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Abstract
Many large-scale machine learning (ML) applications
need to perform decentralized learning over datasets
generated at different devices and locations. Such
datasets pose a significant challenge to decentralized
learning because their different contexts result in sig-
nificant data distribution skew across devices/locations.
In this paper, we take a step toward better understand-
ing this challenge by presenting a detailed experimen-
tal study of decentralized DNN training on a common
type of data skew: skewed distribution of data labels
across devices/locations. Our study shows that: (i)
skewed data labels are a fundamental and pervasive
problem for decentralized learning, causing signifi-
cant accuracy loss across many ML applications, DNN
models, training datasets, and decentralized learning
algorithms; (ii) the problem is particularly challeng-
ing for DNN models with batch normalization; and
(iii) the degree of data skew is a key determinant of
the difficulty of the problem. Based on these findings,
we present SkewScout, a system-level approach that
adapts the communication frequency of decentralized
learning algorithms to the (skew-induced) accuracy
loss between data partitions. We also show that group
normalization can recover much of the accuracy loss
of batch normalization.

1. Introduction
The advancement of machine learning (ML) is heavily de-
pendent on the processing of massive amounts of data. The
most timely and relevant data are often generated at dif-
ferent devices all over the world, e.g., data collected by
mobile phones and video cameras. Because of communi-
cation and privacy constraints, gathering all such data for
centralized processing can be impractical/infeasible. For
example, moving raw data across national borders is subject
to data sovereignty law constraints (e.g., GDPR (European
Parliament, 2016)). Similar constraints apply to centralizing
private data from phones.
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These constraints motivate the need for ML training over
widely distributed data (decentralized learning). For exam-
ple, geo-distributed learning (Hsieh et al., 2017) trains a
global ML model over data spread across geo-distributed
data centers. Similarly, federated learning (McMahan et al.,
2017) trains a centralized model over data from a large
number of mobile devices. Federated learning has been an
important topic both in academia (140+ papers in 2019) and
industry (500+ million installations on Android devices).

Key Challenges in Decentralized Learning. There are
two key challenges in decentralized learning. First, training
a model over decentralized data using traditional training
approaches (i.e., those designed for centralized data, often
using a bulk synchronous parallel (BSP) approach (Valiant,
1990)) requires massive amounts of communication. Doing
so drastically slows down the training process because the
communication is bottlenecked by the limited wide-area or
mobile network bandwidth (Hsieh et al., 2017; McMahan
et al., 2017). Second, decentralized data is typically gen-
erated at different contexts, which can lead to significant
differences in the distribution of data across data partitions.
For example, facial images collected by cameras would
reflect the demographics of each camera’s location, and
images of kangaroos can be collected only from cameras
in Australia or zoos. Unfortunately, existing decentralized
learning algorithms (e.g., (Hsieh et al., 2017; McMahan
et al., 2017; Smith et al., 2017; Lin et al., 2018; Tang et al.,
2018)) mostly focus on reducing communication, as they
either (i) assume the data partitions are independent and
identically distributed (IID) or (ii) conduct only very lim-
ited studies on non-IID data partitions. This leaves a key
question mostly unanswered: What happens to ML appli-
cations and decentralized learning algorithms when their
data partitions are not IID?

Our Goal and Key Findings. We aim to take a step to
further the understanding of the above key question. In this
work, we focus on a common type of non-IID data, widely
used in prior work (e.g., (McMahan et al., 2017; Tang et al.,
2018; Zhao et al., 2018)): skewed distribution of data labels
across devices/locations. Such skewed label partitions arise
frequently in the real world (see §2.2 for examples). Our
study covers various DNN applications, DNNs, training
datasets, decentralized learning algorithms, and degrees of
label skew. Our study reveals three key findings:
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• Training over skewed label partitions is a fundamental
and pervasive problem for decentralized learning. Three
decentralized learning algorithms (Hsieh et al., 2017;
McMahan et al., 2017; Lin et al., 2018) suffer from
major model quality loss when run to convergence on
skewed label partitions, across the applications, models,
and training datasets in our study.
• DNNs with batch normalization (Ioffe & Szegedy, 2015)

are particularly vulnerable to skewed label partitions,
suffering significant model quality loss even under BSP,
the most communication-heavy approach.
• The degree of skew is a key determinant of the difficulty

level of the problem.

These findings reveal that non-IID data is an important yet
heavily understudied challenge in decentralized learning,
worthy of extensive study. To facilitate further study on
skewed label partitions, we release a real-world, geo-tagged
dataset of common mammals on Flickr (Flickr), which
is openly available at https://doi.org/10.5281/
zenodo.3676081 (§2.2).

Solutions. As two initial steps towards addressing the vast
challenge of non-IID data, we first show that among the
many proposed alternatives to batch normalization, group
normalization (Wu & He, 2018) avoids the skew-induced
accuracy loss of batch normalization under BSP. With this
fix, all models in our study achieve high accuracy on skewed
label partitions under (communication-heavy) BSP, and the
problem can be viewed as a trade-off between accuracy
and the amount of communication. Intuitively, there is a
tug-of-war among different data partitions, with each par-
tition pulling the model to reflect its data, and only close
communication, tuned to the skew-induced accuracy loss,
can save the overall model accuracy of the algorithms in
our study. Accordingly, we present SkewScout, which pe-
riodically sends local models to remote data partitions and
compares the model performance (e.g., validation accuracy)
between local and remote partitions. Based on the accu-
racy loss, SkewScout adjusts the amount of communication
among data partitions by controlling how relaxed the decen-
tralized learning algorithms should be, such as controlling
the threshold that determines which parameters are worthy
of communication. Thus, SkewScout can seamlessly inte-
grate with decentralized learning algorithms that provide
such communication control. Our experimental results show
that SkewScout’s adaptive approach automatically reduces
communication by 9.6× (under high skew) to 34.1× (under
mild skew) while retaining the accuracy of BSP.

