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Abstract
There is a growing literature on the relationship
between wide neural networks (NNs) and Gaus-
sian processes (GPs), identifying an equivalence
between the two for a variety of NN architec-
tures. This equivalence enables, for instance, ac-
curate approximation of the behaviour of wide
Bayesian NNs without MCMC or variational ap-
proximations, or characterisation of the distribu-
tion of randomly initialised wide NNs optimised
by gradient descent without ever running an op-
timiser. We provide a rigorous extension of these
results to NNs with attention layers, showing that
unlike single-head attention which induces non-
Gaussian behaviour, multi-head attention archi-
tectures behave as GPs as the number of heads
tends to infinity. We discuss the effects of po-
sitional encodings and layer normalisation, and
propose modifications of the attention mechanism
which improve performance of both finite and in-
finitely wide NNs. We evaluate attention kernels
empirically, leading to a moderate improvement
upon the previous state-of-the-art on CIFAR-10
for GPs without trainable kernels and advanced
data preprocessing. Finally, we introduce new fea-
tures to the Neural Tangents library (Novak et al.,
2020) allowing applications of NNGP/NTK mod-
els, with and without attention, to variable-length
sequences, with an example on the IMDb dataset.

1. Introduction
One of the currently most active research directions in the-
oretical deep learning is the study of NN behaviour as the
number of parameters in each layer goes to infinity (e.g.,
Matthews et al., 2018; Lee et al., 2018; Garriga-Alonso
et al., 2019; Novak et al., 2019; Li & Liang, 2018; Allen-
Zhu et al., 2019; Du et al., 2019; Arora et al., 2019; Yang,
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2019b). Building upon these efforts, we study the asymp-
totic behaviour of NNs with attention layers (Bahdanau
et al., 2015; Vaswani et al., 2017) and derive the correspond-
ing neural network Gaussian proccess (NNGP) and Neural
Tangent kernels (NTK, Jacot et al., 2018; Lee et al., 2019).

Beyond their recent empirical successes (e.g., Radford et al.,
2019; Devlin et al., 2019), attention layers are also interest-
ing from the theoretical perspective as the standard proof
techniques used to establish asymptotic Gaussianity of the
input-to-output mappings represented by wide NNs (Mat-
thews et al., 2018; Yang, 2019b) cannot be applied.

To understand why, consider the following simplified at-
tention layer model: let x ∈ Rds×d′ be the input with ds

spatial and d′ embedding dimensions (by spatial, we mean,
e.g., the number of tokens in a string or pixels in an image),
WQ,WK ,WV ∈ Rd′×d be weight matrices, and define
queries Q(x) := xWQ, keys K(x) := xWK , and values
V (x) := xWV as usual. The attention layer output is then

f(x) := ζ

(
Q(x)K(x)>√

d

)
V (x) = ζ(G(x))V (x) , (1)

where ζ is the row-wise softmax function.

Now observe that dimG(x) = ds × ds where the spatial
dimension ds stays finite even as the number of parameters—
here proportional to d—goes to infinity. As we will show
rigorously in Section 3, this fact combined with the d−1/2

scaling causes each column of f(x) to be a linear com-
bination of the same stochastic matrix ζ(G(x)), and thus
statistically dependent even in the infinite width limit.

Since the exchangeability based arguments (Matthews et al.,
2018; Garriga-Alonso et al., 2019) require that certain
moment statistics of f(x) asymptotically behave as if its
columns were independent (see condition b in lemma 10,
Matthews et al., 2018), they do not extend to attention layers
in a straightforward manner. Similarly, the proofs based on
Gaussian conditioning (Novak et al., 2019; Yang, 2019b)
require that given the input x, the conditional covariance of
each column of f(x) converges (in probability) to the same
deterministic positive semidefinite matrix (see propositions
5.5 and G.4 in Yang, 2019b) which will not be the case due
to the aforementioned stochasticity of ζ(G(x)).

Among the many interesting contributions in (Yang, 2019b),
the author proposes to resolve the above issue by replacing
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Figure 1. Distribution of an attention layer output for single-
head (left) and 100-head (right) architecture at initialisation under
the d−1/2 scaling when d is large (1000). Red line is the Gaussian
density with sample mean and variance substituted for its paramet-
ers. Unlike multi-head, the empirical distribution of single-head
attention significantly deviates from Gaussian despite d� 0.

the d−1/2 scaling in Equation (1) by d−1 which does enable
application of the Gaussian conditioning type arguments.
However, it also forces the attention layer to only perform
computation similar to average pooling in the infinite width
limit, and reduces the overall expressivity of attention even
if suitable modifications preventing the pooling behaviour
are considered (see Section 3.2).

We address the above issues by modifying the exchangabil-
ity based technique and provide a rigorous characterisation
of the infinite width behaviour under both the d−1/2 and d−1

scalings. We also show that positional encodings (Gehring
et al., 2017; Vaswani et al., 2017) can improve empirical
performance even in the infinite width limit, and propose
modifications to the attention mechanism which results in
further gains for both finite and infinite NNs. In experiments,
we moderately improve upon the previous state-of-the-art
result on CIFAR-10 for GP models without data augment-
ation and advanced preprocessing (cf. Yu et al., 2020). Fi-
nally, since attention is often applied to text datasets, we
release code allowing applications of NNGP/NTK models
to variable-length sequences, including an example on the
IMDb reviews dataset.

