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A. Proofs
A.1. Proof of Prop. 1.

Proof of Prop. 1a. As D increases,Rp(D) is minimized over a larger set, soRp(D) is non-increasing function of D.

The distortion Eq(x,z)[d(x, f(z))] is a linear function of the channel conditional distribution q(z|x). The mutual in-
formation is a convex function of q(z|x). The KL(q(z)‖p(z)) is also convex function of q(z), which itself is a lin-
ear function of q(z|x). Thus KL(q(z|x)‖p(z)) is a convex function of q(z|x). Suppose for the distortions D1 and
D2, q1(z|x) and q2(z|x) achieve the optimal rates in Eq. 6 respectively. Suppose the conditional qλ(z|x) is defined
as qλ(z|x) = λq1(z|x) + (1 − λ)q2(z|x). The KL(q(z|x)‖p(z)) objective that the conditional qλ(z|x) achieves is
Iλ(z;x) + KL(qλ(z)‖p(z)), and the distortion Dλ that this conditional achieves is Dλ = λD1 + (1 − λ)D2. Now
we have

Rp(Dλ) ≤ Iλ(z;x) + KL(qλ(z)‖p(z)) (19)
≤ λI1(z;x) + λKL(q1(z)‖p(z)) + (1− λ)I2(z;x) + (1− λ)KL(q2(z)‖p(z)) (20)
= λRp(D1) + (1− λ)Rp(D2) (21)

which proves the convexity ofRp(D).

Alternative Proof of Prop. 1a. We know that Epd(x)KL(q(z|x)‖p(z)) is a convex function of q(z|x), and
Eq(x,z)[d(x, f(z))] is a linear and thus convex function of q(z|x). As the result, the following optimization problem is
a convex optimization problem.

min
q(z|x)

Epd(x)KL(q(z|x)‖p(z)) s.t. Eq(x,z)[d(x, f(z))] ≤ 0. (22)

The rate distortion function Rp(D) is the perturbation function of the convex optimization problem of Eq. 22. The con-
vexity of Rp(D) follows from the fact that the perturbation function of any convex optimization problem is a convex
function (Boyd & Vandenberghe, 2004).

Proof of Prop. 1b. We have

min
p(z)
Rp(D) = min

p(z)
min

q(z|x):E[d(x,f(z))]≤D
I(x; z) + KL(q(z)‖p(z)) (23)

= min
q(z|x):E[d(x,f(z))]≤D

min
p(z)
I(x; z) + KL(q(z)‖p(z)) (24)

= min
q(z|x):E[d(x,f(z))]≤D

I(x; z) (25)

= R(D). (26)

where in Eq. 24, we have used the fact that for any function f(x, y), we have

min
x

min
y
f(x, y) = min

y
min
x
f(x, y) = min

x,y
f(x, y), (27)
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and in Eq. 25, we have used the fact that KL(q(z)‖p(z)) is minimized when p(z) = q(z).

Proof of Prop. 1c. In Prop. 1a, we showed that KL(q(z|x)‖p(z)) is a convex function of q(z|x), and that the distortion
is a linear function of q(z|x). So the summation of them in Eq. 10 will be a convex function of q(z|x). The unique global
optimum of this convex optimization can be found by rewriting Eq. 10 as

KL(q(z|x)‖p(z)) + βEq(z|x)[d(x, f(z))] = KL
(
q(z|x)‖ 1

Z(x)
p(z) exp(−βd(x, f(z)))

)
− logZβ(x) (28)

where Zβ(x) =
∫
p(z) exp(−βd(x, f(z)))dz. The minimum of Eq. 28 is obtained when the KL divergence is zero. Thus

the optimal channel conditional is

q∗β(z|x) =
1

Zβ(x)
p(z) exp(−βd(x, f(z))). (29)

A.2. Proof of Prop. 2.

Proof of Prop. 2a. R(D) ≤ Rp(D) was proved in Prop. 1b. To prove the first inequality, note that the summation of rate
and distortion is

Rp(D) +D = I(z;x) + Eq∗(x,z)[− log p(x|z)] (30)
= Hd + Eq∗(z)KL(q∗(x|z)‖p(x|z)) ≥ Hd. (31)

where q∗(x, z) is the optimal joint channel conditional, and q∗(z) and q∗(x|z) are its marginal and conditional. The
equality happens if there is a joint distribution q(x, z), whose conditional q(x|z) = p(x|z), and whose marginal over x is
pd(x). But note that such a joint distribution might not exist for an arbitrary p(x|z).

