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Abstract

Reinforcement learning is typically concerned
with learning control policies tailored to a
particular agent. We investigate whether there
exists a single global policy that can generalize
to control a wide variety of agent morphologies
— ones in which even dimensionality of state
and action spaces changes. We propose to
express this global policy as a collection of
identical modular neural networks, dubbed as
Shared Modular Policies (SMP), that correspond
to each of the agent’s actuators. Every module is
only responsible for controlling its corresponding
actuator and receives information from only its
local sensors. In addition, messages are passed
between modules, propagating information
between distant modules. We show that a
single modular policy can successfully generate
locomotion behaviors for several planar agents
with different skeletal structures such as monopod
hoppers, quadrupeds, bipeds, and generalize to
variants not seen during training — a process
that would normally require training and manual
hyperparameter tuning for each morphology. We
observe that a wide variety of drastically diverse
locomotion styles across morphologies as well
as centralized coordination emerges via message
passing between decentralized modules purely
from the reinforcement learning objective.

1. Introduction

Deep reinforcement learning (RL) has been instrumental to
successful sensorimotor control, either in simulation (Heess
etal.,2017) or on physical robots (Levine et al., 2016). How-
ever, state-of-the-art approaches today train a policy network
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Figure 1. Our goal in this project is to train a single general-
purpose policy controller that can perform well across many of
these diverse agent morphologies. Our key idea is to represent pol-
icy as a collection of identical and locally communicating modular
neural networks shared across all limbs of all agents. Video results
athttps://huangwll8.github.io/modular-rl/.

from scratch that is specifically tailored to a particular robot
morphology (i.e., kinematic shape) and characteristics. But
if we are to ever create general, pre-trainable priors for robot
control similar to those for image classification (Krizhevsky
et al., 2012) or natural language (Devlin et al., 2018), it
is imperative for policies to be applicable to agents with
differing morphologies.

Can a general-purpose controller be pre-trained for multi-
ple agents by simply reducing to a multi-task RL problem?
This is not easy to manifest for several reasons. Although
deep RL has been proven useful in making these agents
learn from scratch without any priors, their success is lim-
ited to learning a separate controller for one agent at a time
with tedious hyperparameter tuning (Henderson et al., 2017).
Moreover, unlike pre-training of vision or language mod-
els, it is difficult to contemplate as to what pre-training a
controller means for robots because each agent may have a
different number of limbs, sensory inputs, motor commands,
morphology, and control behaviors, as shown in Figure 1.

Fortunately, our natural world abounds with examples of
modularity and reuse in sensorimotor systems (d’Avella
et al., 2015; Dickinson et al., 2000; Holmes et al., 2006). In
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Figure 2. Overview of our approach: We investigate the possibility of learning general-purpose controllers by expressing agents as
collections of modular components that use a shared control policy. Multiple agent controllers (left) are trained simultaneously with
locally communicating modules with shared parameters (center). These modules learn to pass messages to local neighbors (right).

fact, evidence for pre-trained controllers is seen in preco-
cial and superprecocial animals that manage to fly or walk
soon after birth, e.g. songbirds, horses, giraffe, etc. (Back &
Clayton, 2013; Fox, 1964; Starck & Ricklefs, 1998). At the
evolutionary level, modularity allows sensorimotor design
motifs to only be developed once and reused across the or-
ganism’s body and propagated efficiently to its descendants.
At the level of an organism’s lifetime, modularity offers
the tools of locality and parallel processing as a means to
manage complexity. Sensorimotor units only sense and act
locally, e.g., a motor neuron pool may only excite a particu-
lar muscle group and only receive information from sensors
physically near that muscle group (Kandel et al., 2000).

In contrast, current RL policies are typically centralized
and holistic objects that jointly output controls for all of the
agent’s actuators. A centralized and holistic artificial neural
network policy misses an opportunity to exploit modularity
and reuse advantages both at training and execution. Can
we build artificial policies that simultaneously generalize to
a wide variety of agents and exploit modularity and reuse?

