Infinite attention: NNGP and NTK for deep attention networks

A. Experimental details
A.1. CIFAR-10
The CIFAR-10 datasest (Krizhevsky, 2009) was fetched using the TensorFlow datasets®.

In all of the CIFAR-10 experiments, the data was preprocessed by subtracting mean and dividing by a standard deviation for
each pixel and data point separately (equivalent to using LayerNorm as the first layer). We inflated all of the standard
deviations by 10~!° to avoid division by zero.

All the classification tasks were converted into regression tasks by encoding the targets as C—dimensional vectors, where
C is the number of classes, with the entry corresponding to the correct label set to % and all other entries to — % This
enabled us to perform closed form NNGP and NTK inference using the Gaussian likelihood/MSE loss.

A.1.1. HYPERPARAMETER SEARCH

The hyperparameter search was on a fixed architecture with 8x Convolution + ReLU, Attention, Flatten, and a Dense readout
layer. We used 1.7562 and 0.1841 respectively for the weight and bias variances as in (Novak et al., 2019, appendix G.1)
except for the attention output variance o2, which was set to one. The convolutional layers were used with the SAME padding,
stride one, and filter size 3 x 3. For attention kernels with positional encodings, the reported p parameter (Equation (12)) is
actually p/ (Ué 02.) so that the relative scale of the contribution of R remains the same with changing U?Q o2

There were two stages of the hyperparameter search, first to identify the most promising candidates (Table 5), and second
to refine the parameters of these candidate kernels (Table 6). The second stage also included the residual attention kernel
(Equation (14)); the « in the second table should thus be interpreted as the one stated in Equation (14) (cf. Appendix D).
The best hyperparameters used in Figure 4 and Table 2 can be found in a bold typeset in Table 6.

All computation was done in 32-bit precision, and run on up to 8§ NVIDIA V100 GPUs with 16Gb of RAM each.

Table 5. Hyperparameter values for the first stage of search. VALUE POSITIONAL ENCODING stands for whether the positional encodings
should be added to all @, K, and V (TRUE), or only to the inputs of @) and K (FALSE; see Section 4.2.2). ENCODINGS COVARIANCE
represent whether positional encodings should be added (0 for no), and if so, what should their initialisation covariance be (I for identity,
and R for the covariance defined in Equation (12)). ¢ = softmax was only used when QUERY/KEY SCALING was d~! (see Section 4).
©p, p, a were skipped when VALUE POSITIONAL ENCODING was FALSE, and ¢ was only varied when ENCODINGS COVARIANCE was R.

HYPERPARAMETER VALUES
QUERY/KEY SCALING {d=2 a7}

¢ (SECTION 4.1) {SOFTMAX, IDENTITY }
VALUE POSITIONAL ENCODING {TRUE, FALSE}
ENCODINGS COVARIANCE {0,I, R}

0 (EQUATION (12)) {1,5}

p (EQUATION (12)) {1}

« (EQUATION (9)) {0.5,0.8}

0Q - OK {0.1,1.0}

Table 6. Hyperparameter values for the first stage of search. See Table 5 for description of the individual hyperparameters. The parameters
that achieved the best NNGP validation accuracy and were selected for the subsequent experiments are in a bold typeset.

HYPERPARAMETER STRUCT RESIDUAL
QUERY/KEY SCALING {d~'} {d~1}

¢ (SECTION 4.1) {SOFTMAX} {IDENTITY }
VALUE POSITIONAL ENCODING {TRUE, FALSE} -
ENCODINGS COVARIANCE {R} {R}

¢ (EQUATION (12)) {1,5,10} {1,5,10}

« (EQUATIONS (9) AND (14)) {0.4,0.5,0.65,0.8,0.9}  {0.4,0.5,0.65,0.8,0.9}
p (EQUATION (12)) {0.5,1,1.5} {0.5,1,1.5}

00 oK {0.001,0.1,1.0} -

Shttps://www.tensorflow.org/datasets/catalog/cifarl0
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A.1.2. DETAILS FOR FIGURE 2

The downsampling was performed using skimage.transform.resize with parameters mode="reflect" and
anti_aliasing=True, using downsampled height and width of size § as mentioned.

Both the convergence and accuracy plots are for the d~'/2 vanilla NNGP kernel with ¢ = softmax. The intractable softmax
integral of the limiting covariance function was estimated using MC integration with 2048 samples.