Contributions. We make the following contributions. First,
we conduct a detailed empirical study on the problem of
skewed label partitions. We show that this problem is a fun-
damental and pervasive challenge for decentralized learning.
Second, we build and release a large real-world dataset to
facilitate future study on this challenge. Third, we make a

new observation showing that this challenge is particularly
problematic for DNNs with batch normalization, even under
BSP. We discuss the root cause of this problem and we find
that it can be addressed by using an alternative normaliza-
tion technique. Fourth, we show that the difficulty level
of this problem varies with the data skew. Finally, we de-
sign and evaluate SkewScout, a system-level approach that
adapts the communication frequency among data partitions
to reflect the skewness in the data, seeking to maximize
communication savings while preserving model accuracy.

2. Background and Motivation
We first provide background on popular decentralized learn-
ing algorithms (§2.1). We then highlight a real-world exam-
ple of skewed label partitions: geographical distribution of
mammal pictures on Flickr, among other examples (§2.2).

2.1. Decentralized Learning

In a decentralized learning setting, we aim to train an ML
model w based on all the training data samples (xi, yi) that
are generated and stored in one of the K partitions (denoted
as Pk). The goal of the training is to fit w to all data samples.
Typically, most decentralized learning algorithms assume
the data samples are independent and identically distributed
(IID) among different Pk, and we refer to such a setting as
the IID setting. Conversely, we call it the Non-IID setting if
such an assumption does not hold.

We evaluate three popular decentralized learning algorithms
to see how they perform on different applications over the
IID and Non-IID settings, using skewed label partitions.
These algorithms can be used with a variety of stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951) ap-
proaches, and aim to reduce communication, either among
data partitions (Pk) or between the data partitions and a
centralized server.

• Gaia (Hsieh et al., 2017), a geo-distributed learning
algorithm that dynamically eliminates insignificant com-
munication among data partitions. Each partition Pk
accumulates updates ∆wj to each model weight wj lo-
cally, and communicates ∆wj to all other data partitions
only when its relative magnitude exceeds a predefined
threshold (Algorithm 1 in Appendix A1).
• FederatedAveraging (McMahan et al., 2017), a

popular algorithm for federated learning that combines
local SGD on each client with model averaging. The
algorithm selects a subset of the partitions Pk in each
epoch, runs a pre-specified number of local SGD steps
on each selected Pk, and communicates the resulting
models back to a centralized server. The server averages
all these models and uses the averaged w as the starting

1All Appendices are in the supplemental material.
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point for the next epoch. (Algorithm 2 in Appendix A).
• DeepGradientCompression (Lin et al., 2018),

a popular algorithm that communicates only a pre-
specified amount of gradients each training step, with
various techniques to retain model quality such as mo-
mentum correction, gradient clipping (Pascanu et al.,
2013), momentum factor masking, and warm-up train-
ing (Goyal et al., 2017) (Algorithm 3 in Appendix A).

In addition to these decentralized learning algorithms, we
show the results of using BSP (Valiant, 1990) over the IID
and Non-IID settings. BSP is significantly slower than the
above algorithms because it does not seek to reduce com-
munication: all updates from each Pk are shared among all
data partitions after each training step. As noted earlier, for
decentralized learning, there is a natural tension between the
amount of communication and the quality of the resulting
model. Different data distributions among the Pk pull the
model in different directions—more communication helps
mitigate this “tug-of-war” so that the model well-represents
all the data. Thus, BSP, with its full communication at every
step, is used to establish a quality target for trained models.

2.2. Real-World Examples of Skewed Label Partitions

Non-IID data among devices/locations encompass many dif-
ferent forms. There can be skewed distribution of features
(probability P(x)), labels (probability P(y)), or the rela-
tionship between features and labels (e.g., varying P(y|x)
or P(x|y)) among devices/locations (Kairouz et al., 2019)
(see more discussion in Appendix K). In this work, we
focus on skewed distribution of labels (PPi(y) 6∼ PPj (y)
for different data partitions Pi and Pj), which is also the
setting considered by most prior work in this domain (e.g.,
(McMahan et al., 2017; Tang et al., 2018; Zhao et al., 2018)).

Skewed distribution of labels is common whenever data are
generated from heterogeneous users or locations. For ex-
ample, pedestrians and bicycles are more common in street
cameras than in highway cameras (Luo et al., 2019). In fa-
cial recognition tasks, most individuals appear in only a few
locations around the world. Certain types of clothing (mit-
tens, cowboy boots, kimonos, etc.) are nearly non-existent
in many parts of the world. Similarly, certain mammals (e.g.,
kangaroos) are far more likely to show up in certain loca-
tions (Australia). In the rest of this section, we highlight this
phenomenon with a study of the geographical distribution
of mammal pictures on Flickr (Flickr).