To answer this question, we introduce Shared Modular Poli-
cies (SMP), a policy architecture built entirely out of a single
reusable module that is re-instantiated at each of the agent’s
actuators. Each module instance only perceives information
from the actuator’s local sensors. What makes complex co-
ordination between modules possible is a message passing
procedure where each module receives and sends learned
message vectors to its neighboring actuators — in our case
neighboring limbs in the tree-structured morphology of the
agent. The sensorimotor arrangement in SMP resembles a
decentralized but communicating multi-agent population.
Fascinatingly, such an arrangement makes it possible to or-
chestrate globally coherent, coordinated behaviors, such as
locomotion for complex high-dimensional agents.

SMP is trained with standard policy gradient reinforcement
learning as shown in Figure 2 and is able to generalize to
control of variants not seen during training as we show in
Section 5.3. This is a very hard task, as training a controller
for only one of these morphologies is by itself a challenging
task (Islam et al., 2017). The idea of sharing controllers
across limbs has been investigated to control self-assembling
agents in Pathak et al. (2019). Self-assemblies allow the
flexibility to evolve agent morphologies to be easier to con-
trol, and hence, learn a specialized, yet generalizable policy.
In contrast, our setup requires that the module must perform
well across all morphologies to learn a unified policy. Such a
requirement ensures we learn a policy that is truly appropri-
ate to all agents. We find message passing — both top-down
and bottom-up — to be crucial for successful operation and
show that complex communication protocols emerge that
transmit information across distant limbs despite only local
connectivity as in show in Section 6.

Our contributions are as follows: firstly, we present a gen-
eralizable modular policy architecture appropriate for the
control of arbitrary agents. Secondly, we show that the
resulting policy can effectively control locomotion behav-
iors of several planar agents simultaneously and still match
the performance of the corresponding oracle, i.e., the state-
of-the-art method trained for the individual agents. Lastly,
we analyze how centralized coordination can emerge from
decentralized components in the context of sensorimotor
control by visualizing learned messages.

2. Learning General-Purpose Controllers

Consider N agents, each with a unique morphology. Each
agentn € {1... N} contains K, different limb actuators
which are connected together to constitute its overall mor-
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phological structure. Examples of such agents include half-
cheetah, 2D-humanoid, etc. agents with different physical
structures (Figure 1), all geared towards a common goal of
learning to walk. The objective is to learn a single, general-
purpose controller that can simultaneously be trained on all
these /N agent morphologies via reinforcement learning and
generalize to held-out morphologies in a zero-shot manner
without any further finetuning. Our key insight is to employ
modularity at the most fundamental level of sensorimotor
learning loop, i.e., across limbs (i.e. actuators) of the agents.

2.1. Representing Agent Morphologies as Graphs

Consider a planar agent morphology that has K limbs,
which we represent as an undirected graph G = (V, ).
Each node v; € V fori € {1...K} represents a limb
of the agent, and there is an undirected edge (v;,v,) € &
if v; and v; are connected by a joint. For the brevity of
method description, let’s assume that the graph is connected
and acyclic (i.e., a tree) with the root node be one of the
limbs, although it’s easy to incorporate cycles as discussed
in Section 3.3. Each node/limb thus contains an actuator
that controls its movement relative to its parent node/limb.

2.2. Sensorimotor Modules

We develop a modular sensorimotor control policy 7y (.) that
is re-purposed to output the torques for each agent limb indi-
vidually. The parameters 6 of this module are shared across
all thelimbs k € {1... K, } ofallagentsn € {1...N}. At
each discrete timestep ¢, the policy 7g for the k%" limb of an
agent n receives a local sensory state of the limb s¥ as input
and then outputs the torque values a¥ for the corresponding
actuator controlled by this limb. Upon executing the com-
bined action {af} ", for agent n at time ¢, the environment
returns the next state {s} _~_1}]€K:"1 corresponding to all indi-
vidual limbs of the agent n and an overall reward for the
whole morphology 77 ({sF, 1} 1), {aF} ). We now dis-
cuss the joint policy optimization and how the coordination
emerges within each agent as a result of modularity.

