
Communication-Efficient Distributed PCA by Riemannian Optimization

A. Riemannian Optimization Operators on Hypershpere Manifold
The unit norm constraint of a d-dimensional vector admits a geometry structure as a hypersphere. For the hypersphere
manifold, the tangent space projector is Pw(g) = (I � ww>)g. The Riemannian metric in the hypersphere manifold
is the same as the Euclidean metric, which means the inner product of two vectors in tangent space is calculated in the
same way as in the Euclidean space. The vector transport is computed as T u

w (⇠) = Pu(⇠) = (I � uu>)⇠. The retraction
(exponential map) is calculated as Rw(⇠) = cos(k⇠k)w + sin(k⇠k)

k⇠k ⇠. The inverse retraction (logarithmic map) is computed

as R�1
w (u) = D(u,w) Pw(u�w)

kPw(u�w)k , where D(w, u) is the distance between two points in the manifold and it is computed as
D(w, u) = arccos(hw, ui).

Note the distance between w and v in the hypersphere manifold is the angle between these two vectors. For any w, u 2 M

satisfying w>u � 0, we have

1� (w>u)2  D2(w, u) 
⇡2

4

�
1� (w>u)2

�
. (7)

Therefore, bounding the 1�(w>v)2 is in fact bounding the distance between w and v on the hypersphere manifold.

B. Proof for Section 2.1 and Section 4
B.1. Proof for Lemma 1

Proof. To prove that F̂ (w) is L-g-smooth with L = � is equivalent to prove that the largest eigenvalue of the Riemannian
manifold Hessian of F̂ (w), denoted by r̃

2F̂ (w), is �. Based on the analytic form of Hessian matrix-vector product for
hypersphere manifold in (Boumal et al., 2014; Absil et al., 2008), the largest eigenvalue is maxu2TwMhu, r̃2F̂ (w)[u]i,
which can be computed as

hu, r̃2F̂ (w)[u]i = hu,�(I � ww>)Âu+ w>Âwui

= �u>Âu+ w>Âw

 0 + �

(8)

The second equality uses the fact that u is in the tangent space of w such that u>w = 0. And the inequality uses the fact that
Â is positive (semi-)definite and its largest eigenvalue is �.

Therefore, we have L = �.

B.2. Proof for Lemma 2

Lemma 2 is a simple corollary of Theorem 4 in (Zhang et al., 2016).

B.3. Proof for Lemma 3

Proof. Assume all data instances are i.i.d. sampled from some unknown distribution D and define A = Ex⇠D[xx>]. Then
we have E[xk

i (x
k
i)

>] = A. By matrix Hoeffding’s inequality (Theorem 1.3 in (Tropp, 2012)), we have for each k, with
probability at least 1� p over the i.i.d. samples in machine k,

||Ak �A||
2
2 

8�2log(d/p)
n

where

�2 =

������
1

n

nX

i=1

xk
i (x

k
i)

>
�A

!2
������
2

 max{max
i

[(xk
i (x

k
i)

>)2], A2
} = b2.

Therefore, � = b and we have

||Ak �A||
2
2 

8b2log(d/p)
n

Communication-Efficient Distributed PCA by Riemannian Optimization

Again using matrix Hoeffding’s inequality on Â, we have, with probability at least 1� p,

||Â�A||
2
2 

8b2log(d/p)
N

Combining these two inequalities, we get

kAk � Âk
2
2  2kAk �Ak

2
2 + 2kA� Âk

2
2 

✓
1

n
+

1

N

◆
16b2log(d/p) 

32b2log(d/p)
n

.

The last inequality comes from n  N .

Remark: When the data instances are not i.i.d., we can still have a similar bound on kAk � Âk
2
2 if the data are arbitrarily

distributed over all local machine based on the following lemma.
Lemma 9. Assume the data instances are randomly partitioned over all local machines and their `2 norm is at most b.
Then for each local machine k, with probability at least 1� p and n being sufficiently large such that n � log(2d/p), we

have kAk � Âk
2
2  ↵2b2, where ↵2 = 4log(2d/p)

n .