Dataset Creation. We start with the 48 classes in the mam-
mal subcategory of the 600 most common classes for bound-
ing boxes in Open Images V4 (Kuznetsova et al., 2018).
For each class label, we use Flickr’s API to search for rel-
evant pictures. Due to noise in Flickr search results (e.g.,
“jaguar” returns the mammal or the car), we clean the data
with a state-of-the-art DNN, PNAS (Liu et al., 2018), which

is pre-trained on ImageNet. As we can only clean classes
that exist in both Open Images and ImageNet, we end up
with 41 mammal classes and 736,005 total pictures. We
call the resulting dataset the Flickr-Mammal dataset (see
Appendix B for more details).

Geographical Analysis. We map each Flickr picture’s geo-
tag to its corresponding geographic regions based on the
M49 Standard (United Nation Statistics Division, 2019).
As we are mostly interested in the distribution of labels
(P(y)) among different regions, we normalize the number
of samples across region (non-normalized results are similar
(Appendix B)). Table 1 illustrates the top-5 classes among
first-level regions (continents) and their normalized share of
samples in the world.

Region Top 1 Top 2 Top 3 Top 4 Top 5

Africa zebra
(72%)

antelope
(71%)

lion
(68%)

cheetah
(62%)

hippopotamus
(59%)

Americas mule
(84%)

skunk
(82%)

armadillo
(73%)

harbor seal
(65%)

squirrel
(61%)

Asia panda
(64%)

hamster
(59%)

monkey
(58%)

camel
(51%)

red panda
(42%)

Europe lynx
(72%)

hedgehog
(56%)

sheep
(56%)

deer
(43%)

otter
(43%)

Oceania kangaroo
(92%)

koala
(92%)

whale
(44%)

sea lion
(34%)

alpaca
(32%)

Table 1. Top-5 mammals in each continent and their share of sam-
ples worldwide (e.g., 72% of zebra images are from Africa).

Skewed distribution of labels is a natural phenomenon.
As Table 1 shows, the top-5 mammals in each continent
constitute 32%–92% of the normalized sample share in
the world (compared to 20% if the distribution were IID).
As expected, the top mammals in each region reflect their
population share in the world (e.g., kangaroos/koalas in
Oceania and zebras/antelopes in Africa). Furthermore, there
is no overlap for the top-5 classes among different conti-
nents, which suggests drastically different label distribu-
tions (P(y)) among continents. We observe a similar phe-
nomenon when the analysis is done based on second-level
geographical regions (Appendix B). Our observations show
that in a decentralized learning setting, where such images
would be collected and stored in their native regions, the dis-
tribution of labels across partitions would be highly skewed.

3. Experimental Setup
Our study consists of three dimensions: (i) ML applica-
tions/models, (ii) decentralized learning algorithms, and
(iii) degree of data skew. We explore all three dimensions
with rigorous experimental methodologies. In particular,
we make sure the accuracy of our trained ML models on
IID data matches the reported accuracy in corresponding pa-
pers. All source code and settings are available at https:
//github.com/kevinhsieh/non_iid_dml.
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Applications. We evaluate different deep learning applica-
tions, DNN model structures, and training datasets:

• IMAGE CLASSIFICATION with four DNN models:
AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy
et al., 2015), LeNet (LeCun et al., 1998), and
ResNet (He et al., 2016). We use two datasets, CIFAR-
10 (Krizhevsky, 2009) and ImageNet (Russakovsky
et al., 2015). We use the default validation set of each of
the two datasets to quantify the validation accuracy as
our model quality metric. We use popular datasets in or-
der to compare model accuracy with existing work, and
we also report results with our Flickr-Mammal dataset.
• FACE RECOGNITION with the center-loss face model

(Wen et al., 2016) over the CASIA-WebFace (Yi et al.,
2014) dataset. We use verification accuracy on the LFW
dataset (Huang et al., 2007) as our model quality metric.

For all applications, we tune the training parameters (e.g.,
learning rate, minibatch size, number of epochs, etc.) such
that the baseline model (BSP in the IID setting) achieves
the model quality of the corresponding original paper. We
then use these training parameters in all other settings. We
further ensure that training/validation accuracy has stopped
improving by the end of all our experiments. Appendix C
lists all major training parameters in our study.

Non-IID Data Partitions. In addition to studying Flickr-
Mammal, we create non-IID data partitions by partitioning
datasets using the data labels, i.e., using image classes for
image classification and person identities for face recogni-
tion. We control the skewness by controlling the fraction
of data that are non-IID. For example, 20% non-IID indi-
cates 20% of the dataset is partitioned by labels, while the
remaining 80% is partitioned uniformly at random. §4 and
§5 focus on the 100% non-IID setting in which the entire
dataset is partitioned using labels, while §6 studies the effect
of varying the skewness. As our goal is to train a global
model, the model is tested on the entire validation set.