2. Definitions and notation
Neural networks: f `(x) denotes the output of `th layer
for an input x ∈ X ⊂ Rds×d0 , and g`(x) := φ(f `(x))
the corresponding post-nonlinearity where φ : R → R is
the activation function applied elementwise (for conveni-
ence, we set g0(x) = x). We assume the network hasL ∈ N
hidden layers, making fL+1(x) the output, and that the in-
put set X is countable. As we will be examining behaviour
of sequences of increasingly wide NNs, the variables cor-
responding to the nth network are going to be denoted by
a subscript n (e.g., f `n(x) is the output of `th layer of the nth

network in the sequence evaluated at x). We also use

f `n,·j := {f `n,ij(x) : x ∈ X , i ∈ [ds]}
f `n := {f `n,·j : j ∈ N} ,

with [ds] = {1, 2, . . . , ds}. To reduce clutter, we omit the `
index where it is clear from the context or unimportant.

Shapes: f `n(x), g`n(x) ∈ Rds×d`n with ds, d`n ∈ N respect-
ively the spatial and embedding dimensions. If there are
multiple spatial dimensions, such as height and width for
images, we assume these have been flattened into a single
dimension. Finally, we will allow the row space dimen-
sion of W `,Q

n ,W `,K
n ∈ Rd`−1

n ×d`,Gn to differ from that of
W `,V
n ∈ Rd`−1

n ×d`n , leading to the modified definition

G`n(x) =
Q`n(x)K`

n(x)>√
d`,Gn

(2)

Multi-head attention: Equation (1) describes a vanilla ver-
sion of a single-head attention layer. Later in this paper,
we examine the multi-head attention alternative in which
the output f `n(x) is computed as

f `n(x) =
[
f `1n (x), . . . , f

`d`,Hn
n (x)

]
W `,O
n , (3)

i.e., by stacking the outputs of d`,Hn ∈ N independently
parametrised heads into a ds×d`,Hn d`n matrix and projecting
back into ds× d`n by W `,O

n ∈ Rd`,Hn d`n×d
`
n . The embedding

dimension of each head d`,Vn can optionally differ from
d`n. To distinguish the weight matrices corresponding to
the individual heads, we will be using a superscript h, e.g.,
Q`hn (x) = g`−1

n (x)W `h,Q
n . Multi-head architectures were

popularised by (Vaswani et al., 2017) and are widely used
in the literature (for example Devlin et al., 2019; Yang et al.,
2019; Liu et al., 2019; Lee et al., 2020).

Weight distribution: As usual, we will assume Gaussian
initialisation of the weights, i.e., W `h,Q

n,ij ∼ N (0, σ2
Q/d

`−1
n ),

W `h,K
n,ij ∼ N (0, σ2

K/d
`−1
n ), W `h,V

n,ij ∼ N (0, σ2
V /d

`−1
n ),

and W `,O
n,ij ∼ N (0, σ2

O/(d
`,H
n d`n)), all i.i.d. over the i, j

and `, h indices for all n. The scaling of variance by in-
verse of the input dimension is standard and ensures that
the asymptotic variances do not diverge (Neal, 1996; LeCun
et al., 1998; He et al., 2015). Throughout Sections 3 and 4,
we assume all the σ2 parameters are equal to one, and only
state the results in full generality in the appendix.

NNGP/NTK: As discussed in the introduction, randomly
initialised NNs induce a distribution over the fL+1

n map-
pings. For a variety of architectures, this distribution con-
verges (weakly) to that of a GP as min`∈[L] d

`
n →∞, both

at initialisation (NNGP), and after continuous gradient des-
cent optimisation of the randomly initialised NN with re-
spect to a mean squared error loss (NTK). Both the NNGP
and NTK distributions are typically zero mean, and we use
κL+1 and ΘL+1 to denote their respective kernel functions.

These kernel functions tend to have a recursive structure
where each layer in the underlying NN architecture is asso-
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Table 1. Overview of the discussed kernels. The d column refers to the d−1 and d−1/2 scaling of the Q(x)K(x)>. (κ̃, Θ̃) denote the
input and (κ,Θ) the output NNGP and NTK kernels. NNGP and NTK columns are stated as updates for full ds × ds covariance blocks
unless the generic spatial dimension subscripts ab are used. To fit to page width, we use superscripts to denote dependence on inputs,
e.g., replacing κ̃ (x, x) by κ̃xx′ . 〈A,B〉F =

∑
ij AijBij is the Frobenius product of matrices A,B, with ‖A‖2F = 〈A,A〉. I denotes

interpolation, e.g., I ◦ κ̃ (x, x′) = ακ̃ (x, x′) + (1− α)R with fixed hyperparameters α ∈ [0, 1] and R (a generic covariance related to
initialisation of positional encodings); the special case R = I is denoted by II . ‡ is for optional operators (e.g., I‡ ◦ κ̃xx′ can be replaced
with κ̃xx′ ). WQ = WK initialisation assumed for all d−1, and ζ = identity for all d−1/2 kernels (see Sections 3.2 and 4.1 respectively).
See Sections 3 and 4 for derivations, and (Yang, 2019b) for the LAYERNORM kernel (stated here for ease of reference).