Proof. If the data are randomly partitioned over all local machines, {xk
i } for i = 1, ..., n are sampled without replacement

from all data to construct Ak. Apply the without-replacement version of Bernstein’s inequality for matrices (Theorem 1 in
(Gross & Nesme, 2010)), we have

Pr(kAk � Âk2 > ") 

(
2d exp(�n"2

4c2
), if "  2c2

c1
2d exp(� n"

2c1
), if " > 2c2

c1

,

where maxi kxix>
i k2  c1 and �����

1

N

NX

i=1

⇣
xix

>
i � Â

⌘2
�����
2

 c2.

It is easy to know that c1 = b. As for c2,
�����
1

N

NX

i=1

⇣
xix

>
i � Â

⌘2
�����
2

=

����E
⇣
xix

>
i � Â

⌘2����
2

=
���E
⇥
(xix

>
i)

2
⇤
� Â2

���
2

 max
n��E

⇥
(xi(xi)

>)2
⇤��

2
, kÂ2

k2

o
.

Notice kÂ2
k2  �2 and

��E
⇥
(xix

>
i)

2
⇤��

2
=
��E
⇥
kxik

2xix
>
i

⇤��
2
 max

i
{kxik

2
}

�����

NX

i=1

xix
>
i

�����
2

= b�  b2.

Since b � �, we set c2 = b2.

Let the probability p = Pr(kAk � Âk2 > "). When "  2b is satisfied, with probability 1� p, we have

kAk � Âk2  " =

r
4b2log(2d/p)

n
.

Since log(2d/p)  n, it holds "  2b.

Therefore, with probability 1� p, we have

kAk � Âk
2
2 

4b2log(2d/p)
n

. (9)

Communication-Efficient Distributed PCA by Riemannian Optimization

B.4. Proof for Lemma 4

Proof. Note that r̃F̂ (w) = Pw(Âw) and T
w
w̃s

= Pw. Plugging these operators into G(w) and r̃F̂ (w), we obtain

kG(w)� r̃F̂ (w)k2 = k(I � ww>)(Ak � Â)(w � w̃s) + (I � ww>)w̃sw̃
>
s (Ak � Â)w̃sk

2

= k(I � ww>)(Ak � Â)(w � w̃s) + (I � ww>)w̃sw̃
>
s (Ak � Â)w̃sk

2

 2k(I � ww>)(Ak � Â)(w � w̃s)k
2 + 2k(I � ww>)w̃sw̃

>
s (Ak � Â)w̃sk

2

 2kI � ww>
k
2
2kAk � Âk

2
2kw � w̃sk

2 + 2k(I � ww>)w̃sk
2
⇣
w̃>

s (Ak � Â)w̃s

⌘2

 2↵2b2kw � w̃sk
2 + 2↵2b2k(I � ww>)w̃sk

2

= 2↵2b2
�
3� 2w>w̃s � (w>w̃s)

2
�

 6↵2b2
�
1� (w>w̃s)

2
�

 6↵2b2D2(w, w̃s).

The third inequality uses the result in Lemma 3 that kAk �Ak
2
2  ↵2b2. The fourth inequality uses the fact that w>w̃s  1

such that w>w̃s � (w>w̃s)2. And the final inequality comes from Eq. (7).

B.5. Proof for Theorem 1

Proof. For simplification of notation, we denote ws,k
t by wt. Note that in Algorithm 1, we have gt = G(wt).

As presented in Lemma 1, F̂ (w) is �-smooth. By the gradient �-Lipschitz, we have

F̂ (wt+1)  F̂ (wt) + hr̃F̂ (wt), R
�1
wt

(wt+1)i+
�

2

��R�1
wt

(wt+1)
��2

= F̂ (wt)� ⌘hr̃F̂ (wt), G(wt)i+
⌘2�

2
kG(wt)k

2

= F̂ (wt)�
⌘

2
kr̃F̂ (wt)k

2 +
⌘

2
kG(wt)� r̃F̂ (wt)k

2 + ⌘(
⌘�

2
�

1

2
)kG(wt)k

2

 F̂ (wt)�
⌘

2
kr̃F̂ (wt)k

2 + 3⌘↵2b2D2(w̃s, wt) + ⌘2(
�

2
�

1

2⌘
)kG(wt)k

2.