2.3. Modular Policy Optimization

A straightforward way to implement a modular policy archi-
tecture is to train each limb’s shared policy independently
to optimize the joint reward function for whole morphology.
Note that each limb has its own state-space containing posi-
tions, velocity, rotation etc., see Section 4 for details. The
parameters 6 of this policy my are optimized to maximize
the joint reward via deep reinforcement learning as follows:

N oo
mgox Br, ZZ[V i ({sfadin {af}fjl)] (1

n=1 t=0

where af = 7y(sF) and ~ is the discount factor.

In the case of independent modular policies, this objective
is optimized such that action is produced by a policy that
is conditioned on the local state of the limb. This is similar
in spirit to neural module networks used for visual question
answering (Andreas et al., 2016) with the difference that
our output is also modular and not just the input, i.e., each
module directly outputs the limb actuation torques unlike
in NLP where the output of all modules is aggregated to
generate the answer.

We optimize this objective in Equation (1) via the actor-critic
setup of the deterministic policy gradient algorithm which
is standard practice for continuous control tasks (Lillicrap
et al., 2016). In particular, we use the TD3 algorithm (Fuji-
moto et al., 2018). Note that we used an off-the-shelf imple-
mentation of TD3 without much change, and our method’s
ability to perform across diverse morphologies stems mostly
from the modularity of proposed controllers.

3. Modular Communication

Learning a locomotion controller for walking across diverse
agent morphologies, see Figure 2, is challenging for a pure
reinforcement-based setup. The first reason, of course, is
the sheer complexity of hard joint optimization posed by
this general setup. However, a bigger issue is the absence
of a common gait that could perform locomotion with these
agent morphologies. For instance, a bipedal walker can
move efficiently with alternating walking gait while a walker
with one leg (unipedal) will have to hop forward. A walker
with one full leg and the other one short needs to lead with
one leg and drag with the other and so on. Similar to the
presence of different locomotion gaits across animals in the
natural world, there exist many different locomotion gaits
for our agents as different numbers of legs require different
coordination with the torso and other non-locomotory limbs.
Therefore, when the modular policies at each limb operate
independently from other limbs, it is nearly impossible to
represent different goal-directed behaviors (e.g. locomotion
gaits) across different agent morphologies due to lack of
ability to model coordination in absence of communication
across limbs (actuators).

To facilitate limb coordination within an agent and represent
different behaviors across agents, we propose to condition
each limb’s policy module 7y on a message vector generated
by its neighboring limbs in addition to conditioning on just
the local state of the limb itself. Intuitively, we argue that
the communication setup by these messages would enable
the emergence of coherent full-body behaviors solely from
identical local modules. Since our policies are fully shared,
modular and communicate only with local neighbors via
learned message vectors, we dub our approach as Shared
Modular Policies (SMP).
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3.1. Communication via Messages along the Topology

As discussed in Section 2.1, we can represent each agent
morphology as an undirected graph G = (V, £). The node
k € K, in the graph corresponds to the k*" limb and the
edges denote the connectivity of limbs of agent n. Messages
are passed along the edges between the neighboring nodes.

Let’s define the torso as the root node for brevity, although
any limb of the agent can act as the root node of the graph
and still achieve similar performance, as discussed in Sec-
tion 5.4. Let p(k) be the unique parent of the k" node, C(k)
be the set of its children nodes and m; "’ be the message
from i*" node to j*" node. This message is a 32-dimensional
learned vector generated by the limb policy.

The order in which these messages are passed governs the
prediction of each action a} in Equation (1). We describe
three message passing schemes: bottom-up, top-down, and
both-way, in which the first two are decentralized while both-
way can lead to the emergence of a centralized controller.