We used 1.7562 and 0.1841 respectively for the weight and bias variances as in (Novak et al., 2019, appendix G.1) for
all the convolutional and dense layers, 1.7562 for the 0%, aé and 0%, and 0% = 1. The convolutional layer used VALID
paddingstride one, and filter size 3 x 3.

As in (Novak et al., 2019), The reported distance between kernel matrices is the logarithm of

IK — Kl

: (15)
1K1

where K and K are respectively the empirical and the predicted theoretical covariance matrices for the training set.

All computation was done in 32-bit precision, and run on up to 8§ NVIDIA V100 GPUs with 16Gb of RAM each.

A.1.3. DETAILS FOR FIGURE 3

We used a 45K/5K train/validation split of the usual S0K CIFAR-10 training set and reported the validation set accuracy
after training for 1000 epochs with batch size 64 and the Adam optimiser.

The attention layers used the usual d—'/2 scaling of the query/key inner products, and the convolutional layers used the
SAME padding, stride one, and filter size 3 x 3. We used 2.0 and 10~2 respectively for the weight and bias variances
except in the attention where o) = 0% = 0}, = 2 but o, = 1. Further, we used the append type positional encodings
(Section 4.2) with the same embedding dimension as N.CHANNELS (Table 7), thus doubling the embedding dimension of

the attention layer inputs.

All computation was done in 32-bit precision, and run on a single NVIDIA V100 GPU with 16Gb of RAM each.

Table 7. Hyperparameter values for which results are reported in Figure 3. N_CHANNELS is the number of channels used in the
convolutional layers. The same number was used for % and output dimension in the attention layer, but d5* = d5" = | N_.CHANNELS |
to reduce the memory footprint. The learning rate was fixed throughout the training, relying only on Adam to adapt step size. Each
configuration was run with three random seeds and each of the corresponding results was included in the appropriate column in Figure 3.

HYPERPARAMETER VALUES
¢ (ATTENTION) {RELU, ABS, SOFTMAX }
LAYERNORM {NONE, PER_HEAD , AT_-OUTPUT}
N_CHANNELS {32,192}

LEARNING RATE {1073,1072}

A.1.4. DETAILS FOR FIGURE 4

We used 1.7562 and 0.1841 respectively for the weight and bias variances as in (Novak et al., 2019, appendix G.1) except for
the attention output variance o2, which was set to one. The convolutional layers were used with the SAME padding, stride one,
and filter size 3 x 3. For the vanilla attention kernels, we report the best performance over cgo = {103,101, 1,2,10}
at each depth. The St ruct and Residual were used with the best hyperparameters found during hyperparameter search
as reported in Appendix A.1.1.

All computation was done in 32-bit precision, and run on up to 8§ NVIDIA V100 GPUs with 16Gb of RAM each.

A.1.5. DETAILS FOR TABLE 2

The best set-up from Appendix A.1.1 was used (including the best hyperparameters as stated in Table 6).
All computation was done in 64-bit precision, and run on up to 8§ NVIDIA V100 GPUs with 16Gb of RAM each.
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A.2. IMDb
A.2.1. GENERAL SETTINGS FOR TABLE 3 AND TABLE 4.
The IMDD reviews dataset (Maas et al., 2011) was fetched using TensorFlow datasets®.

All  sentences were truncated or padded to 1000 tokens using the default settings of
tf.keras.preprocessing.text.Tokenizer’. No words were removed from the embedding model dic-
tionary. Tokens were embedded using GloVe embeddings (Pennington et al., 2014) with no other pre-processing. Binary
targets were mapped to {—0.5,0.5} values. Diagonal regularizers for inference were selected based on validation

performance among the values of 10~7,107, ..., 1 multiplied by the mean trace of the kernel.

When applicable, all models used ReLU nonlinearities, St ruct (Structured positional encoding, d~! scaling, Table 1)
kernel with ¢ being the row-wise softmax function (Equation (18)), decaying positional embeddings used only for the
attention keys and queries, with ¢ = 2.5 (Equation (12)), a = 0.75, and p = 1 (Equation (9)). These parameters were
selected based on preliminary experiments with CIFAR-10, and fine-tuning on IMDb specifically is an interesting avenue
for future research.

All preliminary and validation experiments were carried out in 32-bit precision, while test evaluation (reported in the Table 3
and Table 4) were done in 64-bit precision. All experiments were run on machines with up to 8 NVIDIA V100 GPUs with
16Gb of RAM each.