(10)

The second equality follows hu1, u2i = 1
2

�
ku1k

2 + ku2k
2
� ku1 � u2k

2
�

for any two vectors u1 and u2. The second
inequality follows Lemma 4. Notice that G(wt) 6= r̃F̂ (wt) is an obstacle from theoretically analyzing distributed
algorithms, and thus the second equality distinguishes our proof from the proof of single-machine optimization of PCA
problem in (Shamir, 2015; 2016; Xu et al., 2017; Zhang et al., 2016).

Inspired by the proof of RSVRG (Zhang et al., 2016) for noncovex problem, we define a Lyapunov function as

Rt = F̂ (wt) + rtkR
�1
w̃s

(wt)k
2, (11)

with a series of auxiliary parameters rt satisfying rm = 0, rt = (1 + �)rt+1 + 3⌘↵2b2 for t = 1, 2, ...,m, where � = 1/m.
Note that the definition of auxiliary parameters are different from those defined in RSVRG (Zhang et al., 2016).

To bound Rt, we need to bound F̂ (wt) and kR�1
w̃s

(wt)k2. The latter one is equivalent to the Riemannian distance between w̃s

and wt. And to bound it, we need to use the trigonometric geometry. Note that the trigonometric geometry in a Riemannian
manifold is fundamentally different from the Euclidean space. However, with Lemma 5 proposed in (Zhang & Sra, 2016),
the side lengths of a geodesic triangle can be upper bounded if the curvature on the manifold is lower bounded by some
constant. For the hypersphere, the curvature is constant as 1, and therefore for any vectors w, u, z 2 M, the following
inequality holds (Zhang et al., 2016):

D2(w, u)  D2(w, z) + D2(w, z)� 2hR�1
z (u), R�1

z (w)i. (12)

Communication-Efficient Distributed PCA by Riemannian Optimization

We then have
kR�1

w̃s
(wt+1)k

2
 kR�1

w̃s
(wt)k

2 + kR�1
wt

(wt+1)k
2
� 2hR�1

wt
(w̃s), R

�1
wt

(wt+1)i

= kR�1
w̃s

(wt)k
2 + ⌘2kG(wt)k

2 + 2hR�1
wt

(w̃s), ⌘G(wt)i

 kR�1
w̃s

(wt)k
2 + ⌘2kG(wt)k

2 +
1

�
⌘2kG(wt)k

2 + �kR�1
w̃s

(wt)k
2

= (1 +
1

�
)⌘2kG(wt)k

2 + (1 + �)kR�1
w̃s

(wt)k
2

(13)

The first inequality follows the trigonometric geometry in hypersphere manifold. The second inequality comes from a
simple application of Cauchy-Schwarz and Youngs inequality that 2ha, bi  1

� kak
2 + �kbk2.

Plugging (10) and (13) into Rt, we have

Rt+1 = F̂ (wt+1) + rt+1kR
�1
w̃s

(wt+1)k
2

 F̂ (wt)�
⌘

2
kr̃F̂ (wt)k

2 +
�
(1 + �)rt+1 + 3⌘↵2b2

�
kR�1

w̃s
(wt)k

2

+ ⌘2
✓
rt+1(1 +

1

�
) +

�

2
�

1

2⌘

◆
kG(wt)k

2

 Rt �
⌘

2
kr̃F̂ (wt)k

2.

(14)

The second inequality is by the definition of Rt and the following inequality,

rt+1(1 +
1

�
) +

�

2


1

2⌘
. (15)

The proof of the inequality (15) is in Appendix B.5.1.

Sum up (14) from t = 0 to t = m, we have

Rm  R0 �

m�1X

t=0

⌘

2
kr̃F̂ (wt)k

2.

Substituting w̃s = w0 and rm = 0, the inequality above is equivalent to

F̂ (wm)  F̂ (w̃s)�
m�1X

t=0

⌘

2
kr̃F̂ (wt)k

2. (16)

Note that inequality (16) holds for any wm = ws,k
m where k = 1, 2, ...,K.

Since the global variable w̃s+1 is randomly sampled from the local output of the s-th epoch of local computation {ws,k
m }

K
k=1,

we have,

E[F̂ (w̃s+1)] 
1

K

KX

k=1

F̂ (ws,k
m)  F̂ (w̃s)�

1

K

KX

k=1

m�1X

t=0

⌘

2
kr̃F̂ (ws,k

t)k2. (17)

By the definition of output in Algorithm 1, we obtain

E[kr̃F̂ (wa)k
2] =

1

KSm

S�1X

s=0

KX

k=1

m�1X

t=0

kr̃F̂ (ws,k
t)k2


2

⌘Sm

S�1X

s=0

h
F̂ (w̃s)� F̂ (w̃s+1)

i


2�

⇢Sm

S�1X

s=0

⇣
F̂ (w̃s)� F̂ (w⇤)

⌘
.