Hyper-Parameters Selection. The algorithms we study
provide the following hyper-parameters (see Appendix A
for details of these algorithms) to control the amount of
communication (and hence the training time):

• Gaia uses T0, the initial threshold to determine if an
update (∆wj) is significant. The significance threshold
decreases whenever the learning rate decreases.
• FederatedAveraging uses IterLocal to control

the number of local SGD steps on each selected Pk.
• DeepGradientCompression uses s to control the

sparsity of updates (update magnitudes in top s per-
centile are exchanged). Following the original pa-
per (Lin et al., 2018), s follows a warm-up schedule:
75%, 93.75%, 98.4375%, 99.6%, 99.9%. We use a
hyper-parameter Ewarm, the number of epochs for each
warm-up sparsity, to control the duration of the warm-up.

For example, if Ewarm = 4, s is 75% in epochs 1–4,
93.75% in epochs 5–8, and so on.

We select a hyper-parameter θ of each decentralized learning
algorithm (T0, IterLocal, Ewarm) so that (i) θ achieves the
same model quality as BSP in the IID setting and (ii) θ
achieves similar communication savings across the three
decentralized learning algorithms. We study the sensitivity
of our findings to the choice of θ in §4.4.

4. Non-IID Study: Results Overview
This paper seeks to answer the question of what happens to
ML applications, ML models, and decentralized learning al-
gorithms when their data label partitions are not IID. In this
section, we provide an overview of our findings, showing
that skewed label partitions cause major model quality loss,
across many applications, models, and algorithms.

4.1. Image Classification

We first present the model quality with different decentral-
ized learning algorithms in the IID and Non-IID settings
for IMAGE CLASSIFICATION using the CIFAR-10 dataset.
We use five partitions (K=5) in this evaluation, and we
discuss results with more partitions in Appendix F. As the
CIFAR-10 dataset consists of ten object classes, each data
partition has two object classes in the Non-IID setting. Fig-
ure 1 shows the results with four popular DNNs (AlexNet,
GoogLeNet, LeNet, and ResNet). (Convergence curves for
AlexNet and ResNet are shown in Appendix D.) According
to the hyper-parameter criteria in §3, we select T0 = 10%
for Gaia, IterLocal = 20 for FederatedAveraging,
and Ewarm = 8 for DeepGradientCompression.
We make two major observations.

1) Non-IID data is a pervasive problem. All three
decentralized learning algorithms lose significant model
quality for all four DNNs in the Non-IID setting. We
see that while these algorithms retain the validation ac-
curacy of BSP in the IID setting with 15×–20× com-
munication savings (agreeing with the results from the
original papers for these algorithms), they lose 3% to
74% validation accuracy in the Non-IID setting. Sim-
ply running these algorithms for more epochs would
not help because the training/validation accuracy has al-
ready stopped improving. Furthermore, the training com-
pletely diverges in some cases, such as DeepGradient-
Compression with GoogLeNet and ResNet20 (Deep-
GradientCompression with ResNet20 also diverges
in the IID setting). The pervasiveness of the problem is quite
surprising, as we have a diverse set of decentralized learning
algorithms and DNNs. This result shows that Non-IID data
is a pervasive and challenging problem for decentralized
learning, and this problem has been heavily understudied.
§4.3 discusses potential causes of this problem.
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Figure 1. Top-1 validation accuracy for IMAGE CLASSIFICATION over the CIFAR-10 dataset. A “-x%” label above a bar indicates the
accuracy loss relative to BSP in the IID setting.

2) Even BSP cannot completely solve this problem. We
see that even BSP, with its full communication at every step,
cannot retain model quality for some DNNs in the Non-IID
setting. The validation accuracy of ResNet20 in the Non-
IID setting is 39% lower than that in the IID setting. This
finding suggests that, for some DNNs, it may not be possible
to solve the Non-IID data challenge by increasing commu-
nication between data partitions. We find that this problem
exists not only in ResNet20, but also in all other DNNs we
study with batch normalization (ResNet10, BN-LeNet (Ioffe
& Szegedy, 2015) and Inception-v3 (Szegedy et al., 2016)).
We discuss this problem and potential solutions in §5.

The same trend in a larger dataset. We conduct a similar
study using the ImageNet dataset (Russakovsky et al., 2015)
(1,000 image classes). We observe the same problems in
the ImageNet dataset (e.g., an 8.1% to 61.7% accuracy loss
on ResNet10), whose number of classes is two orders of
magnitude more than the CIFAR-10 dataset. Appendix E
discusses the experiment in detail.

The same problem in real-world datasets. We run similar
experiments on our Flickr-Mammal dataset. We use five
partitions (K=5) in this experiment, one for each continent,
where each partition has as its local training data precisely
the images from its corresponding continent. Thus, we
capture the real-world non-IID setting present in Flickr-
Mammal. For comparison, we also consider an artificial
IID setting, in which all the Flickr-Mammal images are
randomly distributed among the five partitions. Figure 2
shows the results. We use GoogLeNet in this experiment,
and we select T0 = 10% for Gaia and IterLocal = 20
for FederatedAveraging based on the criteria in §3.
We observe the same problems for decentralized learning
algorithms on this real-world dataset. Specifically, Gaia
and FederatedAveraging are able to retain the model
quality in the (artificial) IID setting, but they lose 3.7% and
3.2% accuracy in the (real-world) Non-IID setting, respec-
tively. The loss is smaller compared to Figure 1 in part
because most data labels still exist in all data partitions in
the (real-world) Non-IID setting, which makes the problem
easier than the 100% non-IID setting. This loss arises even
with modest hyper-parameter settings, and is expected to
be larger with settings that more greatly reduce communi-
cation. We also show that the loss increases to 5.2% and

-3.7% -3.2%

60%
70%
80%
90%

100%

IID Data Non-IID Data

V
al

id
at

io
n

 
A

cc
u

ar
cy

BSP Gaia FederatedAveraging

Figure 2. GoogLeNet’s Top-1 validation accuracy for IMAGE

CLASSIFICATION over the Flickr-Mammal dataset, where 5% data
are randomly selected as the validation set. Non-IID Data is based
on real-world data distribution among continents, and IID Data
is the artificial setting in which images are randomly assigned to
partitions. Each “-x%” label indicates the accuracy loss relative to
BSP in the IID setting. Note: The y-axis starts at 60% accuracy.

