
One Policy to Control Them All:
Shared Modular Policies for Agent-Agnostic Control

Wenlong Huang 1 Igor Mordatch 2 Deepak Pathak 3 4

A. Appendix
A.1. Result Videos

We show videos for all variants trained with a single
policy on the project website: https://huangwl18.
github.io/modular-rl/. We recommended refer-
ring to videos to observe how our single 4-layer network
policy can represent different gate behaviors across different
agent morphologies. One way message passing is some-
times able to learn for more than one morphology, but can-
not represent multiple gates. However, both-way message
passing is able to represent multiple gates due to emergence
of centralization from decentralized modules.

A.2. Implementation and Training

We use TD3 (Fujimoto et al., 2018) as the underlying rein-
forcement learning method. The internal optimizer for TD3
is Adam (Kingma & Ba, 2015). The initial positions and
velocities of each agent are randomized at the beginning of
each episode. For the first 10, 000 time-steps during training,
actions are uniformly sampled from the action space. The
policy is trained with a learning rate of 4e−4, a tau of 0.046,
and an exploration noise of 0.13. All internal modules are
4-layered fully-connected neural networks with ReLU and
tanh non-linearity. The dimension of message vectors is 32.
Messages are normalized before passed to the children and
the parent.

For multi-morphology training, each morphology has its
own environment and an independent replay buffer of size
1e6. The maximum size of all the replay buffers is capped
at 1e7 and whenever there are n > 10 environments, each
environment has a replay buffer of size of 1e7/n. We run
all environments in parallel using vectorized environment
from OpenAI Baselines (Dhariwal et al., 2017). To speed
up training and inference, we also use the dynamic batching
package (Polosukhin & Zavershynskyi, 2018) when there is

1UC Berkelely 2Google 3CMU 4Facebook AI Research. Corre-
spondence to: Deepak Pathak <dpathak@cs.cmu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

0 1 2
Distance from Leaves

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
v.

s. 
To

p-
Do

wn
 M

es
sa

ge
s

left foot actions
right foot actions

left foot states
right foot states

Figure 1. Message Range Analysis. We examine how far the mes-
sages reach and what relationship it has with the leaves’ local states
and actions by doing correlation analysis between leaves’ local
states/actions and the messages from its predecessors. The figure
shows the closer a limb is to a leaf, the more its message contains
the ‘instructions’ for the leaf.

no dependency between modules, e.g. when the limbs are
neither an ancestor nor descendent of each other.

For each single-category training (walker++, humanoid++,
hopper++, and cheetah++), we use its default reward
function from Gym. For multi-category training (walker-
hopper++ and walker-hopper-humanoid++), we use the re-
ward function from walker++ which consists of x-axis dis-
placement (distance covered by agent), alive reward, and the
sum of squared actions (for penalizing large action values).

A.3. Analysis of Message Propagation Range

In both-way message passing, messages are initially passed
from the leaves to the root and then from the root back to the
leaves. We here investigate whether the messages convey
global information by showing the correlation between the
states, actions, and the messages passed at different levels.
Specifically, we test in the walker environment and we in-
vestigate how much the states and the actions are correlated
with the furthest messages to the closest messages. Due to
the different dimensionality, we first reduce the dimensions
of the data to one by running Principle Component Analysis
(PCA), and the final results are averaged over an episode.

https://huangwl18.github.io/modular-rl/
https://huangwl18.github.io/modular-rl/


One Policy to Control Them All

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Training Steps 1e7

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

wa
rd

s
Walker

0.0 0.5 1.0 1.5
Training Steps 1e7

0

1000

2000

3000

4000

5000

6000 Humanoid

0.0 0.5 1.0 1.5
Training Steps 1e7

0

2000

4000

6000

8000

10000

Cheetah

0.0 0.5 1.0 1.5
Training Steps 1e7

0

1000

2000

3000

4000

Hopper

both-way top-down only bottom-up only no messages monolithicboth-way top-down only bottom-up only no messages monolithicboth-way top-down only bottom-up only no messages monolithicboth-way top-down only bottom-up only no messages monolithic
Figure 2. A sanity check that compares the average rewards on standard environments by the Shared Modular Policies with different
message-passing schemes and the monolithic baseline. All the policies are only trained with one agent morphology at a time. The figure
shows that the Shared Modular Policies with both-way message-passing can model multiple simple locomotion tasks just as well as a
monolithic baseline.