3.2. Decentralized Message Passing

The communication between our modules is naturally de-
centralized because we have only one type of module which
gets shared across all the limbs. In a decentralized setup,
messages can be passed either from leaf nodes to the root
node, or from root node to leaf nodes, discussed as follows.

Bottom-Up Message Passing Messages are passed from
leaf nodes towards the root and the policy parameters 6 are
obtained by maximizing objective (1) under the following
constraints for action generation:

k k—p(k)
ay, my

= Ty <5f7 f({mrk}ieqk))) 2)
where f(.) is an aggregator function that collects all the
messages from child nodes and combines them into a fixed
dimension output. Examples of such functions include an
element-wise sum, average or max operator, etc. We discuss
alternatives to aggregation in Section 3.4.

Top-down Message Passing Messages are passed from
the root node to leaves. For simplicity, let’s assume that
the parent nodes passes same message output to all of its
children. The policy parameters 6§ are trained to optimize

Equation (1) subject to following constraints on a:

k k—cr k p(k)—k
a;, m{ * = 7T9<St, my 3)

where mf_’ck is the message sent to all children nodes, i.e.,

mE~" = mP7% Vi e C(k). In many cases, passing a
common message to all children may have issues for body-
level coordination: for instance, if left and right legs have

same state, then a common message won’t be able to break
the symmetry. To handle this, an alternative is to allow
the parent to pass different messages to all its children via
caching trick discussed in Section 3.4.

3.3. Both-way Message Passing: Emergence of
Centralization

A purely decentralized controller should be sufficient when
the diversity in morphologies is not huge and all the limb
modules can converge to a similar whole-body strategy
implicitly. However, in the presence of drastically differ-
ent agents like humanoid and walker, some back-and-forth
communication between modules is necessary to govern a
consistent full-body behavior. Although, such centralization
would have to emerge and can not be encoded because our
reusable design does not permit any special module which
can act as a ‘master’ node.

We allow centralization to emerge via both-way message
passing: first from leaves to root, and then from root to
leaves. The bottom-up pass generates only messages, and
actions are predicted in the top-down pass. The root node
can eventually learn to emerge as a centralized module that
aggregates information from all other nodes and then pass
on its information to others via messages. An intuitive way
to understand this scheme is to draw an analogy with the
central nervous system in animals where sensory neurons
(upwards pass) carry information from end-effectors (leaves)
to the brain (root) and then motor neurons (downward pass)
carry instructions from the brain to generate output actions.
To implement this, we divide our modular policy 7y into
two sub-policies with parameters ¢, and 05 for the upwards
pass and the downwards pass respectively. Parameters 6
are trained to optimize Equation (1) subject to following
constraints:

mi?®) = (Sf, f({mi%k}z‘ec(k)» “)

mEt = mFoe e k)
¢ ¢
0 = {61, 62}

Note that the upwards pass occurs sequentially from leaf to
root and only outputs a message passed to the parent. The
downwards pass, in contrast, happens sequentially from root
to leaf and generates the final action output and messages
passed to children. The pseudo-code of the complete method
is provided in the Appendix.

If the morphological graph contains cycles, which however
is rarely seen in the animal kingdom, the message pass-
ing can be generalized to perform multiple both-way (i.e.,
bottom-up and then top-down) message passing until the
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Figure 3. Average rewards across all agents in each of the five environments. For each environment discussed in Section 4, a single policy
is simultaneously trained on multiple variants. Note that only 80% of the variants are used for training and the rest 20% are used for
held-out testing. The figure shows that the multi-task baseline performs poorly on the environments containing difficult agents such as
walker and humanoid, and it is also unstable in learning simpler agents like the cheetahs. In addition, the figure shows that different
message passing has a pivotal impact on performance. Both-way message passing has a clear advantage in modeling diverse gaits across
different agents compared to other decentralized schemes (e.g. top-down only and bottom-up only).

messages converge, as in loopy-belief-propagation (Murphy
et al., 1999) for Bayesian networks with cycles.