5.5%, respectively, when Flickr-Mammal is partitioned at
the subcontinent level (Appendix F). This is significant as
the result suggests that skewed labels arising in real-world
settings are a major problem for decentralized learning.

4.2. Face Recognition

We further examine another popular ML application, FACE
RECOGNITION, to see if the Non-IID data problem is a chal-
lenge across different applications. We use two partitions in
this evaluation. According to the hyper-parameter criteria
in §3, we select T0=20% for Gaia and IterLocal=50 for
FederatedAveraging. It is worth noting that the veri-
fication process of FACE RECOGNITION is fundamentally
different from IMAGE CLASSIFICATION, as FACE RECOG-
NITION does not use the classification layer (and thus the
training labels) at all in the verification process. Instead, for
each pair of verification images, the DNN uses the distance
between the feature vectors of these images to determine
whether the two images are of the same person.

The same problem in different applications. Figure 3
shows the LFW verification accuracy. Again, the same prob-
lem happens: the decentralized learning algorithms work
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Figure 3. LFW verification accuracy for FACE RECOGNITION.
Labels show the accuracy loss relative to BSP in the IID setting.
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well in the IID setting, but they lose significant accuracy in
the Non-IID setting. In fact, both Gaia and Federated-
Averaging cannot converge to a useful model in the Non-
IID setting: their 50% accuracy is no better than random
guessing for the binary questions. This result is interesting
because the labels of the validation dataset are completely
different from the labels of the training dataset, but the val-
idation accuracy is still severely impacted by the non-IID
data label partitions in the training set.

4.3. The Problem of Decentralized Algorithms

The above results show that three diverse decentralized
learning algorithms all experience drastic accuracy losses
in the Non-IID setting. We find two reasons for the ac-
curacy loss. First, for algorithms such as Gaia that save
communication by allowing small model differences in each
partition Pk, the Non-IID setting results in completely dif-
ferent models among Pk. The small differences give lo-
cal models room for specializing to local data. Second,
for algorithms that save communication by synchroniz-
ing sparsely (e.g., FederatedAveraging and Deep-
GradientCompression), each Pk generates more di-
verged gradients in the Non-IID setting, which is not sur-
prising as each Pk sees vastly different training data. When
they are finally synchronized, they may have diverged so
much from the global model that they push the global model
the wrong direction. See Appendix G for further details.

4.4. Algorithm Hyper-Parameters

We also study the sensitivity of the Non-IID problem to
hyper-parameter choice among decentralized learning al-
gorithms. We find that even relatively conservative hyper-
parameter settings, which incur high communication costs,
still suffer major accuracy loss in the Non-IID setting. In
the IID setting, on the other hand, the same hyper-parameter
achieves similar high accuracy as BSP. In other words, the
the Non-IID problem is not specific to particular hyper-
parameter choices. Appendix H shows supporting results.

5. Batch Normalization: Problem and
Solution

5.1. Batch Normalization in the Non-IID Setting

How BatchNorm works. Batch normalization (Batch-
Norm) (Ioffe & Szegedy, 2015) is one of the most popular
mechanisms in deep learning (20,000+ citations as of Au-
gust 2020). BatchNorm aims to stabilize a DNN by normal-
izing the input distribution to zero mean and unit variance.
Because the global mean and variance are unattainable with
stochastic training, BatchNorm uses minibatch mean and
variance as an estimate of the global mean and variance.
Specifically, for each minibatch B, BatchNorm calculates
the minibatch mean µB and variance σB, and then uses µB

and σB to normalize each input in B. BatchNorm enables
faster and more stable training because it enables larger
learning rates (Bjorck et al., 2018; Santurkar et al., 2018).

BatchNorm and the Non-IID setting. While BatchNorm
is effective in practice, its dependence on minibatch mean
and variance (µB and σB) is known to be problematic in
certain settings. This is because BatchNorm uses µB and
σB for training, but it typically uses an estimated global
mean and variance (µ and σ) for validation. If there is a
major mismatch between these means and variances, the
validation accuracy is going to be low. This can happen if
the minibatch size is small or the sampling of minibatches
is not IID (Ioffe, 2017). The Non-IID setting in our study
exacerbates this problem because each data partition Pk
sees very different training samples. Hence, the µB and σB
in each partition can vary significantly across the partitions,
and the synchronized global model may not work for any set
of data. Worse still, we cannot simply increase the minibatch
size or do better minibatch sampling to solve this problem,
because in the Non-IID setting the underlying dataset in
each Pk does not represent the global dataset.