(18)

The first inequality uses (17) and the second inequality follows the definition of ⌘ and the fact that F̂ (w̃s+1) � F̂ (w⇤).

Communication-Efficient Distributed PCA by Riemannian Optimization

Remark: As the proof of Theorem 1 begins with the L-g-smoonthness property of the objective function and the
optimization accuracy is measured by the squred norm of the gradient, it seems that the proof could be simply generalized to
other nonconvex problem. However, this is not the fact. In the second inequality of (10), we apply Lemma 4, which is a
special property of our objective function. And (12) is a property on hypershpere, which may not be simply generalized to
other Riemannian manifold. Therefore, to generalize the proof of Theorem 1 to other objective function, it is required to
verify whether Lemma 4 and (12) are satisfied.

B.5.1. PROOF FOR INEQUALITY (15)

Proof. Note that ⌘ = ⇢/� where ⇢ satisfies 12↵2b2⇢2m2/�2 + ⇢  1. By definition of rt, we have rm = 0 and
rt = (1 + �)rt+1 + 3⌘↵2b2. Recursively calculating from t = m to t = 0, we have

rt = 3⌘↵2b2
(1 + �)m�t

� 1

�
=

3↵2b2⇢m

�

✓
(1 +

1

m
)m�t

� 1

◆


e� 1

2

3↵2b2⇢m

�


3↵2b2⇢m

�

(19)

The second equality follows the definition of ⌘ and �. The first inequality uses the limitation of an increasing function
(1 + 1

x)
x is the Euler’s number, namely limx!+1(1 + 1

x)
x = e. And the second inequality comes from the fact that e  3.

With the upper bound of rt for any t, we have

rt+1(1 +
1

�
) +

�

2


3↵2b2⇢

�
m(1 +m) +

�

2


6↵2b2⇢m2

�
+

�

2


1� ⇢

2⇢
�+

�

2
=

�

2⇢
=

1

2⌘

(20)

The second inequality follows thta m � 1, and the third inequality uses the setting 12↵2b2⇢2m2/�2 + ⇢  1.

B.6. Proof for Theorem 2

Before proceed to the proof, we first propose a lemma to bound kr̃fk,i(w)� T
w
u r̃fk,i(u)k2 for any w, u 2 M.

Lemma 10. Given any w, u 2 M, it holds that

kr̃fk,i(w)� T
w
u r̃fk,i(u)k

2
 6b2D

2(w, u)

Proof. Define Ak,i = xk
i (x

k
i)

>. Then similar to the proof of Lemma 4, we have

kr̃fk,i(w)� T
w
u r̃fk,i(u)k

2

=k � (I � ww>)Ak,iw + (I � ww>)(I � uu>)Ak,iuk
2

=k(I � ww>)Ak,i(w � u) + (I � ww>)uu>Ak,iuk
2

2k(I � ww>)Ak,i(w � u)k2 + 2k(I � ww>)uu>Ak,iuk
2

2kI � ww>
k
2
2kAk,ik

2
2kw � uk2 + 2k(I � ww>)uk2(u>Ak,iu)

2

=2b2
�
kw � uk2 + k(I � ww>)uk2

�

=2b2
�
3� 2w>u� (w>u)2

�

6b2
�
1� (w>u)2

�

6b2D2(u,w).

(21)

Communication-Efficient Distributed PCA by Riemannian Optimization

Now we are ready to provide proof for Theorem 2.