KERNEL d NNGP NTK

VANILLA
1 ζ(κ̃xx)κ̃xx

′
ζ(κ̃x

′x′ )> 2κxx
′

+ ζ(κ̃xx)Θ̃xx′ζ(κ̃x
′x′ )>

1
2

κ̃xx
′
∥∥∥κ̃xx′∥∥∥2

F
4κxx

′
ab + 〈κ̃xx′ , 2κ̃xx′ab Θ̃xx′ + Θ̃xx′

ab κ̃
xx′ 〉F

RANDOM
POSITIONAL
ENCODING

1 ζ(II ◦ κ̃xx)[II ◦ κ̃xx
′
]ζ(II ◦ κ̃x

′x′ )> 2κxx
′

+ ζ(II ◦ κ̃xx)[II ◦ Θ̃xx′ ]ζ(II ◦ κ̃x
′x′ )>

1
2

II ◦ κ̃xx
′
∥∥∥II ◦ κ̃xx′∥∥∥2

F
4κxx

′
ab + 〈II ◦ κ̃xx

′
, 2[II ◦ κ̃xx

′
ab ]II ◦ Θ̃xx′ + [II ◦ Θ̃xx′

ab ]II ◦ κ̃xx
′ 〉F

STRUCTURED
POSITIONAL
ENCODING

1 ζ(I ◦ κ̃xx)[I‡ ◦ κ̃xx′ ]ζ(I ◦ κ̃x′x′ )> 2κxx
′

+ ζ(I ◦ κ̃xx)[I‡ ◦ Θ̃xx′ ]ζ(I ◦ κ̃x′x′ )>

1
2

I ◦ κ̃xx′ 〈I‡ ◦ κ̃xx′ , I ◦ κ̃xx′ 〉F
4κxx

′
ab + 〈I‡ ◦ κ̃xx

′
, [I ◦ κ̃xx

′
ab ]I ◦ Θ̃xx′ + [I ◦ Θ̃xx′

ab ]I ◦ κ̃xx
′
〉F

+ 〈I ◦ κ̃xx
′
, [I ◦ κ̃xx

′
ab ]I‡ ◦ Θ̃xx′ 〉F

RESIDUAL – ακ̃xx
′

+ (1− α)Rκ̃xx
′
R> 2(1− α)κxx

′
+ αΘ̃xx′ + (1− α)RΘ̃xx′R>

LAYERNORM – κ̃xx
′

ab [κ̃xxaa κ̃
xx′
bb ]−1/2 Θ̃xx′

ab [Θ̃xx
aaΘ̃x′x′

bb ]−1/2

ciated with a mapping (κ`−1,Θ`−1) 7→ (κ`,Θ`) transform-
ing the NNGP and NTK kernels according to the layer’s
effect on the outputs in the infinite width limit. Since
nonlinearities are typically not treated as separate layers,
we use κ̃` and Θ̃` to denote the intermediate transforma-
tion (κ`−1,Θ`−1) 7→ (κ̃`, Θ̃`) they induce. We generally
assume every layer is followed by a nonlinearity, setting
(κ̃`, Θ̃`) = (κ`−1,Θ`−1) if none is used. In the next two
sections, we uncover the mappings (κ̃`, Θ̃`) 7→ (κ`,Θ`)
induced by various attention architectures.

3. Attention and Gaussian process behaviour
Throughout the rest of this paper, we restrict our focus to
increasingly wide NNs including at least one attention layer.
In particular, we consider sequences of NNs such that

lim
n→∞

min
`∈[L]

d`n =∞ , (4)

and the reader should thus interpret any statements involving
n→∞ as implicitly assuming Equation (4) holds.

Due to the space constraints, most of the technical discus-
sion including derivation of the NTK limit is relegated to
Appendix B. In this section, we only focus on the key step
in our proof which relies on an inductive argument adapted
from (Matthews et al., 2018). On a high level, the induction
is applied from ` = 1 to ` = L + 1, and establishes that
whenever f `−1

n converges in distribution to GP(0, κ`−1) at

initialisation, f `n also converges in distribution to GP(0, κ`)
as n→∞. Since this fact is known for dense, convolutional,
and average pooling layers, and almost all nonlinearities
(Matthews et al., 2018; Lee et al., 2018; Garriga-Alonso
et al., 2019; Novak et al., 2019; Yang, 2019b), it will be
sufficient to show the same for attention layers.