We validate if there is indeed major divergence in µB and σB
among different Pk in the Non-IID setting. We calculate the
divergence of µB as the difference between µB in different
Pk over the average µB (i.e., it is ||µB,P0

−µB,P1
||

||AVG(µB,P0
, µB,P1

)|| for
two partitions P0 and P1). We use the average µB over
every 100 minibatches in each Pk so that we get better
estimation. Figure 4 depicts the divergence of µB for each
channel of the first layer of BN-LeNet, which is constructed
by inserting BatchNorm to LeNet after each convolutional
layer. As we see, the divergence of µB is significantly larger
in the Non-IID setting (between 6% to 61%) than in the IID
setting (between 1% to 5%). We also observe the same trend
in minibatch variances σB (not shown). As this problem has
nothing to do with the amount of communication among Pk,
it explains why even BSP cannot retain model accuracy for
BatchNorm in the Non-IID setting.
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Figure 4. Minibatch mean divergence for the first layer of BN-
LeNet over CIFAR-10 using two Pk.

5.2. Alternatives to Batch Normalization

As the problem of BatchNorm in the Non-IID setting is due
to its dependence on minibatches, the natural solution is to
replace BatchNorm with alternative normalization mecha-
nisms that are not dependent on minibatches. Unfortunately,
most existing alternative normalization mechanisms (Weight
Normalization (Salimans & Kingma, 2016), Layer Nor-
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malization (Ba et al., 2016), Batch Renormalization (Ioffe,
2017)) have their own drawbacks (see Appendix I). Here,
we discuss a particular mechanism that may be used instead.

Group Normalization. Group Normalization (Group-
Norm) (Wu & He, 2018) is an alternative normalization
mechanism that aims to overcome the shortcomings of
BatchNorm and Layer Normalization (LayerNorm). Group-
Norm divides adjacent channels into groups of a prespecified
size Gsize, and computes the per-group mean and variance
for each input sample. Hence, GroupNorm does not depend
on minibatches for normalization (the shortcoming of Batch-
Norm), and GroupNorm does not assume all channels make
equal contributions (the shortcoming of LayerNorm).

We evaluate GroupNorm with BN-LeNet over CIFAR-10.
We carefully select Gsize = 2, which works best with this
DNN. Figure 5 shows the Top-1 validation accuracy with
GroupNorm and BatchNorm across decentralized learning
algorithms. We make two major observations.
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63.1%

78.9% 77.1% 79.7% 79.7%
67.1%

53.8% 50.2%
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Figure 5. Top-1 validation accuracy with BatchNorm and Group-
Norm for BN-LeNet over CIFAR-10 with 5 partitions.

First, GroupNorm successfully recovers the accuracy loss of
BatchNorm with BSP in the Non-IID setting. As the figure
shows, GroupNorm with BSP achieves 79.2% validation ac-
curacy in the Non-IID setting, which is as good as the accu-
racy in the IID setting. This shows GroupNorm can be used
as an alternative to BatchNorm to overcome the Non-IID
data challenge for BSP. Second, GroupNorm dramatically
helps the decentralized learning algorithms in the Non-IID
setting as well. With GroupNorm, there is 14.4%, 8.9% and
8.7% accuracy loss for Gaia, FederatedAveraging
and DeepGradientCompression, respectively. While
the accuracy losses are still significant, they are better than
their BatchNorm counterparts by an additive 10.7%, 19.8%
and 60.2%, respectively.

Discussion. While our study shows that GroupNorm can
be a good alternative to BatchNorm in the Non-IID set-
ting, it is worth noting that BatchNorm is widely adopted in
many DNNs. Hence, more study is needed to see if Group-
Norm can replace BatchNorm for different applications and
DNN models. As for other tasks such as recurrent (e.g.,
LSTM (Hochreiter & Schmidhuber, 1997)) and generative
(e.g., GAN (Goodfellow et al., 2014)) models, other normal-
ization techniques such as LayerNorm can be good options
because (i) they are shown to be effective in these tasks and
(ii) they are not dependent on minibatches.

6. Degree of Data Skew
In §4–§5, we studied a strict case of skewed label parti-
tions, where each label only exists in a single data partition,
exclusively (the one exception being our experiments with
Flickr-Mammal). While this case may be a reasonable ap-
proximation for some applications (e.g., for FACE RECOG-
NITION, a person’s face image may exist only in one data
partition), it could be an extreme case for other applications
(e.g., IMAGE CLASSIFICATION, as §2.2 shows). Here, we
study how the problem changes with the degree of skew by
controlling the fraction of the dataset that is non-IID (i.e.,
partitioned using labels, §3). Figure 6 shows the CIFAR-10
validation accuracy of GN-LeNet (our name for BN-LeNet
with GroupNorm replacing BatchNorm) in the 20%, 40%,
60% and 80% non-IID setting. We make two observations.

-1.3% -0.5% -1.1%-3.0% -1.5% -2.6%-4.8% -3.5% -6.5%
-5.3% -5.1% -8.5%

60%
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80%

BSP Gaia Federated
Averaging

Deep Gradient
Compression

20% Non-IID 40% Non-IID 60% Non-IID 80% Non-IID

Figure 6. Top-1 validation accuracy for GN-LeNet over CIFAR-
10, varying the degree of skew. Each “-x%” label indicates the
accuracy loss relative to BSP in the IID setting. Note: The y-axis
starts at 60% accuracy.