Proof. Again, for simplification of notation, we denote ws,k
t by wt. With (3) replacing Step 10 in Algorithm 1, the local

variable is updated with

gt =
1

B

X

i2It

r̃fk,i(wt)� T
wt
w̃s

1

B

X

i2It

r̃fk,i(w̃s)� r̃F̂ (w̃s)

!
. (22)

Notice that E[gt] = G(wt), where G(w) is defined in (6). Then the variance of gt is upper bounded as

E [kgt �G(wt)k
2] = E[

���
1

B

X

i2It

⇣
r̃fk,i(wt)� T

wt
w̃s

r̃fk,i(w̃s)
⌘
+ T

wt
w̃s

r̃F̂ (w̃s)

�

⇣
r̃fk(wt)� T

wt
w̃s

(r̃fk(w̃s)� r̃F̂ (w̃s))
⌘���

2
]

=
1

B2
E

"���
X

i2It

⇣
r̃fk,i(wt)� T

wt
w̃s

r̃fk,i(w̃s)�
⇣
r̃fk(wt)� T

wt
w̃s

r̃fk(w̃s)
⌘⌘���

2
#


1

B2
E

"���
X

i2It

⇣
r̃fk,i(wt)� T

wt
w̃s

r̃fk,i(w̃s)
⌘���

2
#


6b2

B
E
⇥
D2(wt, w̃s)

⇤

(23)

The first inequality uses Ek⇠ � E⇠k2 = Ek⇠k2 � kE⇠k2  Ek⇠k2 and the second inequality uses Lemma 10.

By the �-smoothness of F̂ (w), we can derive

E[F̂ (wt+1)]  E


F̂ (wt) + hr̃F̂ (wt), R

�1
wt

(wt+1)i+
�

2

��R�1
wt

(wt+1)
��2
�

= E


F̂ (wt)� ⌘hr̃F̂ (wt), G(wt)i+

⌘2�

2
kgtk

2

�

= E


F̂ (wt)�

⌘

2
kr̃F̂ (wt)k

2 +
⌘

2
kG(wt)� r̃F̂ (wt)k

2 + ⌘(
⌘�

2
�

1

2
)kgtk

2 +
⌘

2
(kgtk

2
� kG(wt)k

2)

�

 E


F̂ (wt)�

⌘

2
kr̃F̂ (wt)k

2 +
⌘

2
kG(wt)� r̃F̂ (wt)k

2 + ⌘(
⌘�

2
�

1

2
)kgtk

2 +
⌘

2
(kgt �G(wt)k

2)

�

 E


F̂ (wt)�

⌘

2
kr̃F̂ (wt)k

2 + 3⌘↵2b2D2(wt, w̃s) + ⌘(
⌘�

2
�

1

2
)kgtk

2 +
3⌘b2

B
D2(wt, w̃s)

�

 E


F̂ (wt)�

⌘

2
kr̃F̂ (wt)k

2 + 3⌘(↵2 +
1

B
)b2D2(wt, w̃s) + ⌘(

⌘�

2
�

1

2
)kgtk

2

�

(24)

The second equality is by hu1, u2i =
1
2

�
ku1k

2 + ku2k
2
� ku1 � u2k

2
�

and by subtracting and adding ⌘
2kgtk

2. The second
inequality uses Ek⇠ � E⇠k2 = Ek⇠k2 � kE⇠k2  Ek⇠k2. And the third inequality uses Lemma 4 and (23). Note that (24)
is same as (10) except that ↵2 is replaced by ↵2 + 1

B . Therefore, the subsequent proof is similar to the proof of Theorem 1
in Appendix B.5.

B.7. Proof for Theorem 3

Proof. Since Algorithm 2 calls Algorithm 1, by Theorem 1 we have

E[kr̃F̂ (ŵr+1)k
2] 

2�

⇢mS

⇣
F̂ (ŵr)� F̂ (w⇤)

⌘
. (25)

Communication-Efficient Distributed PCA by Riemannian Optimization

By Lemma 2 and definition of gradient-dominated function, we have

F̂ (ŵr+1)� F̂ (w⇤) 
2

�
kr̃F̂ (ŵr+1)k

2. (26)

Combining (25) and (26) and telescoping products from r = 0 to r = R� 1, we obtain

E
h
F̂ (ŵR)� F̂ (w⇤)

i


✓
4�

⇢�mS

◆R ⇣
F̂ (w0)� F̂ (w⇤)

⌘

C. Proof for Sections 4.1, 4.2 and 4.3
C.1. Proof of Lemma 5

Proof. Given any unit norm vector w, rewrite it as w =
Pd

i=1 civi, where ci are scalers satisfying
Pd

i=1 c
2
i = 1 and vi is

the eigenvector corresponding to i-th largest eigenvalue �i. By definition, v = v1 and � = �1. Then we have (w>v)2 = c21.
For F̂ (w)� F̂ (v), it is lower bounded as

F̂ (w)� F̂ (v) =
1

2
(�1 � w>Âw) =

1

2
(�1 �

dX

i=1

c2i�i)

=
1

2
(�1 � c21�1 �

dX

i=2

c2i�i)

�
1

2
(�1 � c21�1 �

dX

i=2

c2i�2)

=
1

2

�
(1� c21)�1 � (1� c21)�2)

�
=

�

2
(1� (w>v)2).