3.4. Handling Different Number of Children Nodes

A parent node can have multiple children in an acyclic
graph which poses a choice whether to pass the same or
different messages to each child node. Section 3.2 described
the scenarios when the same message is transmitted to all
children nodes, which is not always optimal. For instance,
when left and right legs are not symmetric and have different
numbers of limbs, the torso would want to pass different
latent ‘instruction’ to each leg. In our implementation, we
allow different messages via a simple caching trick where
the parent node in top-down pass always outputs as many
messages as the max number of child nodes across joints
of all agents, i.e., max, K,. If a certain joint has fewer
children, the first few distinct messages are used by each
child and the remaining ones are simply ignored. A similar
idea is employed in the bottom-up pass to prevent loss of
information in sum or average operation over messages
from different children nodes. The bottom-up policy takes
maxy, K, number of messages, and if the number of actual
children is fewer at some node, zero vector is appended to
compensate. We found that, in practice, allowing different
messages between each parent-child pair in this manner
works better than passing the same message to all child
nodes. A generic alternative to handle different messages
across child nodes is to implement the aggregator function
f(.) as a recurrent neural network.

The emergence of complex coordination within agent
limbs by local communication between shared mod-
ules has also been explored in dynamic graph networks
(DGN) (Pathak et al., 2019). However, there are two key
differences: (a) The agent shapes in our setup are static
and not dynamic, thus, we do not allow the flexibility to
dynamically adapt the physical morphology to make the
controller learning easier. (b) Furthermore, our emphasis is

on learning diverse control behaviors or gaits across these
different static morphologies via different message passing
mechanisms as discussed above. In contrast, in DGNs, no-
message and bottom-up message passing are good enough
for agents that are allowed to adjust their shape.

4. Experiment Setup

We investigate our proposed general-purpose controllers on
the standard Gym MuJoCo locomotion tasks. We run all
environments in parallel with the shared controller across
limbs. Each experiment is run with four seeds to report the
mean and the standard error. The reward for each environ-
ment is calculated as the sum of instant rewards across an
episode of 1, 000 time-steps.

Environment and Agents We choose the following en-
vironments from Gym MuJoCo to evaluate our methods:
"Walker2D-v2’, "Humanoid-v2’, "Hopper-v2’, HalfCheetah-
v2’. To facilitate the study of general-purpose locomotion
principles across these agents, we modify the standard 3D
humanoid to constrain it to a 2D plane similar to walker,
hopper, and cheetah.

To systematically investigate the proposed method when
applied to multi-task training, we construct several variants
of each of the above agents, as shown in Figure 2. We cre-
ate the following collections of environments using these
variants: (1) 12 variants of walker [walker++], (2) 8 vari-
ants of humanoid [humanoid++], (3) 15 variants of cheetah
[cheetah++], (4) all 12 variants of walker and 3 variants
of hopper [walker-hopper++], and (5) all 12 variants of
walker, 3 variants of hopper, and all 8 variants of humanoid
[walker-hopper-humanoid++]. We keep 20% of the variants
as the held-out set and use the rest for training. Note we
do not solely evaluate the methods on the hopper environ-
ment because there are only three variants possible. And
we do not perform cross-category training with the cheetah
environment because it uses a different integrator, making it
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Figure 4. Comparisons between different message passing schemes on walker morphologies. The policy is jointly trained on ten walker
variants and the figure shows a subset of six. Decentralized message passing schemes (e.g. top-down only or bottom-up only) can
learn locomotion task for walkers with four to seven limbs to some extent, but fail to learn anything meaningful for three-limb and
two-limb variants. In contrast, both-way message passing can model multiple gaits and demonstrates a clear advantage. Video results

athttps://huangwll8.github.io/modular-rl/.

unstable when jointly trained with other environments.

