gradient expressions for the encoder and
decoder we get:
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Note that if [|ve]|[|we|| < ©(1/N) then ||[m]|| £ ||z||. With this in mind, we let ||vg|| £ |jwq| 2
lyl] 2 ||| 2 (9N)~ %, which by design gives:
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We then solve for the magnitude of v, and w, that achieves

1
[lvell = [|we|| due to symmetry, we obtain ||ve|| = |jwe|| = (@) *N~i~ 067N,

D Training Hyper-Parameters

Parameters IWSLT’ 14,00 WMT184,5c WMT1744,. WMT174.., WMT’17,;,
De-En Fi-En En-De En-De En-De
Starting learning rate 0.0005 0.0006 0.0007 0.0004 0.0004
Decay steps 4000 4000 4000 4000 4000
Dropout 0.5 0.4 0.2 0.4 0.4
Batch size (tokens) 4k 80k 25k 25k 25k
Max updates 300k 90k IM 500k 500k
Mixed precision No No No Yes Yes

Table 1: Hyper-parameters for T-Fixup models on each dataset.