3.1. Infinite width limit under the d−1 scaling

As illustrated in Figure 1, use of the d−1/2 scaling within a
single-head architecture leads to a scale mixture behaviour
of the attention layer outputs as the number of parameters
goes to infinity. To obtain a Gaussian limit, Yang (2019b, ap-
pendix A) proposes to replace the definition in Equation (2)
by Gn(x) = (dGn )−1Qn(x)Kn(x)>, i.e., the use of d−1

scaling. The desired result then follows:
Theorem 1 (d−1 limit (Yang, 2019b)). Under the d−1 scal-
ing and the assumptions stated in (Yang, 2019b):

(I) For any (x, x′) ∈ X × X and a, b, i, j ∈ [ds], there
exist constants (ζ̄xai, ζ̄

x′

bj ) ∈ R × R such that

(ζ(Gn(x))ai, ζ(Gn(x′))bj)
P→ (ζ̄xai, ζ̄

x′

bj ) . (5)

(II) fn converges in distribution to f ∼ GP(0, κ) with f·k
and f·l independent for any k 6= l, and

κab (x, x′)=E[fa1(x)fb1(x′)]=

ds∑
i,j=1

κ̃ij (x, x′)ζ̄xaiζ̄
x′

bj .
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An analogous result also holds for multi-head attention ar-
chitectures which follows by the usual argument for fully
connected layers as long as either the number of embedding
dimensions per head or the number of heads goes to infinity.

3.2. Limitations of the d−1 scaling

While Theorem 1 is a good starting point, several issues have
to be resolved before using the attention kernel in practice.
Firstly, since WQ

n and WK
n are initialised independently,

the d−1 scaled inner products of keys and queries converges
to zero, and thus for any a, i and x, ζ̄xai = (ds)−1 by the
continuous mapping theorem. This issue was noted by Yang
in appendix A but not discussed further as the main focus
of the paper lies elsewhere. In any case, substituting (ds)−1

for all the ζ̄ coefficients will make κab (x, x′) = κij (x, x′)
for any a, b, i, j ∈ [ds], and in fact all of these entries will
be equivalent to output of a simple global average pooling
kernel (Novak et al., 2019, equation 17).1

Perhaps the simplest way to address the above issue is by
drawing the initial weights such that WQ

n = WK
n . This

will ensure that the key and query for a particular spatial
dimension will point in the same direction and thus the
attention weight corresponding to itself will be large with
high probability. The resulting formula for κab (x, x′) is

ds∑
i,j=1

κ̃ij (x, x′)ζ(κ̃ai (x, x))ζ(κ̃bj (x′, x′)) . (6)

Since Equation (6) resolves the issue of reduction to average
pooling, a natural question is whether swapping d−1/2 for
d−1 has any undesirable consequences in the infinite width
limit. As we will see, this question can be answered in
affirmative. In particular, we start by a proposition inspired
by (Cordonnier et al., 2020) in which the authors show
that an attention layer with a sufficient number of heads
is at least as expressive as a standard convolutional layer,
and that attention layers often empirically learn to perform
computation akin to convolution. In contrast, Proposition 2
proves that there is no initial distribution of WQ

n and WK
n

which would recover the convolutional kernel (Novak et al.,
2019; Garriga-Alonso et al., 2019) in the infinite width limit.

Proposition 2. There is no set of attention coefficients
{ζ̄xai ∈ R: a, i ∈ [ds], x ∈ X} such that for all positive
semidefinite kernels κ̃ simultaneously

ds∑
i,j=1

κ̃ij (x, x′)ζ̄xaiζ̄
x′

bj =

df∑
i=1

κ̃Na(i)Nb(i)
(x, x′)

1

df
,

where df is the dimension of the (flattened) convolutional
filter, Na, Nb ⊂ [ds] are the ordered subsets of pixels which

1In fact, the asymptotic distribution induced by such an atten-
tion layer followed by flatten and dense layers is the same as that
induced by global average pooling followed by a dense layer.
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Figure 2. Convergence (left) and validation accuracy (right)
plots for an empirical NNGP kernel estimated by Monte Carlo
on a 2K/4K train/validation subset of 8x8-downsampled CIFAR-
10, as the number weight samples averaged over (x-axis) and the
number of parameters (y-axis) grows. Architecture: Convolution +
ReLU, 2x Attention + ReLU, Flatten, Dense. For attention layers,
d`,Gn = #channels but d`,Hn = d`,Vn = b

√
#channelsc to reduce

the memory footprint. Details in Appendix A.1.2.

are used to compute the new values of pixels a and b, re-
spectively, and Na(i), Nb(i) are the ith pixels in Na, Nb.

In the next section, we will see that the convolutional kernel
can be recovered under the d−1/2 scaling (Proposition 4).
However, we need to establish convergence scaling first.

3.3. Infinite width limit under the d−1/2 scaling

As discussed in Section 1, single-head attention architec-
tures can exhibit non-Gaussian asymptotic behaviour under
the d−1/2 scaling. This is inconvenient for our purposes as
many modern NN architectures combine attention with fully
connected, convolutional, and other layer types, all of which
have Gaussian NNGP and NTK limits (e.g., Novak et al.,
2019; Garriga-Alonso et al., 2019; Yang, 2019b). This Gaus-
sianity simplifies derivation of the infinite width behaviour
of many architectures and allows for easy integration with
existing software libraries (Novak et al., 2020). Fortunately,
the output of an attention layer becomes asymptotically
Gaussian when the number of heads becomes large.
Theorem 3 (d−1/2 limit). Let ` ∈ {2, . . . , L+1}, and φ be
such that |φ(x)| ≤ c+m|x| for some c,m ∈ R+. Assume
f `−1
n converges in distribution to f `−1 ∼ GP(0, κ`−1),

such that f `−1
·j and f `−1

·k are independent for any j 6= k,
the variables {f `−1

n,·j : j ∈ N} are exchangeable over j.