Proof of Prop. 2b. The proof can be easily obtained by using d(x, f(z)) = − log p(x|z) in Prop. 1c.

Proof of Prop. 2c. Based on Prop. 2b, at β = 1, we have

Z∗β(x) =

∫
p(z)p(x|z)dz = p(x). (32)

A.3. Proof of Prop. 3.

The set of pairs of
(
RAIS
k (x), DAIS

k (x)
)

are achievable variational rate distortion pairs (achieved by qAIS
k (z|x)). Thus, by

the definition of Rp(D), RAIS
p (D) falls in the achievable region of Rp(D) and, thus maintains an upper bound on it:

RAIS
p (D) ≥ Rp(D).

A.4. Proof of Prop. 4.

AIS has the property that for any step k of the algorithm, the set of chains up to step k, and the partial computation of their
weights, can be viewed as the result of a complete run of AIS with target distribution q∗k(z|x). Hence, we assume without
loss of generality that we are looking at a complete run of AIS (but our analysis applies to the intermediate distributions as
well).

Let qAIS
k (z|x) denote the distribution of final samples produced by AIS. More precisely, it is a distribution encoded by the

following procedure:

1. For each data point x, we run M independent AIS chains, numbered i = 1, . . . ,M . Let z′
i
k denotes the k-th state

of the i-th chain. The joint distribution of the forward pass up to the k-th state is denoted by qf (z′
i
1, . . . , z

′i
k|x). The

un-normalized joint distribution of the backward pass is denoted by

q̃b(z
′i
1, . . . , z

′i
k|x) = p(z′

i
k) exp(−βkd(x, f(z′

i
k)))qb(z

′i
1, . . . , z

′i
k−1|z′

i
k,x).

2. Compute the importance weights and normalized importance weights of each chain using

wik =
q̃b(z

′i
1, . . . , z

′i
k|x)

qf (z′
i
1, . . . , z

′i
k|x)

and w̃ik =
wik∑M
i=1 w

i
k

. (33)
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3. Select a chain index S with probability of w̃ik.

4. Assign the selected chain values to (z11, . . . , z
1
k):

(z11, . . . , z
1
k) = (z′

S
1 , . . . , z

′S
k ). (34)

5. Keep the unselected chain values and re-label them as (z2:M1 , . . . , z2:Mk ):

(z2:M1 , . . . , z2:Mk ) = (z′
−S
1 , . . . , z′

−S
k ). (35)

where −S denotes the set of all indices except the selected index S.

6. Return z = z1k.

More formally, the AIS distribution is

qAIS
k (z|x) = E∏M

i=1 qf (z
′i
1,...,z

′i
k|x)

[

M∑
i=1

w̃ikδ(z− z′
i
k)]. (36)

Using the AIS distribution qAIS
k (z|x) defined as above, we define the AIS distortion DAIS

k (x) and the AIS rate RAIS
k (x) =

KL(qAIS
k (z|x)‖p(z)) as follows:

DAIS
k (x) = EqAIS

k (z|x)[d(x, f(z))] (37)

RAIS
k (x) = KL(qAIS

k (z|x)‖p(z)). (38)

In order to estimate RAIS
k (x) and DAIS

k (x), we define

D̂AIS
k (x) =

M∑
i=1

w̃ikd(x, f(z
′i
k)), (39)

ẐAIS
k (x) =

1

M

M∑
i=1

wik, (40)

R̂AIS
k (x) = − log ẐAIS

k (x)− βkD̂AIS
k (x). (41)

We would like to prove that

E∏M
i=1 qf (z

′i
1,...,z

′i
k|x)

[D̂AIS
k (x)] = DAIS

k (x), (42)

E∏M
i=1 qf (z

′i
1,...,z

′i
k|x)

[R̂AIS
k (x)] ≥ RAIS

k (x). (43)

The proof of Eq. 42 is straightforward:

DAIS
k (x) = EqAIS

k (z|x)[d(x, f(z))], (44)

=

∫
qAIS
k (z|x)d(x, f(z))dz, (45)

=

∫
E∏M

i=1 qf (z
′i
1,...,z

′i
k|x)

[

M∑
i=1

w̃ikδ(z− z′
i
k)]d(x, f(z))dz, (46)