1) Partial non-IID data is also problematic. We see that
for all three decentralized learning algorithms, partial non-
IID data can still cause major accuracy loss. Even with a
small degree of non-IID data such as 40%, we still see 1.5%–
3.0% accuracy loss. Thus, the problem of non-IID data does
not occur only with exclusive label partitioning, and the
problem exists in the vast majority of practical settings.

2) Degree of skew often determines the difficulty level
of the problem. The model accuracy gets worse with
higher degrees of skew, and the accuracy gap between 80%
and 20% non-IID data can be as large as 7.4% (Deep-
GradientCompression). In general, we see that the
problem becomes more difficult with higher degree of skew.

7. Our Approach: SkewScout
To address the problem of skewed label partitions, we
introduce SkewScout, a general approach that enables
communication-efficient decentralized learning over arbi-
trarily skewed label partitions.

7.1. Overview of SkewScout

We design SkewScout as a general module that can be seam-
lessly integrated with different decentralized learning al-
gorithms, ML training frameworks, and ML applications.
Figure 7 provides an overview of the SkewScout design.
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Figure 7. Overview of SkewScout

1. Estimating the degree of skew. As §6 shows, knowing
the degree of skew is very useful to determine an appro-
priate solution. To learn this information, SkewScout
periodically moves the ML model from one data par-
tition (Pk) to another during training (model traveling,
¶ in Figure 7). SkewScout then evaluates how well a
model performs on a remote data partition by evaluating
the model accuracy with a subset of training data on the
remote node. As we already know the training accuracy
of this model in its original data partition, we can infer
the accuracy loss in the remote data partition (·).

2. Adaptive communication control (¸). Based on the
estimated accuracy loss, SkewScout controls the amount
of communication among data partitions to retain model
quality. SkewScout controls the amount of communi-
cation by automatically tuning the hyper-parameters of
the decentralized learning algorithm (§4.4). This tun-
ing process essentially solves an optimization problem
that aims to minimize communication among data par-
titions while keeping accuracy loss within a reasonable
threshold (further details below).

In essence, SkewScout handles non-IID data partitions by
controlling communication based on accuracy loss. Skew-
Scout is agnostic to the source of the loss, which may be
due to skewed label partitions or other forms of non-IID
data (Appendix K). As long as increasing communication
improves accuracy for the data skew, SkewScout should
be effective in retaining model quality while minimizing
communication.

7.2. Mechanism Details

We discuss the mechanisms of SkewScout in detail.

Accuracy Loss. The accuracy loss between data partitions
represents the degree of model divergence. As §4.3 dis-
cusses, ML models in different data partitions tend to spe-
cialize for their training data, especially when we use decen-
tralized learning algorithms to reduce communication.

We study accuracy loss under Gaia, for hyper-parameter
choices T0=2%, 5%, 10%, 20%, in the IID and non-IID set-
tings. We find that accuracy loss changes drastically from
the IID setting (0.4% on average) to the Non-IID setting
(39.6% on average), and that lower T0 results in smaller
accuracy loss in the non-IID setting. See Appendix J for
further details. Accordingly, we can use accuracy loss (i)
to estimate how much the models diverge from each other

(reflecting training data differences); and (ii) to serve as an
objective function for communication control. The com-
putation overhead to evaluate accuracy loss is quite small
because we run inference with only a small fraction of train-
ing data, and we only do so once in a while (we empirically
find that once every 500 mini-batches is frequent enough).

Communication Control. The goal of communication con-
trol is to retain model quality while minimizing communi-
cation among data partitions. We achieve this by solving an
optimization problem, which aims to minimize communica-
tion while keeping the accuracy loss below a small thresh-
old σAL so that we can control model divergence caused by
non-IID data partitions. We solve this optimization problem
periodically after we estimate the accuracy loss with model
traveling. Specifically, our target function is:

argmin
θ

(
λAL (max(0, AL(θ)− σAL)) + λC

C(θ)

CM

)
(1)

where AL(θ) is the accuracy loss based on the previously
selected hyper-parameter θ (we memoize the most recent
value for each θ that has been explored), C(θ) is the amount
of communication given θ, CM is the communication cost
for the whole ML model, and λAL, λC are given parameters
to determine the weights of accuracy loss and communi-
cation, respectively. We can employ various algorithms
with Equation 1 to select θ, such as hill climbing, stochas-
tic hill climbing (Russell & Norvig, 2020), and simulated
annealing (Van Laarhoven & Aarts, 1987).

7.3. Evaluation Results

We implement and evaluate SkewScout in a GPU parameter
server system (Cui et al., 2016) based on Caffe (Jia et al.,
2014). We evaluate several aforementioned auto-tuning
algorithms and we find that hill climbing provides the best
results. As our primary goal is to minimize accuracy loss,
we set λAL = 50 and λAC = 1. We set σAL = 5% to
tolerate an acceptable accuracy variation during training,
which does not reduce the final validation accuracy.

We compare SkewScout with two other baselines: (1)
BSP: the most communication-heavy approach that retains
model accuracy in all Non-IID settings; and (2) Oracle:
the ideal, yet unrealistic, approach that selects the most
communication-efficient θ that retains model accuracy, by
running all possible θ in each setting prior to measured ex-
ecution. Figure 8 shows the communication savings over
BSP for both SkewScout and Oracle when training with
Gaia. Note that all results achieve the same validation
accuracy as BSP. We make two observations.