A.2.2. DETAILS FOR TABLE 3

Words were embedded using GloVe 840B.300d embeddings.

The embedding model was selected on a small-scale experiment (4000 train and 4000 validation sets) among GloVe 6B 50-,
100-, 200-, and 300-dimensional variants, as well as GloVe 840B.300d, and 1024-dimensional ELMO (Peters et al., 2018)
embeddings (using TensorFlow Hub®). In this preliminary experiment, GloVe 840B.300d, GloVe6B.300d, and ELMO.1024d
performed similarly, and GloVe 840B.300d was chosen for the full dataset experiment.

The validation experiment was run on the 25K training set partitioned into a 15K and 10K training and validation sets, with
the best models then evaluated on the 25K training and 25K test sets.”

All layers used weight and bias variances 2 and 0.01 respectively, expect for attention outputs and values variances which
were set to 1, and the top linear readout layer with weight variance 1 and no bias.

Three classes of models were considered:

1. GAP-only, doing only global average pooling over inputs followed by the linear readout.
2. GAP-FCN, in which GAP was followed by 0, 1, or 2 fully connected layers.
3. Struct, allowing the same models as GAP-FCN, except for necessarily having an attention layer before GAP.

Each class could also have an optional LayerNorm layer following GAP. The best model from each class was then
evaluated on the test set.

A.2.3. DETAILS FOR TABLE 4

All convolutional layers used the total window (context) size of 9 tokens, stride 1, and SAME (zero) padding.

Experiments were run on a 3200/1600/1600 train/validation/test splits. Four classes of models were considered:

1. GAP-only, identical to the one in Appendix A.2.2.

*https://www.tensorflow.org/datasets/catalog/imdb_reviews

"https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer

$https://tfhub.dev/google/elmo/3

“Precisely, subsets of sizes 14880/9920 and 24960/24960 were used to make the dataset be divisible by 8 (the number of GPUs) times
20 (the batch size), which is a technical limitation of the Neural Tangents (Novak et al., 2020) library.
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2. GAP-FCN, also identical to the one in Appendix A.2.2.
3. CNN-GAP, allowing the same models as in GAP-FCN, but having GAP preceeded by 0, 1, 2, 4, or 8§ CNN layers.

4. Struct, allowing the same models as in CNN-GAP, but having 1 or 2 attention layers (each optionally followed by
LayerNorm over channels) before GAP. If the model also had CNN layers, attention and CNN layers were interleaved,
attention layers being located closer to GAP (for example, a model with 8 CNN layers and 2 attention layers would
have 7 CNN layers followed by attention, CNN, attention, GAP).

All models were allowed to have either ReLU or Erf nonlinearity, with weight and bias variances set to 2 and 0.01 for ReLU,
and 1.7562 and 0.1841 for Erf, with the same values used by attention keys and queries layers, but having variance 1 for
values and output layers. The readout linear layer had weight variance 1 and no bias.

Table 8. Best validation accuracy for various finite attention architectures. The reported numbers are an average over three random seeds.

SOFTMAX RELU IDENTITY

NONE 64.10 69.68 70.46
PER_HEAD 68.96 77.40 75.28
AT_OUTPUT 71.70 79.00 79.56

B. Proofs

Assumptions: We assume the input set X' C RN*d’ jg countable, and the usual Borel product o-algebra on any of the
involved countable real spaces (inputs, weights, outputs of intermediary layers). We also assume that the nonlinearities ¢ and
¢ are continuous and (entrywise) polynomially bounded, i.e., |¢(z)| < >~ ¢;|z|" for some m € Nand co, ..., ¢, € R,
independent of z,'" and |¢(G)as| < D1~y c0|Gail for some m € Nand ¢y, ..., cpr € R, independent of G. For the NTK
proofs, we further assume that V¢ and V( are continuous bounded almost everywhere, where for ReLU, Leaky ReLLU, or
similar, we set V¢(0) := lim,_,g- V¢(z) which for ReLU/Leaky ReLU is equal to zero.