= E∏M
i=1 qf (z

′i
1,...,z

′i
k|x)

M∑
i=1

w̃ik
[ ∫

δ(z− z′
i
k)d(x, f(z))dz

]
, (47)

= E∏M
i=1 qf (z

′i
1,...,z

′i
k|x)

M∑
i=1

w̃ikd(x, f(z
′i
k)), (48)

= E∏M
i=1 qf (z

′i
1,...,z

′i
k|x)

[D̂AIS
k (x)]. (49)



Appendix: Evaluating Lossy Compression Rates of Deep Generative Models

Eq. 44 shows that D̂AIS
k (x) is an unbiased estimate of DAIS

k (x). We also know log ẐAIS
k (x) obtained by Eq. 40 is the

estimate of the log partition function, and by the Jenson’s inequality lower bounds in expectation the true log partition
function: E[log ẐAIS

k (x)] ≤ logZk(x). After obtaining D̂AIS
k (x) and log ẐAIS

k (x), we use Eq. 41 to obtain R̂AIS
k (x). Now,

it remains to prove Eq. 43, which states that R̂AIS
k (x) upper bounds the AIS rate term RAIS

k (x) in expectation.

Let qAIS
k (z1:M1 , . . . , z1:Mk |x) denote the joint AIS distribution over all states of {z1:M1 , . . . , z1:Mk }, defined in Eq. 34 and

Eq. 35. It can be shown that (see Domke & Sheldon (2018))

qAIS
k (z1:M1 , . . . , z1:Mk |x) =

q̃b(z
1
1, . . . , z

1
k|x)

∏M
i=2 qf (z

i
1, . . . , z

i
k|x)

ẐAIS
k (x)

(50)

=
p(z1k) exp(−βkd(x, f(z1k))) qb(z11, . . . , z1k−1|z1k,x)

∏M
i=2 qf (z

i
1, . . . , z

i
k|x)

ẐAIS
k (x)

(51)

In order to simplify notation, suppose z1k is denoted by z, and all the other variables {z1:M1 , . . . , z1:Mk−1, z
2:M
k } are denoted

by V. Using this notation, we define p(V|z,x) and qAIS
k (z,V|x) as follows:

p(V|z,x) := qb(z
1
1, . . . , z

1
k−1|z1k,x)

M∏
i=2

qf (z
i
1, . . . , z

i
k|x), (52)

qAIS
k (z,V|x) := qAIS

k (z1:M1 , . . . , z1:Mk |x) (53)

Using the above notation, Eq. 51 can be re-written as

ẐAIS
k (x) =

p(z) exp(−βkd(x, f(z))) p(V|z,x)
qAIS
k (z,V|x)

. (54)

Hence,
E[log ẐAIS

k (x)] = E[log p(z)− log qAIS
k (z,V|x) + log p(V|x, z)]− βkE[d(x, f(z))]

= −KL(qAIS
k (z,V|x)‖p(z)p(V|z,x))− βkE[d(x, f(z))]

≤ −KL(qAIS
k (z|x)‖p(z))− βkE[d(x, f(z))],

(55)

where the inequality follows from the monotonicity of KL divergence. Rearranging terms, we bound the rate:

RAIS
k (x) = KL(qAIS

k (z|x)‖p(z)) ≤ −E[log ẐAIS
k (x)]− βkE[d(x, f(z))] = E[R̂AIS

k (x)]. (56)

Eq. 56 shows that R̂AIS
k (x) upper bounds the AIS rate RAIS

k (x) in expectation. We also showed D̂AIS
k (x) is an unbiased

estimate of the AIS distortionDAIS
k (x). Hence, the estimated AIS rate distortion curve upper bounds the AIS rate distortion

curve in expectation: E[R̂AIS
p (D)] ≥ RAIS

p (D).

B. Validation of AIS experiments
B.1. Analytical Solution of the Variational Rate Distortion Optimization on the Linear VAE

We compared our AIS results with the analytical solution of the variational rate distortion optimization on a linear VAE
trained on MNIST as shown in Fig. 3.