To create the variants for each agent, consider each agent as
a tree with the root being the torso. We create all possible
subsets (the power set) of all the nodes in the tree and keep-
ing only those that contain the torso and form connected
graphs. This can also be done by procedurally removing
one leaf node at a time and enumerating all possible com-
binations. Note that we leave out those variants that are
structurally infeasible for locomotion (e.g. humanoid with-
out legs) in training and testing.

States and Actions The total state space of agent n,
{sf}fz“'l, is a collection of local limb states. Each of
these limb states, sf, contain global positions, positional
velocities, rotational velocities, 3D rotations, and range
of movement of the limb body. We represent these 3D
rotations via an exponential map representation (Grassia,
1998). The range of movement is represented as three scalar
numbers (positiony, low, high) normalized to [0, 1], where
position, is the joint position at time ¢, and [low, high]
is the allowed joint range. To handle different numbers
of children nodes, we implement the simple caching trick
discussed in Section 3.4. Note that the torso limb has no
actuator in any of these environments, so we still keep a sen-
sorimotor module for torso for message passing but ignore
its predicted torque values.

We use TD3 (Fujimoto et al., 2018) as the underlying re-
inforcement learning method. The internal modules which
are shared across all limbs of over 20 agents are just two
4-layered fully-connected neural networks with ReLU and
tanh non-linearity, one for bottom-up message passing and
the other one for top-down message passing. The dimension
of message vectors is 32. Other details of training and a
sanity check section that compares the Shared Modular Poli-
cies to a standard monolithic policy trained on single-agent
environments can be found in the appendix.

5. Results and Ablations

We evaluate the effectiveness of our approach by asking
three questions: Can our Shared Modular Policies (SMP)
outperform the standard multi-task RL approach when si-
multaneously trained on many diverse agents? How do
different message passing schemes compare and does cen-
tralized control emerge? Can it generalize to unseen mor-
phologies in a zero-shot manner, a task that has been consid-
ered infeasible for the standard RL approach? We examine
these questions in three steps:

e We first compare against the standard multi-task base-
line and see how well our proposed method compares
to such a monolithic policy simultaneously trained on
multiple agents.

e Next we examine the role of message passing, specifi-
cally the performance resulted from different message
passing schemes.

e Finally we test our learned modular policy on unseen
agent morphologies in a zero-shot manner.

Also, we examine whether Shared Modular Policies are
robust to the choice of root node while constructing the
kinematic graph for message passing by choosing non-torso
limbs as the root.

5.1. Multi-Task RL Baseline

Following the setup by Chen et al. (2018), the baseline that
we compare to is a standard monolithic RL policy trained on
all environments with TD3. The state space for each envi-
ronment consists of the state of the agent in joint-coordinate
(as in most existing methods) plus a task descriptor contain-
ing the number of limbs present and a one-hot environment
ID. The policy is a four-layered fully-connected neural net-
work. For each agent, it takes the state of the entire agent
as input and outputs the continuous torque values for all the


https://huangwl18.github.io/modular-rl/

One Policy to Control Them All

Walker++ (2 kinds) Humanoid++ (2 kinds)
5000

Cheetah++ (3 kinds)

Walker-Hopper++ (3 kinds) Walker-Hopper-Humanoid++ (5 kinds)

3000 4000

2000 2500
2000
1500
1000

500

T | r

(%2}
2500 4000
E VAA/\VW 3000
3 2000 3000
9 2000
< 1500
=4 2000
g 1000 1000
= 500 1000
g et e 0
0 0
0.0 0.5 1.0 15 0.00 025 050 0.75 1.00 1.25 1.50 0.0
Training Steps Training Steps ‘”’

—— both-way

0.5 1.0 15
Training Steps

top-down only

0
00 02 04 06 08 10 12 14

Training Steps

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Training Steps 7

bottom-up only no messages

Figure 5. Zero-Shot Generalization: Average rewards across held-out morphologies for different message passing schemes. The policy
in each plot is trained jointly on 80% of variants from that environment and tested on the 20% unseen variants in a zero-shot manner.
We take the trained SMP policies from each timestep during training (x-axis) and test on the held-out set. SMP with both-way message
passing generalizes without troubles to unseen environments, demonstrating it has learned important priors for locomotion.

actuators. Note that the dimensions of the state space and
the action space differ across different environments, so we
zero-pad the states and actions to the maximum dimension
across all environments.