And the upper bound is deduced as

F̂ (w)� F̂ (v) =
1

2
(�1 � w>Âw) =

1

2
(�1 �

dX

i=1

c2i�i)

=
1

2
(�1 � c21�1 �

dX

i=2

c2i�i)


1

2
(�1 � c21�1) =

�

2
(1� (w>v)2).

C.2. Proof of Lemma 6

Proof. Let ŵk = sign(w>
k w1)wk =

Pd
i=1 c

k
i vi, where

Pd
i=1(c

k
i)

2 = 1 for all k and vi is the eigenvector corresponding to
i-th largest eigenvalue �i. By definition, v = v1 and � = �1. Since (ck1)

2 = (v>wk)2 > 1
2 and ŵ>

k ŵj � 0 for any j and k,
we obtain that ck1 has same sign for all k. Assume c(k)1 > 0, then for any fixed {ck1}

K
k=1, we have

(v>w̄)2 =
(
PK

k=1 v
>ŵk)2

k
PK

k=1 ŵkk
2

=
(
PK

k=1 c
k
1)

2

(
PK

k=1 c
k
1)

2 +
Pd

i=2(
PK

k=1 c
k
i)

2

�
(
PK

k=1 c
k
1)

2

(
PK

k=1 c
k
1)

2 + (
PK

k=1

p
1� (ck1)

2)2

Communication-Efficient Distributed PCA by Riemannian Optimization

The inequality comes from the fact that k
PK

k=1 ukk
2
 (
PK

k=1 kukk)2, where we set the vector uk = [ck2 , c
k
3 , ..., c

k
d]

> and

the fact kukk =
qPd

i=2(c
k
i)

2 =
p
1� (ck1)

2. Notice that

1

K

KX

k=1

(v>wk)
2 =

1

K

KX

k=1

(ck1)
2.

By define ck1 = cos(✓k), where ✓k 2 [0, ⇡/4), we have
p

1� (ck1)
2. Then to prove the lemma is equivalent to proving

(v>w̄)2 �
1

K

KX

k=1

(v>wk)
2

,
(
PK

k=1 c
k
1)

2

(
PK

k=1 c
k
1)

2 + (
PK

k=1

p
1� (ck1)

2)2
�

1

K

KX

k=1

(ck1)
2

,
(
PK

k=1 cos(✓k))
2

(
PK

k=1 cos(✓k))
2 + (

PK
k=1 sin(✓k))

2
�

PK
k=1 cos

2(✓k)PK
k=1 cos

2(✓k) +
PK

k=1 sin
2(✓k)

,
(
PK

k=1 cos(✓k))
2

(
PK

k=1 sin(✓k))
2

�

PK
k=1 cos

2(✓k)PK
k=1 sin

2(✓k)

,

PK
i=1

PK
j=1 cos(✓i) cos(✓j)PK

i=1

PK
j=1 sin(✓i) sin(✓j)

�

PK
k=1 cos

2(✓k)PK
k=1 sin

2(✓k)

,

1
2

PK
i=1

PK
j=1

�
cos(✓i � ✓j) + cos(✓i + ✓j)

�

1
2

PK
i=1

PK
j=1

�
cos(✓i � ✓j)� cos(✓i + ✓j)

��
PK

k=1 cos
2(✓k)PK

k=1 sin
2(✓k)

,

KX

i=1

KX

j=1

�
cos(✓i � ✓j) + cos(✓i + ✓j)

� KX

k=1

sin2(✓k) �
KX

k=1

cos2(✓k)
KX

i=1

KX

j=1

�
cos(✓i � ✓j)� cos(✓i + ✓j)

�

,K
KX

i=1

KX

j=1

cos(✓i + ✓j) �
KX

k=1

�
cos2(✓k)� sin2(✓k)

� KX

i=1

KX

j=1

cos(✓i � ✓j)