In order to derive the analytical solution, we first find the optimal distribution q∗β(z|x) from Prop. 2b. For simplicity, we
assume a fixed identity covariance matrix I at the output of the conditional likelihood of the linear VAE decoder. In other
words, the decoder of the VAE is simply: x = Wz + b + ε, where x is the observation, z is the latent code vector, W is
the decoder weight matrix and b is the bias. The observation noise of the decoder is ε ∼ N (0, I). It’s easy to show that
the conditional likelihood raised to a power β is: p(x|z)β = N (x|Wz + b, 1

β I). Then, q∗β(z|x) = N (z|µβ ,Σβ), where

µβ = Eq∗β(z|x) [z] = Wᵀ(WWᵀ + β−1I)−1(x− b), (57)

Σβ = Covq∗β(z|x) [z] = I−Wᵀ(WWᵀ + β−1I)−1W. (58)



Appendix: Evaluating Lossy Compression Rates of Deep Generative Models

For numerical stability, we can further simplify the above by taking the SVD of W: Suppose we have W = UDVᵀ. We
can use the Woodbury Matrix Identity to the matrix inversion operation to obtain

µβ = VRβUᵀ(x− b), (59)

Σβ = VSβVᵀ, (60)

where Rβ is a diagonal matrix with the i-th diagonal entry being di
d2i+

1
β

and Sβ is a diagonal matrix with the i-th diagonal

entry being 1
βd2i+1

, where di is the i-th diagonal entry of D. The analytical solution for optimal rate is:

DKL(q
∗
β(z|x)||p(z)) = DKL(N (z|µβ ,Σβ)||N (z|0, I)) (61)

=
1

2

(
tr (Σβ) + (−µβ)T(−µβ)− k + ln

(
(detΣβ)

−1)) (62)

=
1

2

(
tr (Σβ) + (µβ)

T(µβ)− k − ln (detΣβ)
)

(63)

Where k is the dimension of the latent code z. With negative log-likelihood as the distortion metric, the analytically form
of distortion term is:

Eq∗β(z|x) [− log p(x|z)] =
∫ ∞
−∞
− log((2π)−k/2 exp

{
− 1

2
(x− (Wz + b))ᵀ(x− (Wz + b))

}
)q∗β(z|x)dz (64)

= −(log((2π)−k/2) + 1

2

∫ ∞
−∞

{
(x− (Wz + b))ᵀ(x− (Wz + b))

}
q∗β(z|x)dz (65)

=
k

2
log(2π) +

1

2
(x− b)ᵀ(x− b)− (Wµβ)

ᵀ(x− b) +
1

2
Eq∗β(z|x) [(Wz)ᵀ(Wz)] (66)

where Eq∗β(z|x) [(Wz)ᵀ(Wz)] can be obtained by change of variable: Let y = Wz, then:

Eq∗(y) [y] = Wµβ = U(I− Sβ)U
ᵀ(x− b) (67)

Covq∗(y) [y] = WΣβWᵀ = UDSβDUᵀ (68)
Eq∗β(z|x) [(Wz)ᵀ(Wz)] = Eq∗(y) [yᵀy] = Eq∗(y) [y]

ᵀ Eq∗(y) [y] + tr(Covq∗(y) [y]) (69)

B.2. The BDMC Gap

We evaluated the tightness of the AIS estimate by computing the BDMC gaps using the same AIS settings. Fig. 9, shows
the BDMC gaps at different compression rates for the VAE, GAN and AAE experiments on the MNIST dataset. The largest
BDMC gap for VAEs and AAEs was 0.537 nats, and the largest BDMC gap for GANs was 3.724 nats, showing that our
AIS upper bounds are tight.

C. Experimental Details
The code for reproducing all the experiments of this paper can be found at: https://github.com/huangsicong/rate distortion.

C.1. Datasets and Models

We used MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets in our experiments.

Real-Valued MNIST. For the VAE experiments on the real-valued MNIST dataset (Fig. 5a), we used the “VAE-50”
architecture described in (Wu et al., 2016), and only changed the code size in our experiments. The decoder variance is
a global parameter learned during the training. The network was trained for 1000 epochs with the learning rate of 0.0001
using the Adam optimizer (Kingma & Ba, 2014), and the checkpoint with the best validation loss was used for the rate
distortion evaluation.

https://github.com/huangsicong/rate_distortion
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Figure 9. The BDMC gaps annotated on estimated AIS Variational Rate Distortion curves of (a) VAEs, (b) GANs, and (c) AAEs.
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Figure 10. The variational rate distortion curves obtained by adaptively tuning the HMC parameters in the preliminary run, and pre-
loading the HMC parameters in the second formal run. ”rs” in the legend indicates the random seed used in the second run.