As Matthews et al. (2018), we will need to use the ‘infinite width, finite fan-out’ construction of the sequence of NNs.
In particular, we will assume that for any attention layer £ € [L + 1] and n € N, the output is computed as defined
in Equation (3), but we will add a countably infinite number of additional heads which do not affect the output of the n't
network, but are used by wider networks, i.e., each head h > d%* is only used to compute the outputs by networks with
index m € N such that d%,f > h. Similar construction can be used for fully connected, convolutional, and other types of
layers as demonstrated in (Matthews et al., 2018; Garriga-Alonso et al., 2019). Since the outputs remain unchanged, a proof
of convergence of the ‘infinite width, finite fan-out networks’ implies convergence of the standard finite width networks, and
thus the construction should be viewed only as an analytical tool which will allow us to treat all the random variables
{ff;”(x) th (¥):n,hyi,j eNLe[L+ 1],z € X},

v JIn,ij
as defined on the same probability space, and thus allows us to make claims about convergence in probability and similar.

Finally, we will be using the NTK parametrisation (Jacot et al., 2018) within the NTK convergence proofs, i.e., we implicitly

treat each weight W;; ~ N(0,0%/d), i.i.d., as W = ﬁw where only W is trainable. This parametrisation ensures

that not only the forward but also the backward pass are properly normalised; under certain conditions, proofs for NTK
parametrisation can be extended to standard parametrisation (Lee et al., 2019).

. . e P
Notation: For random variables X, (X, )n>1, X, ~» X denotes convergence in distribution, and X,, — X convergence
in probability. For vectors z,y € R™, (x,y) = Z;n:l xjy; denotes the usual inner product, and for matrices A, B € Rmxm,

(A, B) = (vect(A),vect(B)) = >_;",_; Ai;Bi; denotes the Frobenius inner product. For any A € R™*k we will use

'"This is a relaxation of the original ‘linear envelope’ condition |¢(z)| < ¢ + m|z| for some ¢, m € R, used in (Matthews et al.,
2018; Garriga-Alonso et al., 2019) and stated in Theorem 3. We decided to keep the reference to the linear envelope condition in the main
text since it is general enough to guarantee convergence for all bounded (e.g., softmax, tanh) and ReL.U like (e.g., ReLU, Leaky ReLU,
SeLU) nonlinearities, and matches the existing literature with which the readers may already be familiar. Nevertheless, all the presented
proofs are valid for the polynomially bounded nonlinearities, similarly to (Yang, 2019b).
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A;. € R™F and A.; € R™*! to respectively denote i™ row and j™ column of the matrix. Later on, we will be working
with finite subsets £ C X x N for which we define the coordinate projections

Ly ={reX:3ieNst (x,i) € L}, Ly={ieN:3zx e Xst (z,i) € L}.

Since Yang (2019b) provides convergence for attention architectures under the d~! only in the NNGP regime, we use
T e {1, %} to refer to the different d~7 within the NTK proofs. As explained in Section 3.2, the 7 = 1 limit is not very
interesting when W and W are initialised independently with zero mean, and thus we will be assuming W& = WX

a.s. whenever 7 = 1. Finally, we use ooy = 0o0v, 0gK = 0Q0K, < as ‘less then up to a universal constant’,
poly(z1, ...,z ) for a polynomial in z1, ..., z,, € R, and the shorthand
Gflhaz(x) = C(Gfﬁm(w)) . (16)

Proof technique: The now common way of establishing convergence of various deep NNs architectures is to inductively
prove that whenever a preceding layer’s outputs converge in distribution to a GP, the outputs of the subsequent layer converge
to a GP too under the same assumptions on the nonlinearities and initialisation (e.g., Matthews et al., 2018; Lee et al., 2018;
Novak et al., 2019; Garriga-Alonso et al., 2019; Yang, 2019a;b). We prove this induction step for NNGP under the d-1/2
scaling in Theorem 3 (recall that the equivalent result under the d ! is already known due to Yang (2019b)), and for NTK in
Theorem 18. As in (Matthews et al., 2018), our technique is based on exchangeability (Lemma 5), and we repeatedly make
use of Theorem 29 which says that if a sequence of real valued random variables (X n)nZl converges in distribution to X,
and the (X, ),>1 are uniformly integrable (Definition 6 below), then X is integrable and E[X,,] — E[X].

Lemma 5 (Exchangeability). For any n € N, the outputs of an attention layer f* m(m) are exchangeable along the i index.

Furthermore, each of f'(z), G2 (z), Q*h (x), KM (x), V. () is exchangeable over the h index, and for a fixed h, each of
(@), Qi (), K (), ViR () is exchangeable over the i index.