,K
KX

i=1

KX

j=1

cos(✓i + ✓j) �
KX

k=1

cos(2✓k)
KX

i=1

KX

j=1

cos(✓i � ✓j)

,

KX

i=1

KX

j=1

cos(✓i + ✓j) �
KX

i=1

KX

j=1

⇣cos(2✓i) + cos(2✓j)

2

⌘PK
i=1

PK
j=1 cos(✓i � ✓j)

K2

The last inequality holds due to the fact that cos(✓)  1 such that

PK
i=1

PK
j=1 cos(✓i � ✓j)

K2
 1,

and the fact that the function cos(✓) is concave for ✓ 2 [0, ⇡/2) such that

cos(✓i + ✓j) = cos
�1
2
2✓i +

1

2
2✓j
�
�

cos(2✓i) + cos(2✓i)

2

Communication-Efficient Distributed PCA by Riemannian Optimization

C.3. Proof of Theorem 4

Proof. Assume that (v>ws,k
m)2 > 1/2 holds for all s and k. Combining Lemma 6 and Lemma 5, we have that

F̂ (w̃s+1)� F̂ (v) 
�

2

�
1� (v>w̃s+1)

2
�


�

2K

KX

k=1

�
1� (v>ws,k

m)2
�


�

�K

KX

k=1

F̂ (ws,k
m)� F̂ (v).

That is

F̂ (w̃s+1) 
�

�K

KX

k=1

F̂ (ws,k
m). (27)

Replacing (18) with (27) in proof of Theorem 1, we can achieve the conclusion in Theorem 4.

C.4. Proof of Lemma 7

Proof. We study the convexity of F̂ (w) on hypersphere manifold by the smallest eigenvalue of its Riemannian Hessian. By
(8), we have

hu, r̃2F̂ (w)[u]i = �u>Âu+ w>Âw.

Define " = 1 � (w>v)2. Rewrite w as w =
Pd

i=1 civi, where ci are scalers satisfying
Pd

i=1 c
2
i = 1 and c1 > 0. Then

w>v1 = c1 and c21 = 1� "2.

Rewrite u as u =
Pd

i=1 aivi. By u>w = 0, we have

u>w = 0 ,

dX

i=1

aici = 0

, (a1c1)
2 = (

dX

i=2

aici)
2


dX

i=2

a2i

dX

i=2

c2i = (1� a21)(1� c21)

, a21  1� c21

(28)

Therefore, (u>v1)2  1� c21 = "2. This indicates u>Au  "2�1 + (1� "2)�2.

Then

�u>Au+ w>Aw � �"2�1 � (1� "2)�2 +
dX

i=1

c2i�i

� �"2�1 � (1� "2)�2 + c21�1

= �"2�1 � (1� "2)�2 + (1� "2)�1

= � � "2(�1 + �)

(29)

Let � � "2(�1 + �) � 0, we obtain "2 
�

�1+� . That is, when 1� (w>v)2 < �
�1+� , the Riemannian Hessian of F̂ (w) has

non-negative smallest eigenvalue, indicating that F (w) is g-convex.

Let � � "2(�1 + �) � �
2 , we obtain "2 

1
2

�
�1+� . Since the smallest value of the Hessian is not smaller than �/2, F̂ (w) is

�/2-strongly geodesics-convex in the Riemannian ball {w : (w>v1)2 � 1� 1
2

�
�1+�}.

Communication-Efficient Distributed PCA by Riemannian Optimization

A byproduct during studying the convexity of F̂ (w) is that among all stationary points vi for i = 1, 2, ..., d of the objective
function F̂ (w) on Riemannian manifold, only v1 is not a saddle point, and vi for i = 2, 3, ..., d are saddle points.

C.5. Proof of Theorem 5

Proof. Assume that ws,k
m 2 A holds for all s and k, where A = {w 2 M : (w>v)2 � 1� �

�+�}. Based on Lemma 7, we
have that F̂ (w) is geodesic convexity for any w 2 A.

For w̄k (k = 1, 2, ...,K) defined in (5), by applying the Jensen’s inequality along geodesic on M, we have

F̂ (w̄k) 
k � 1

k
F̂ (w̄k�1) +

1

k
F̂ (ws,k

m),

where k = 2, 3, ...,K. Sum up from k = 2 to k = K, we have

F̂ (w̃s+1) =
1

K

KX

k=1

F̂ (ws,k
m).