For the GAN experiments on MNIST (Fig. 4a), we used the “GAN-50” architecture described in (Wu et al., 2016). In order
to stabilize the training dynamic, we used the gradient penalty (GP) (Salimans et al., 2016). In our deep architectures, we
used code sizes of d ∈ {2, 5, 10, 100} and three hidden layers each having 1024 hidden units to obtain the following GAN
models: Deep-GAN2, Deep-GAN5, Deep-GAN10 and Deep-GAN100. The shallow GANs architectures are similar to the
deep architectures but with one layer of hidden units.

CIFAR-10. For the CIFAR-10 experiments (Fig. 4b), we experimented with different GAN models such as DCGAN (Rad-
ford et al., 2015), DCGAN with Gradient Penalty (GP-GAN) (Gulrajani et al., 2017), Spectral Normalization (SN-
GAN) (Miyato et al., 2018), and DCGAN with Binarized Representation Entropy Regularization (BRE-GAN) (Cao et al.,
2018). The numbers at the end of each GAN name in Fig. 4b indicate the code size.

C.2. AIS Settings for RD Curves

We evaluated each RD curve at 2000 points corresponding to different values of β, with N � 2000 intermediate distribu-
tions. We used a sigmoid temperature schedule as used in Wu et al. (2016). We used βmax ≈ 3000 for 100 dimensional
models (GAN100, VAE100, and AAE100), and used βmax ≈ 36000 for the rest of the models (2, 5 and 10 dimensional).
For the 2, 5 and 10 dimensional models, we used N = 60000 intermediate distributions. For 100 dimensional models, we
used N = 1600000 intermediate distributions in order to obtain small BDMC gaps. We used 20 leap frog steps for HMC,
40 independent chains, on a single batch of 50 images. On the MNIST dataset, we also tested with a larger batch size
of 500 MNIST images, but did not observe a significant difference in average rates and distortions. On a P100 GPU, for
MNIST, it takes 4-7 hours to compute an RD curve with N = 60000 intermediate distributions and takes around 7 days
for N = 160000 intermediate distributions. For all of the CIFAR experiments, we used the temperature schedule with
N = 60000 intermediate distributions, and each experiment takes about 7 days to complete.
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C.3. Adaptive Tuning of HMC Parameters.

While running the AIS chain, the parameters of the HMC kernel cannot be adaptively tuned, since it would violate the
Markovian property of the chain. So in order to be able to adaptively tune HMC parameters such as the number of leapfrog
steps and the step size, in all our experiments, we first do a preliminary run where the HMC parameters are adaptively
tuned to yield an average acceptance probability of 65% as suggested in Neal (2001). Then in the second “formal” run, we
pre-load and fix the HMC parameters found in the preliminary run, and start the chain with a new random seed to obtain
our final results. Interestingly, we observed that the difference in the RD curves obtained from the preliminary run and the
formal runs with different random seeds is very small, as shown in Fig. 10. This figure shows that the AIS with the HMC
kernel is robust against different choices of random seeds for approximating the RD curve of VAE10.

D. High-Rate vs. Low-Rate Reconstructions
In this section, we visualize the high-rate (β ≈ 3500) and low-rate (β = 0) reconstructions of the MNIST images for
VAEs, GANs and AAEs with different hidden code sizes. The qualitative results are shown in Fig. 11 and Fig. 12, which
is consistent with the quantitative results presented in the experiment section of the paper.
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(a) Original MNIST test images

(b) Low Rate VAE2 (c) Low Rate AAE2 (d) Low Rate GAN2

(e) Low Rate VAE10 (f) Low Rate AAE10 (g) Low Rate GAN10

(h) Low Rate VAE100 (i) Low Rate AAE100 (j) Low Rate GAN100

Figure 11. Low-rate reconstructions (β = 0) of VAEs, GANs and AAEs on MNIST.
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(a) Original MNIST test images.

(b) High Rate VAE2 (c) High Rate AAE2 (d) High Rate GAN2

(e) High Rate VAE10 (f) High Rate AAE10 (g) High Rate GAN10

(h) High Rate VAE100 (i) High Rate AAE100 (j) High Rate GAN100

Figure 12. High-rate reconstructions (βmax) of VAEs, GANs and AAEs on MNIST. βmax = 3333 for 100 dimensional models, and
βmax = 36000 for the 2 and 10 dimensional models.