Definition 6 (Uniform integrability). A collection of real valued random variables C is called uniformly integrable if for
any € > 0 there exists c. > 0 s.t. E|X |1 x|>.. < € forall X € C simultaneously.

Proof of Lemma 5. Recall that by the de Finnetti’s theorem, it is sufficient to exhibit a set of random variables conditioned

on which the set of random variables becomes i.i.d. This is is trivial for the columns of f£ .(z) as we can simply condition
th

on {

n,at

(x): h € [d5H]}. The remainder of the claims can be obtained by observing that

.%hu>-<( gﬁlmawﬁ“Q@ﬁlcmw%“Kﬂ)gﬁlcww%mv,

1
/4G
n
and thus if we condition on g/~!(x), the variables associated with individual heads are i.i.d. O

B.1. d—'/2 NNGP convergence proof

Theorem 3 (d~ /2 limit). Let ¢ € {2,...,L+1}, and ¢ be such that |$(z)| < c+m|z| for some c,m € R . Assume =1
converges in distribution to f*=1 ~ GP(0, k*~1), such that f_l;fl and f.z,;1 are independent for any j # k, the variables
{ f;} : j € N} are exchangeable over j.

: 0H J0G .
Then as min {n,dy" ,d5%} — oo

(D) G' = {G(x): x € X, h € N} converges in distribution to G* ~ GP(0, k*F) with

E[GY(2) G (a')] = Spanr il (2, 2") B (2,27) .

(X)) f£ converges in distribution to f* ~ GP(0, k%) with f4 and f4 independent for any k # I, and

Kap (2,2") = E[fg () fy ()] @)
&

= 3 R (@) E[C(G™ (@))aiC (G ()]

ij=1
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Proof. Since we have assumed that the input set X is countable, we can use Lemma 27 to see that all that we need to do to
prove Theorem 3 is to show that every finite dimensional marginal of f converges to the corresponding Gaussian limit.
Because the finite coordinate projections are continuous by definition of the product topology, the continuous mapping
theorem (Dudley, 2002, theorem 9.3.7) tells us it is sufficient to prove convergence of the finite dimensional marginals of

{ff ;(@):z€X, jeN], (17)

as any finite dimensional marginal of f£ can be obtained by a finite coordinate projection.

Focusing on an arbitrary finite marginal £ C X x N, we follow Matthews et al. and use the Cramér-Wold device (Billingsley,
1986, p. 383) to reduce the problem to that of establishing convergence of

Tn = Z <am’iﬂf7€,~i(w)>ﬂ (18)

(z,i)eL

for any choice of {a(*") € R : (z,i) € L} C RY *£. We can rewrite T, as

T = Z <O‘$7iﬂf£,~i(1’>> = Z <ao:,i’ [frl;l(x)ﬂ"wfgdl ( )]W£:?>
z,ieL z, €L
dﬁ H abH

| £, H Zh EhO .
/df d f W " deHZ’Ynhy
h 1301)

th,O . £,0 2,0
where we have defined W, ;" == [Wn (hdt+1)i> - Wn (hdt+dt —1)i

] C Rén.
We are now prepared to apply lemma 10 from (Matthews et al., 2018) which we restate (with minor modifications) here.

Lemma 7 (Adaptation of theorem 2 from (Blum et al., 1958)) Foreachn € N, let {X,,;: 1 =1, 2 ..} be an infinitely
exchangeable sequence with E X,, 1 = 0 and EX2 1= a , such that lim,, 02 = 02 for some o > 0. Let

Y

1 n
Sn = Xn,i ) (19)
Vi, &

(2

for some sequence (d,,)pn>1 C N s.t. lim,,_, o d,, = 00. Assume:

(a) EXp1Xpn2=0

(b) lim, o EX2 X2, =0}

(¢) E|Xn1l® = o(V/dy)
Then S,, ~ Z, where Z = 0 (a.s.) if 02 = 0, and Z ~ N(0, 02) otherwise.
Substituting S,, = 7,, and X, , = ¥y, 5, convergence of 7, follows from Lemma 7:

e Exchangeability requirement is satisfied by Lemma 8.
e Zero mean and covariance follow from Lemma 9.
e Convergence of variance is established in Lemma 10.

e Convergence of E[p}, ;2 o] and E |y, 5|* = o(/df,) are implied by Lemma 11.