Then as min {n, d`,Hn , d`,Gn } → ∞ :

(I) G`n = {G`hn (x) : x ∈ X , h ∈ N} converges in distribu-
tion to G` ∼ GP(0, κ`,G) with

E[G`hai (x)G`h
′

bj (x′)] = δh=h′ κ̃
`
ab (x, x′) κ̃`ij (x, x′) .

(II) f `n converges in distribution to f ` ∼ GP(0, κ`) with
f `·k and f `·l independent for any k 6= l, and

κ`ab (x, x′) = E[f `a1(x)f `b1(x′)] (7)

=

ds∑
i,j=1

κ̃`ij (x, x′)E[ζ(G`1(x))aiζ(G`1(x′))bj ] .
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We can now revisit our argument from the previous section,
and prove that unlike in Proposition 2, d−1/2 scaling ensures
a convolutional kernel can in principle be recovered.

Proposition 4. Under the d−1/2 scaling, there exists a dis-
tribution over G such that for any x, x′ and a, b, i, j

E[ζ(G(x))aiζ(G(x′))bj ]

=

{
1
df
, ∃k ∈ [d] s.t. i = Na(k) , j = Nb(k) ,

0 , otherwise.
(8)

4. Beyond the vanilla attention definition
Before progressing to empirical evaluation of infinitely wide
attention architectures, two practical considerations have
to be addressed: (i) the d−1/2 scaling induced kernel in
Equation (7) involves an analytically intractable integral
E[ζ(G`1(x))ζ(G`1(x′))]; (ii) incorporation of positional
encodings (Gehring et al., 2017; Vaswani et al., 2017).

4.1. Alternatives to softmax in attention networks

We propose to resolve the analytical intractability of the
E[ζ(G`1(x))ζ(G`1(x′))] in Equation (7) by substituting
functions other than softmax for ζ . In particular, we consider
two alternatives: (i) ζ(x) = ReLU(x), and (ii) ζ(x) = x,
both applied elementwise. Besides analytical tractability of
the expectation, our motivation for choosing (i) and (ii) is
that ReLU removes the normalisation while still enforcing
positivity of the attention weights, while the identity func-
tion allows the attention layer to learn an arbitrary linear
combination of the values without constraints.

To see if either is a sensible modification, we evaluated
performance of finite attention networks on CIFAR-10 for
different choices of ζ. Since softmax typically dampens the
marginal variance of attention layer outputs (variance of a
convex combination of random variables is upper bounded
by the maximum of the individual variances), and both
ReLU and identity can also significantly affect scale of the
outputs, we optionally add layer normalisation as is common
in attention architectures. We consider no normalisation
(none),2 normalisation applied after each head prior to
multiplication by W `,O

n (per head), and normalisation
applied to the output after W `,O

n (at output).

Figure 3 shows the results across varying hyperparameters
and random seeds, and Table 8 (Appendix A.1.3) reports ac-
curacies attained under optimal hyperparameter settings. As

2Despite the similarity between attention with ReLU or identity
for ζ and dense layers with cubic nonlinearities, which are known
to be hard to train, we found that layer normalisation was not
strictly necessary. We believe this is partly because we only used
a single attention layer, and partly because the weights for keys,
queries, and values are initialised independently which leads to
relatively better behaved distribution of gradients at initialisation.
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Figure 3. Comparison of ζ alternatives. Architecture: 4x Convo-
lution + ReLU, Attention, Flatten, Dense. The captured variability
is due to multiple random seeds, varying learning rate and network
width, illustrating robustness of the reported results. Softmax sig-
nificantly underperforms other ζ alternatives whenever attention is
followed by layer normalisation. Details in Appendix A.1.3.

you can see, both the replacement of softmax and addition of
layer normalisation significantly increases the performance
of the NN, with ζ(x) = x and at output normalisation
being the best across variety of hyperparameter choices.

In light of the above, we will restrict our attention to the
identity function alternative for ζ in the rest of the paper, and
contrast its performance with the standard softmax choice
where possible (finite NNs, and infinite attention NNs under
the d−1 scaling—see Theorem 1). Similarly, we will also
leverage the at output layer normalisation over the em-
bedding dimension in our experiments. As shown by Yang
(2019b, appendix A), layer normalisation does not prevent
Gaussianity of the infinite width limit (see Table 1 for the
associated NNGP and NTK kernel transformations).

4.2. Positional encodings

While substituting the identity function for ζ as suggested
in Section 4.1 would technically allow us to move on to the
experimental evaluation already, we found that positional
encodings are as important in the infinite width limit as
they are for the finite attention layers (Vaswani et al., 2017).
Since there are many possible variants of the positional
encoding implementation, we focus only on the major points
here and provide more detail in Appendix C.

In finite networks, some of the most common ways to im-
plement positional encodings is to modify the attention
layer input by either add-ing g`−1

n (x) + E`n or append-
ing [g`−1

n (x) , E`n] a matrix E`n which may be either fixed
or a trainable parameter. The purpose of E`n is to provide
the attention layer with information about the relationships
between individual spatial dimensions (e.g., position of a
particular pixel in an image, or of a token in a string).