As shown in Figure 3, the multi-task baseline fails to per-
form well in any environment, possibly due to the diversity
of the agents and hence the difficulty of learning a single
controller for all the agents. In contrast, SMP with both-
way message passing can model many different gaits across
these drastically different agents.

5.2. Role of Message Passing

As shown in Figure 3, different schemes of message passing
have a significant impact on the performance of the mor-
phologies. Not only does the both-way message passing
scheme outperforms the multi-task RL baseline, but it per-
forms significantly better than the decentralized message
passing schemes (e.g. top-down only and bottom-up only).

Figure 3 shows the superiority of both-way message pass-
ing in obtaining higher average rewards across a number of
agents, yet it does not show in what ways both-way mes-
sage passing is superior to decentralized message passing
schemes. To investigate this, we plot one figure for each
morphology in Walker++, where all the agent morpholo-
gies are trained with a single policy. As shown in Figure 4,
although decentralized message passing schemes seem to
work in few morphologies, they fail to model different types
of motion as these morphologies exhibit drastically differ-
ent gaits (e.g. a two-limb walker can only hop forward).
Both-way message passing, on the other hand, learns these
gaits simultaneously, a task that is even infeasible by the
formulation of most RL methods.

5.3. Zero-Shot Generalization

There are several examples in the animal kingdom where
locomotion abilities are present at birth (i.e. almost ‘zero-
shot’), for instance, foals start to walk soon after they are
born (Back & Clayton, 2013; Fox, 1964). Similarly, our

goal of learning a general-purpose controller is not limited
to training morphologies but also to generalize to new ones
in a zero-shot manner without any further training.

During test time, the modular policies can potentially adapt
to many morphological structures, and in this section, we
test the trained policy on a set of held-out agent morpholo-
gies. As shown in Figure 5, both-way message passing has
a definitive advantage in generalization, achieving high re-
wards even in a zero-shot manner. This demonstrates that
it can generalize to a wide variety of different morpholo-
gies with no fine-tuning, showing it has learned important
priors for locomotion — a key step towards learning general-
purpose controllers. Please look at the success as well as
the failure videos on the project website !

5.4. Training with a Non-Torso Limb as Root

As our method operates on a per-actuator level, it relies on
the graphical representation of an agent’s morphological
structure, which is often a tree. Most MuJoCo environments
come with such morphological structures by defining agents
as an acyclic graph where the torso is the root. In all the
experiments in the previous sections, we simply adopt the
built-in structure for each environment. However, we note
that our method is agnostic to where the root is defined.
To verify this, we construct another walker environment
where the root is the left foot instead of the torso. We
run four different seeds for the same walker morphology
with this foot-root setup, the default torso-root setup, and
the monolithic baseline. We report the mean and standard
deviation of training rewards at 1M timesteps. Note that
treating left foot as root even performs slightly better.

Method
Ours (both-way) + root is left foot
Ours (both-way) + root is torso
Monolithic Baseline

Training Reward
3709.87 £+ 580.87
3215.04 4 447.82
3592.70 + 111.13

"https://huangwll8.github.io/modular-rl/
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Figure 6. We investigate whether messages capture the alternating gait corresponding to locomotion behaviors. For both the walker and
hopper environment, we run t-SNE to plot the top-down root node messages against timesteps in an episode. The cyclic pattern shows that
the root node message not only captures such alternating gait but also plays an important role in governing the overall agent pose.