First, SkewScout is much more effective than BSP in han-
dling Non-IID settings. Overall, SkewScout achieves 9.6–
34.1× communication savings over BSP in various Non-IID
settings without sacrificing model accuracy. As expected,
SkewScout saves more communication with less skewed
data because SkewScout can safely loosen communication.
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Figure 8. Communication savings over BSP with SkewScout and
Oracle for training with CIFAR-10. All results achieve the same
accuracy as BSP in the IID setting.

Second, SkewScout is not far from the ideal Oracle base-
line. Overall, SkewScout requires only 1.1–1.5× more com-
munication than Oracle to achieve the same model accu-
racy. SkewScout cannot match the communication savings
of Oracle because: (i) SkewScout does model traveling
periodically, which leads to some overhead; and (ii) for
some θ, high accuracy loss at the beginning can still lead to
a high accuracy model, which SkewScout cannot foresee.
As Oracle requires many runs in practice, we conclude
that SkewScout is an effective, realistic one-pass solution
for decentralized learning over non-IID data partitions.

8. Related Work
To our knowledge, this is the first study to show that skewed
label partitions across devices/locations is a fundamental
and pervasive problem for decentralized learning. Our study
investigates various aspects of this problem, such as a real-
world dataset, decentralized learning algorithms, batch nor-
malization, and data skew, as well as presenting our Skew-
Scout approach. Here, we discuss related work.

Large-scale systems for centralized learning. There are
many large-scale ML systems that aim to enable efficient
ML training over centralized datasets using communication-
efficient designs, such as relaxing synchronization require-
ments (Recht et al., 2011; Ho et al., 2013; Goyal et al.,
2017) or sending fewer updates to parameter servers (Li
et al., 2014a;b). These works assume the training data are
centralized so they can be easily partitioned among the ma-
chines performing the training in an IID manner (e.g., by
random shuffling). Hence, they are neither designed for nor
validated on non-IID data partitions.

Decentralized learning. Recent prior work proposes
communication-efficient algorithms (e.g., (Hsieh et al.,
2017; McMahan et al., 2017; Shokri & Shmatikov, 2015;
Lin et al., 2018; Tang et al., 2018)) for ML training over
decentralized datasets. However, as our study shows, these
decentralized learning algorithms lose significant model
accuracy in the Non-IID setting (§4). Some recent work
studies the problem of non-IID data partitions. For exam-
ple, instead of training a global model to fit non-IID data
partitions, federated multi-task learning (Smith et al., 2017)
trains local models for each data partition while leverag-
ing other data partitions to improve model accuracy. How-
ever, this approach sidesteps the problem for global mod-

els, which are essential when a local model is unavailable
(e.g., a brand new partition without training data) or ineffec-
tive (e.g., a partition with too few training examples for a
class). Several recent works show significant accuracy loss
for FederatedAveraging over non-IID data, and some
propose algorithms to improve FederatedAveraging
over non-IID data (Zhao et al., 2018; Li et al., 2019; Shoham
et al., 2019; Karimireddy et al., 2019; Liang et al., 2019;
Li et al., 2020a; Wang et al., 2020; Khaled et al., 2020).
While the result of these works aligns with our observations,
our study (i) broadens the problem scope to a variety of
decentralized learning algorithms, ML applications, DNN
models, and datasets, (ii) explores the problem of batch
normalization and possible solutions, and (iii) designs and
evaluates SkewScout, which can also complement the afore-
mentioned algorithms by controlling their hyper-parameters
over arbitrarily skewed data partitions.

Non-IID dataset. Recent work offers non-IID datasets
to facilitate the study of federated learning. For example,
LEAF (Caldas et al., 2018) provides datasets that are par-
titioned in various ways. Luo et al. release 900 images
collected from cameras in different locations, and they show
severe skewed label distribution across cameras (Luo et al.,
2019). Our study on geo-tagged mammals on Flickr shows
the same problem at a much larger scale, and our dataset
broadens the scope to include geo-distributed learning.

9. Conclusion
As most timely and relevant ML data are generated at dif-
ferent physical locations, and often infeasible/impractical
to collect centrally, decentralized learning provides an im-
portant path for ML applications to leverage such data.
However, decentralized data is often generated at differ-
ent contexts, which leads to a heavily understudied problem:
non-IID training data partitions. We conduct a detailed
empirical study of this problem for skewed label partitions,
revealing three key findings. First, we show that training
over skewed label partitions is a fundamental and perva-
sive problem for decentralized learning, as all decentralized
learning algorithms in our study suffer major accuracy loss.
Second, we find that DNNs with batch normalization are
particularly vulnerable in the Non-IID setting, with even
the most communication-heavy approach being unable to
retain model quality. We further discuss the cause and a
potential solution to this problem. Third, we show that the
difficulty level of this problem varies greatly with the degree
of skew. Based on these findings, we present SkewScout,
a general approach to minimizing communication while
retaining model quality even for non-IID data. We hope
that the findings and insights in this paper, as well as our
open source code and dataset, will spur further research into
the fundamental and important problem of non-IID data in
decentralized learning.
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