4.2.1. EFFECT ON THE INFINITE WIDTH LIMIT

If we assume E`n is trainable and each of its columns is
initialised independently from N (0, R), R positive semi-
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definite, it can be shown that both in the add and append
case, the attention layer output converges (in distribution)
to a Gaussian infinite width limit (see Appendix C). The
corresponding kernels can be stated in terms of an operator
I which interpolates any given kernel κ with R

I : κ (x, x′) 7→ ακ (x, x′) + (1− α)R , (9)

where α ∈ [0, 1] is a hyperparameter,3 yielding the follow-
ing modification of the kernel induced by the d−1 scaling
and WQ = WK initialisation (Equation (6)):

κab (x, x′) = ζ̄xa [I ◦ κ̃ (x, x′)](ζ̄x
′

b )> , (10)

where ζ̄xa := ζ(I ◦ κ̃ (x, x))a· and similarly for ζ̄x
′

b . The
modification of the kernel induced by the d−1/2 scaling,
WQ,WK initialised independently, and ζ replaced by the
identity function (Equation (7)), then leads to:

κab (x, x′) = I ◦ κ̃ab (x, x′)
ds∑

i,j=1

[I ◦ κ̃ij (x, x′)]2. (11)

Several comments are in order. Firstly, the typical choice
of the initialisation covariance for E`n is R = ρI , ρ > 0.
This may be reasonable for the ζ̄xa = ζ(I ◦ κ̃ (x, x))a· in
Equation (10) when ζ is the softmax function as it increases
attention to the matching input spatial dimension, but does
not seem to have any “attention-like” interpretation in Equa-
tion (11) where the effect of applying I to κ̃ with R = ρI
is essentially analogous to that of just adding i.i.d. Gaussian
noise to each of the attention layer inputs.

Secondly, the right hand side of Equation (11) is just a scaled
version of the discussed I ◦ κ̃ kernel, with the scaling con-
stant disappearing when the attention layer is followed by
layer normalization (Table 1). Both of these call into ques-
tion whether the performance of the corresponding finite NN
architectures will translate to its infinite width equivalent.
We address some of these issues next.

4.2.2. STRUCTURED POSITIONAL ENCODINGS

As mentioned, the main purpose of positional encodings is
to inject structural information present in the inputs which
would be otherwise ignored by the attention layer. A natural
way to resolve the issues discussed in previous section is
thus to try to incorporate similar information directly into
the R covariance matrix. In particular, we propose

Rab = ρ

{
exp{−ϕ[rh(a, b)2 + rv(a, b)

2]} (image)
exp{−ϕ rs(a, b)2} (string)

(12)

3IfE`
n is append-ed, α = limn→∞ d

`−1
n /(d

`,E
n +d`−1

n ) with
d
`,E
n the row space dimension of E`

n. When E`
n is add-ed, we

replace g`−1
n (x) by

√
αg`−1

n (x) +
√

1− αE`
n so as to prevent

increase of the layer’s input variance (see Appendix C).

where ρ, ϕ > 0 are hyperparameters, rh(a, b) and rv(a, b)
are the absolute horizontal and vertical distances between
the pixels a and b divided by the image width and height
respectively, and rs(a, b) is the absolute distance between
the relative position of tokens a and b, e.g., if a is the 4th

token out of 7 in the first, and b is the 2nd token out of 9 in
the second string, then rs(a, b) = | 47 −

2
9 |.

To motivate the above definition, let us briefly revisit Equa-
tion (10). Intuitively, the d−1 kernel ζ̄xa [I ◦ κ̃ (x, x′)](ζ̄x

′

b )>

is a result of multiplying the asymptotically Gaussian val-
ues V ∼ GP(0, I ◦ κ̃) by matrices of row-wise stacked
ζ̄x = [ζ̄x1 ; . . . ; ζ̄xds ] vectors, e.g., f (x) = ζ̄xV (x),4 mean-
ing that the ζ̄ vectors serve the role of attention weights in
the infinite width limit. This in turn implies that the greater
the similarity under κ̃ab (x, x) the higher the attention paid
by a to b. Thus, if we want to inject information about the
relevance of neighbouring pixels in an image or tokens in
a string, we need to increase the corresponding entries of
I ◦ κ̃ (x, x) = ακ̃ (x, x′)+(1−α)R which can be achieved
exactly by substituting the R from Equation (12).

The above reasoning only provides the motivation for modi-
fying the attention weights using positional encodings but
not necessarily for modifying the asymptotic distribution of
the values V . Adding positional encodings only inside the ζ
is not uncommon (e.g., Shaw et al., 2018), and thus we will
also experiment with kernels induced by adding positional
encodings only to the inputs of Qn and Kn, leading to

κab (x, x′) = ζ̄xa κ̃ (x, x′)(ζ̄x
′

b )> , (13)

under the d−1 scaling (cf. Equation (10)), and

κab (x, x′) = I ◦ κ̃ab (x, x′)

ds∑
i,j=1

κ̃ij (x, x′)I ◦ κ̃ij (x, x′) ,

under the d−1/2 scaling (cf. Equation (11)).