Based on the above inequaltiy, we know that (18) still holds after switching the averaging stategy from option I to option III.
Thus, we can have same result as in Theorem 3.

Remark: By applying Lemma 6 to the function h(w) = 1� (v>w)2 where w 2 M, we have that h(w) is g-convex if
(v>w) � 1/2. Therefore, running Algorithm 1 with option III and with other assumptions and parameter settings described
in Theorem 4, we can achieve the same conclusion as presented in Theorem 4.

C.6. Proof of Lemma 8

Proof. Define the leading eigenvalue of A1 by �1. By the result in Lemma 3, we have kA1 � Âk2  ↵b. That is for any
unit norm vector w, we have

|w>A1w � w>Âw|  ↵b. (30)

If �1 � �, we have
�1 � � = v>1 A1v1 � v>Âv  v>1 A1v1 � v>1 Âv1  ↵b

Similar, when � � �1, we have

�� �1 = v>Âv � v>1 A1v1  v>Âv � v>A1v  ↵b (31)

Therefore we have |�� �1|  ↵b. With this result, we have

F̂ (v1)� F̂ (v) =
1

2
(�� v>1 Âv1)

=
1

2
(�� �1 + v>1 A1v1 � v>1 Âv1)


1

2

⇣
|�� �1|+ |v>1 A1v1 � v>1 Âv1|

⌘

= ↵b

(32)

The second equality uses �1 = v>1 A1v1 and the inequality uses (30) and (31).

Communication-Efficient Distributed PCA by Riemannian Optimization

D. Extra Experiment Results on Synthetic datasets

of Comm Rounds

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e
 L

o
g

 E
rr

o
r

-35

-30

-25

-20

-15

-10

-5

0
RGD

ILEA

DSI

CEDRE

(a) � = 0.2

of Comm Rounds

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e
 L

o
g

 E
rr

o
r

-30

-25

-20

-15

-10

-5

0

RGD

ILEA

DSI

CEDRE

(b) � = 0.01

Figure 5. Comparison results of different distributed optimization algorithms on synthetic datasets with different eigengap.

We compare CEDRE with baseline algorithms on the synthetic datasets described in Section 6.3 with n = 2000. The
results are presented in Figure 5. When the eigengap is large (i.e. � = 0.2), the convergence regarding the communication
cost of CEDRE outperforms its competitors by a large margin. To be specific, CEDRE converges to about �35 log error
with only 6 communication rounds while other algorithms cannot converge to the same accuracy after communicating
20 communication rounds. When the eigengap is small (i.e. � = 0.01), CEDRE again outperforms other competitors.
Therefore, CEDRE is more communication-efficient to compute the leading eigenvector in distributed settings.

of Comm Rounds

Figure 1(a)

0 5 10 15 20 25 30 35 40

A
ve

ra
g
e
 L

o
g
 E

rr
o
r

-40

-35

-30

-25

-20

-15

-10

-5

0

K=2

K=5

K=10

K=20

K=50

K=100

(a)

wall clock time (ms)

Figure 1(b)

0 250 500 750 1000 1250 1500 1750 2000

A
ve

ra
g
e
 L

o
g
 E

rr
o
r

-40

-30

-20

-10

0
K=1

K=2

K=5

K=10

K=20

K=50

(b)

Figure 6. Results on synthetic datasets. (a) displays convergence of CEDRE v.s. number of communication rounds for different number of
local mahines. (b) displays convergence of CEDRE v.s. computation time for different number of local mahines.

We also test the effect of the number of local machines on the convergence of CEDRE on the synthetic datasets. In this
experiment, the number of total data instances is fixed at 200, 000. And the number of local machines K varies from 1 to
100. Specially, when testing the convergence vs. number of communication rounds (Figure 6(a)), the local computation
iteration length m is set as b10

p
nc. And when testing the convergence vs. local computation time (Figure 6(b)), the

communication time is not calculated. But in practice, the communication time is much higher than the computation time
and dominates the total running time of a distributed algorithm. The results in Figure 6 show that to achieve the same
accuracy, with the increase of the number of local machines K, the number of communication rounds increases, but the
wall-clock time, i.e. the computation cost in each local machine, decreases.