Algorithm 1 Joint Training of All Agents

1: Notation Summary:
2: NNbu: bottom-up module parameterized by θ1
3: NNtd: top-down module parameterized by θ2
4: s(e)t : all limbs’ states of environment e at time t
5: a(e)t : all limbs’ actions of environment e at time t
6: r(e)t : rewards of environment e at time t
7: done(e): whether environment e is done
8: rb(e): replay buffer for environment e

9: init: SMP = (NNbu, NNtd) from scratch.
10: empty replay buffer rb(e) for each environment e.
11: while not converged do
12: // collect one episode of data for all environments
13: for all environment e do
14: while e is not done do
15: a

(e)
t ← SMP(s(e)t )

16: s
(e)
t+1, r(e)t , done(e) ← simulate(e, a(e)t )

17: Add (s(e)t , s(e)t+1, a(e)t , r(e)t , done(e)) to rb(e)

18: end while
19: end for
20: // train SMP for each environment one by one
21: for all environment e do
22: SMP← trainWithTD3(SMP, rb(e))
23: end for
24: end while

As shown in Figure 1, both the leaves’ states and the ac-
tions are more correlated with the closer messages passed
to them, demonstrating that messages are indeed conveying
meaningful contextual information for locomotion.

A.4. Sanity Check Experiment

We perform a sanity check on the single-agent environment
to see if a modular policy can learn as well as a monolithic
one based on the message passing formulation discussed
in Section 3 in the main paper. It can be seen from Figure

Algorithm 2 Both-way Shared Modular Policies (SMP)

1: Notation Summary:
2: NNbu: bottom-up module parameterized by θ1
3: NNtd: top-down module parameterized by θ2
4: si: local states of limb i
5: ai: local action of limb i
6: mi→p(i): message passed from limb i to the parent of i
7: mp(i)→i: message passed from the parent of limb i to i
8: {mc→i}c∈C(i): the set of all messages passed from the

children of limb i to i
9: {mi→c}c∈C(i): the set of different messages passed

from limb i to each of its children
10: Input: environment e and all limbs’ states {si}ki=1

11: Output: actions for all limbs of that agent {ai}ki=1

12: // get agent limbs in topological order (root to leaf)
13: nodeList← topologicalOrdering(e)
14: // dynamically change the policy’s graph structure to

match that of the agent
15: SMP← changeGraph(SMP, nodeList)
16: // bottom-up message passing (leaf to root)
17: for node i in reversed(nodeList) do
18: if i is leaf then
19: mi→p(i) ← NNbu(si, ~0)
20: else
21: mi→p(i) ← NNbu(si, {mc→i}c∈C(i))
22: end if
23: end for
24: // top-down message passing (root to leaf)
25: for node i in nodeList do
26: if i is root then
27: ai, {mi→c}c∈C(i) ← NNtd(mi→p(i), ~0)
28: else
29: ai, {mi→c}c∈C(i) ← NNtd(mi→p(i), mp(i)→i)
30: end if
31: end for
32: return {ai}ki=1



One Policy to Control Them All

3 in the main paper that good coordination between limbs
is of the utmost importance for control because under the
no message setting, all limbs act as independent agents and
cannot coordinate with each other and thus cannot learn
anything meaningful. This shows that a modular policy is
certainly at a disadvantage when only trained and tested
on a single morphology against a monolithic policy since
the latter is a much easier optimization problem and does
not need to learn to generate messages just to coordinate
limbs. In contrast, a modular policy has to learn message
passing as well as the controller to generate meaningful be-
haviors. Despite the challenges, we observe that, as shown
in Figure 2, the Shared Modular Policies with both-way
message-passing can achieve comparable performance to a
monolithic baseline in all experiments.

A.5. Pseudo-Code for Shared Modular Policies

We provide the pseudo-code for training Shared Modular
Policies with both-way message passing. Algorithm 1 dis-
cusses the joint setup of sharing policies across motors of all
agents, and Algorithm 2 discusses the end-to-end training.

References
Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,

M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017. 1

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. ICML,
2018. 1

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. ICLR, 2015. 1

Polosukhin, I. and Zavershynskyi, M. nearai/torchfold:
v0.1.0, Jun 2018. URL https://doi.org/10.
5281/zenodo.1299387. 1

https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.5281/zenodo.1299387
https://doi.org/10.5281/zenodo.1299387