Finally, note that the last kernel remains a scaled version of
the aforementioned I ◦ κ̃ kernel, albeit now with R as in
Equation (12). In our experience, using just I ◦ κ̃ without
the scaling leads to improved empirical performance, and
further gains can be obtained with the related kernel

κab (x, x′) = ακ̃ab (x, x′) + (1− α)Ra·κ̃ (x, x′)R>b· .
(14)

We call Equation (14) the residual attention kernel, as it can
be obtained as a limit of architecture with a skip connec-
tion, f `n(x) =

√
αg`−1

n (x) +
√

1− αf̃ `n(x), where f̃ `n(x) is
output of an attention layer (details in Appendix D).

4By standard Gaussian identities, if Z ∼ N (0,Σ), and A is a
deterministic matrix, then AZ ∼ N (0, AΣA>).
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Figure 4. Validation accuracy as a function of depth for vari-
ous NNGP kernels on a 2K/4K train/validation split of CIFAR-10
(no pixel downsampling). Architecture: [depth]x Convolution
+ ReLU, followed by a single instance of the kernel specified in
the legend (attention kernels combined with additional Flatten),
and Dense. See Table 1 for attention, and (Novak et al., 2019;
Garriga-Alonso et al., 2019) for Convolutional, Flatten, and Global
Average Pooling (GAP) kernel descriptions. Results reported for
best hyperparameters (d−1 scaling generally resulted in better per-
formance for the Struct kernel). More experimental details in
Appendix A.1.4. Notice the improved performance of attention
kernels with positional embeddings and layer normalisation (i.e.,
Struct, Residual) over their Vanilla counterpart.

5. Experiments
We evaluate the attention NNGP/NTK kernels on the
CIFAR-10 (Krizhevsky, 2009) and IMDb reviews (Maas
et al., 2011) datasets. While IMDb is a more typical setting
for attention models (Section 5.2), we included CIFAR-10
experiments (Section 5.1) due to desire to compare with
other NNGPs/NTKs on an established benchmark (e.g.,
Novak et al., 2019; Du et al., 2019; Yu et al., 2020), and
the recent successes of attention on vision tasks (e.g., Wang
et al., 2017; 2018; Hu et al., 2018; Woo et al., 2018; Chen
et al., 2018; Ramachandran et al., 2019; Bello et al., 2019).
Our experimental code utilises the JAX (Bradbury et al.,
2018) and Neural Tangents (Novak et al., 2020) libraries.

5.1. CIFAR-10

We have run two types of experiments on CIFAR-10:
(i) smaller scale experiments focused on understanding how
different hyperparameters of the attention kernel affect empi-
rical performance; (ii) a larger scale experiment comparing
attention kernels to existing NNGP/NTK benchmarks. The
smaller scale experiments were run on a randomly selected
subset of six thousand observations from the training set,
with the 2K/4K train/validation split. This subset was used
in Figures 2 and 4, and for hyperparameter tuning. Selected
hyperparameters were then employed in the larger scale
experiment with the usual 50K/10K train/test split.

All kernels evaluated in this section correspond to NN archi-
tectures composed of multiple stacked convolutional layers
with ReLU activations, followed by either simple flatten-

Table 2. CIFAR-10 test accuracies of attention kernels and ex-
isting NNGP/NTK alternatives. The standard 50K/10K train/test
split is used (no pixel downsampling). Best hyperparemeters from
the 2K/4K subset experiments used for each kernel, d−1 scaling
for the Struct kernel (see Table 1). Details in Appendix A.1.5.

KERNEL NNGP NTK

FLATTEN 65.54 66.27
GAP (YU ET AL., 2020) 77.85 77.39
LAP (YU ET AL., 2020) 80.36 79.71
STRUCT 80.55 79.93
RESIDUAL 80.72 80.10

ing, global average pooling (GAP), or one of our attention
kernels itself followed by flattening and, except for the
Vanilla attention case (see Table 1), also by layer nor-
malisation; the output is then computed by a single dense
layer placed on top. The choice to use only one attention
layer was made to facilitate comparison with (Novak et al.,
2019; Du et al., 2019; Yu et al., 2020) where the same
set-up with a stack of convolutional layers was considered.
Adding more attention layers did not result in significant
gains during hyperparameter search though. Exact details
regarding data normalisation, hyperparameter tuning, and
other experimental settings can be found in Appendix A.

The most important observations from the smaller scale
experiments are captured in Figure 4 which shows the vali-
dation accuracy of various NNGP models as a function of
kernel choice and number of convolutional layers (depth)
preceding the final flatten/GAP/attention plus dense block.
Firstly, notice that except for the Flatten model, all other
kernel choices achieve their best performance at smaller
depths which is consistent with existing literature (Arora
et al., 2019; Yu et al., 2020).

Secondly, observe that both the Struct and Residual
attention kernels significantly outperform the Vanilla
one, demonstrating that the use of positional embeddings
and layer normalisation is helpful even in the infinite width
limit as claimed in Section 4.2. In contrast, we did not find
significant evidence for ζ(x) = x outperforming the stand-
ard softmax choice as was the case for finite networks (see
Figure 3), with the best set of hyperparameters for Struct
d−1 with softmax being only marginally better than the best
results with the identity function (recall that no d−1/2 ker-
nels use ζ = softmax due to the intractability discussed
in Section 4). This finding provides hope that the d−1/2

kernels also do not sacrifice much in terms of performance
by using identity for ζ, but also points to salient differences
between the qualitative effects of individual hyperparameter
choices in finite and infinite attention layers.