6. Analysis of Message Passing

Ilustrated by Section 5.2, message passing plays a crucial
role for agents to orchestrate globally coherent behaviors.
However, does message passing convey contextual informa-
tion essential for learning general-purpose controllers, or
is it purely an empowering technique for modeling high-
complexity tasks? We answer this question by examining
the role of message passing in this section.

Consistency over Time In many of the locomotion tasks,
we repeatedly observe alternating behaviors, a result of
global coordination, e.g. walker moves by alternating its two
legs and hopper hops by contracting and relaxing its leg. Do
our learned messages capture this essence of locomotion?
We investigate this question by plotting one-dimensional t-
SNE (Maaten & Hinton, 2008) of the torso message, which
has aggregated global information after bottom-up message
passing, over the time of an episode. As shown in Figure 6,
a clear message pattern emerges over the course of train-
ing. Furthermore, we visualize the agent across the episode
time-steps and found that the agent’s pose is also highly
consistent with the torso message, again proving that a cen-
tralized controller can emerge from training decentralized
controllers via message passing.

7. Related Works

Modular approaches to control that are similar to ours have
been explored by robotics and virtual evolution commu-
nities. To control customizable and reconfigurable robot
platforms, Chen et al. (2018); Schaff et al. (2018) condition
the control policy on an encoding of the robot’s morphology.
Ha et al. (2017) avoid learning a parametric control policy
altogether and instead use trajectory optimization to con-
trol the robots. When the morphology of the robot is fixed
but some pre-determined parameters vary, meta-learning
can be used to adapt the policy online (Al-Shedivat et al.,
2017; Nagabandi et al., 2018) or to train with variability
over parameters to make the control policy insensitive to
their precise value (Akkaya et al., 2019). Virtual evolution
similarly requires co-adaptation of the morphology and the

control mechanism. Advantages of modular control have
been observed in this context by Cheney et al. (2014); Pathak
et al. (2019); Sims (1994); Wang et al. (2019).

Another recent line of work exploiting modularity and
reuse in deep learning are graph-structured neural net-
works (Scarselli et al., 2009) — see (Battaglia et al., 2018)
for a comprehensive review. Global coordination in such
graph networks is either implemented via global aggrega-
tion or decentralized message passing, as in (Gilmer et al.,
2017; Zhang et al., 2019). In deep RL, graph structure has
typically been used to efficiently encode agent’s observa-
tions (i.e. world entities and interactions) as in (Baker et al.,
2019; Sanchez-Gonzalez et al., 2018). Exceptions include
DGN (Pathak et al., 2019) and NerveNet (Wang et al., 2018)
which also exploit graph structure in the agent’s morphol-
ogy. NerveNet passes messages asynchronously for multiple
steps and has different policies for different kinds of nodes
(root, torso, legs, etc.). In contrast, we share the same policy
across all the limbs of all the agents which communicate via
sequential message passing along the topology.

Our message passing modules also bear resemblance to a
communicating multi-agent system. Global coordination
emerging from decentralized agents was observed from deep
RL agents in (Foerster et al., 2016; Mordatch & Abbeel,
2018; Sukhbaatar et al., 2016). Modularity has also been
observed to an important component of a biological sen-
sorimotor organization — see (d’Avella et al., 2015) for a
review. Examples of global coordination include central pat-
tern generators for control of rhythmic behaviors (Marder &
Bucher, 2001) and muscle synergies (d’ Avella et al., 2003).

8. Conclusion

In this work, we presented Shared Modular Policies, an
architecture built entirely out of a single reusable module —
that while acting and sensing only locally creates globally-
coordinated complex movement behaviors. Such an archi-
tecture can produce locomotion for a wide variety of agents
simultaneously, even those not seen during training. Overall,
we hope that our work provides the foundation for general-
purpose pre-trained priors of sensorimotor control.
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