Using the insights from the smaller scale experiments, we
ran the larger scale experiment on the full dataset using
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Table 3. IMDb sentiment classification, test accuracies of
simple NNGP/NTK models on the 25K/25K train/test split using
GloVe word embeddings (Pennington et al. (2014); 840B.300d).
GAP-only corresponds to a single global average pooling layer
followed by a linear fully connected readout. GAP-FCN has 2
ReLU fully connected layers after GAP. Struct has an attention
layer preceding GAP, followed by one (NNGP) or two (NTK)
fully connected layers. Models selected on a validation set of 10K
reviews. Details in Appendix A.2.2.

KERNEL NNGP NTK

GAP-ONLY – 84.98 –
GAP-FCN 85.82 85.80
STRUCT 86.09 86.09

eight layer models and the Struct and Residual at-
tention kernels. We used the positional embedding cov-
ariance matrix defined in Equation (12) in both cases, and
d−1 with softmax for the Struct kernel (further details in
Appendix A.1.5). The results can be found in Table 2. As
you can see, attention performs significantly better than the
GAP kernel (Arora et al., 2019), and also provides a mod-
erate improvement over the recent local average pooling
(LAP) results (Yu et al., 2020). Since we used the valida-
tion accuracy from smaller scale experiments to determine
our hyperparameters, we are comparing against the best
cross-validation results from (Yu et al., 2020) for fairness.

5.2. IMDb reviews

Although there has been interest in applying attention in
vision, to date it has been predominantly recognized for
performance on language tasks. However, most of avail-
able NNGP/NTK kernel implementations (Matthews et al.,
2018; Lee et al., 2018; Garriga-Alonso et al., 2019; Arora
et al., 2019; Yang, 2019b; Yu et al., 2020) are hard-coded
for the specific experiments performed in the respective pa-
per. Neural Tangents (Novak et al., 2020) allows for some
flexibility, yet still accepts only inputs of fixed length and
having exactly zero (i.e. inputs to fully connected networks)
or two (images for CNNs) spatial dimensions.

We release code allowing use of NNGP/NTK models (with
or without attention) on inputs of variable spatial extent
and arbitrary dimensionality (e.g., one spatial dimension for
texts and time series, three spatial dimensions for videos).
Our implementation seamlessly extends the Neural Tangents
library, enabling research and application of NNGP and
NTK models to new domains with almost no extra effort.

As an example, we present the first benchmarks of simple
NNGP and NTK models on the IMDb sentiment classific-
ation dataset in Table 3. We observe that Struct kernels
outperform the GAP-only kernel (corresponding to linear
regression on the word embeddings mean), but provides

Table 4. IMDb sentiment classification, test accuracies on a
3.2K/1.6K train/test split. When high-quality word embeddings
are used (300-dimensional GloVe trained on 840B tokens), com-
plex models yield diminishing returns. Contrarily, simple em-
beddings (50-dimensional GloVe trained on 6B tokens) lead to
significant gaps in model performance due to respective inductive
biases (GAP-only < GAP-FCN << CNN-GAP ≈ Struct).
Models selected on a validation set of 1.6K reviews. Details in
Appendix A.2.3.

EMBEDDINGS: GLOVE 840B GLOVE 6B
(DIMENSION) (300) (50)

GAP ONLY 83.81 73.00

NNGP
GAP-FCN 83.75 74.44
CNN-GAP 84.69 81.00
STRUCT 83.56 80.88

NTK
GAP-FCN 83.81 74.88
CNN-GAP 84.88 80.31
STRUCT 84.00 81.06

marginal benefit compared to a fully connected model on
top of the pooling layer (GAP-FCN). We conjecture this is
due to high-quality word embeddings partially incorporat-
ing the inductive bias of the considered model. Indeed, we
further demonstrate this effect by contrasting the gaps in
performance between different kernel families on high- and
low-quality word embeddings in Table 4.

Naturally, our sample IMDb results are not competitive with
the state-of-the-art, which achieve up to 97.4% (Thongtan
& Phienthrakul, 2019, Table 4). However, we hope they
will be a useful baseline for future research in infinite width
sequence models, and that our codebase will substantially
facilitate the process by enabling variable-length, arbitrary-
dimensional input processing.

6. Conclusion
Unlike under the d−1 scaling of Q(x)K(x)> proposed in
(Yang, 2019b), the standard d−1/2 scaling may lead to non-
Gaussian asymptotic behaviour of attention layer outputs.
Gaussianity of the limit can however be obtained by tak-
ing the number of heads to infinity. We explored the effect
of positional encodings and replacements for the softmax
function in attention layers, leading to improved perform-
ance for both finite and infinite attention architectures. On
CIFAR-10, attention improves moderately upon the previ-
ous state-of-the-art for GPs without trainable kernels and
advanced data preprocessing (Yu et al., 2020). We further
released code allowing application of NNGP/NTK kernels
to variable-length sequences and demonstrated its use on the
IMDb reviews dataset. While caution is needed in extrapol-
ation of any results, we hope that particularly Figure 3 and
Table 2 inspire novel NN architectures and kernel designs.
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