Combining the above with Lemmas 12 and 33 concludes the proof. O

Lemma 8 (Infinite exchangeability). v, ; are exchangeable over the index h.
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Proof. Recall that by the de Finetti’s theorem, it is sufficient to exhibit a set of random variables conditioned on which
the {y,,»: h € N} are i.i.d. From Section 2, we have

i) = LU W) T ) gl W

n

Hence if we condition on {gfl_jl(x) j€ldit),x € Ly}, where Ly == {x € X: i € Ns.t. (x,i) € L}, itis easy to see
that {7, » }r>1 are exchangeable. O

Lemma 9 (Zero mean and covariance). Ev,, 1 = E~, 1752 = 0.

Proof. Using EW'%C = 0, En,, = 0if |E f¢ 2L (@) < oo forall (i,7) € [d°] x N. Substituting E f£',,(z) =
E (G gt l(x)WEh V' = 0 as long as |E C(Gﬁ)mgmb}g(xﬂ < oo for any a, b, k € [d*]. This can be obtained by combin-

ing Holder’s mequahty with Lemma 32. An analogous argument applies for E ~y,, 17,2 = 0 since ]E[Wf}_’io (W,fQZO)T] =0
by assumption. [

Lemma 10 (Convergence of variance). lim, ,nyE vg 1= af .

Proof. Observe that Efy%l can be written as
03 (@) TE[ i w)eilen) 1) 0 = 22 3 (@r) TE[ (@) ()] 07
dé d@ n n )
™ (w,5),(2",5) " (@)
and thus 1t will be sutficient to show that x x converges to the mean of the weak distributional limit.
d thus it will be suffici how that E[f¢ (z) £ (z) '] /d", g h f th k distributional limi

I B[ @@ = g B[O @ W ) T ) (G )T

n
— — T
gt (x)gy ()

dit

— o} E[G(GH o) G

suggests the desired result could be obtained by application of Theorem 29 which requires that the integrands converge in
distribution to the relevant limit, and that their collection is uniformly integrable. Combination of the continuous mapping
theorem and Lemmas 12, 30 and 33 yields convergence in distribution; application of the Holder’s inequality, the polynomial
bound on ¢, and Lemma 32 yields uniform integrability by Lemma 28, concluding the proof. [

Lemma 11. Forany h,h' € N, Ehﬁ,h'ﬁz,h'] to the mean of the weak limit 0f{7§7h737h, Yn>1's distributions.

Proof of Lemma 11. Defining ffjl(x) = Vd O ()WEC | we observe E[y; 1, 7a ] equals

n,i °

~ . / . ~y ! ~3 ! ’ .
2 2™ [ fr o (@) fl s ()o@ ) T (@) I (ah) | a2 72
(z1,41) (z,51)
(x27i2) (1/2»]2)

which means that the expectation can be evaluated as a weighted sum of terms of the form

E[YLL,M’(S) Sbg() nck( )fndl( )]

where a, b, ¢,d € [d®],,7,k,l € Lz,and s,t,u,v € L. We therefore only need to show convergence of these expectations.
Substituting:

]E[be,ai(s) ~g,bj(f) ffck( ) ffdl( )]

2
= (%2) B[ et 0T @ R )
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= () e 07 S0 s,

h

where ¢ are i.i.d. standard normal random variables, and re-purposing the 7, j indices, we have

A [ O 0 R )| = ¢ }Z B[ 20012 (012 0 2040

’ df - ’ ’
— B O O£ 0] + 2 E[ )P (D0 10|

Note that we can bound the integrands by a universal constant (Lemma 32), and thus we can focus only on the latter term on
the r.h.s. We can thus turn to

B[ 1210 6) 0 (0120 £10)

= ot et B O oot . BB ]
n a: dn_l n . n c: dn_1 n N
Observe that by Lemma 33,
=1(g)qt1 T =1y, e—lvT
(9” S >—>” (R (5,1), 7 (u,0)),

and by Lemma 12 and the continuous mapping theorem

C(GE(5))a-C(GE (5))5.C (G (). C (G ().

converges in distribution. By Lemma 30, this means that the integrand converges in distribution. Finally, to obtain the
convergence of the expectation, we apply Theorem 29 where the required uniform integrability can be obtained by applying
Holder’s inequality and Lemma 32. O

B.1.1. CONVERGENCE OF G!
Lemma 12. Let the assumptions of Theorem 3 hold. Then G, == {G'"(x): x € X, h € N} converges in distribution to

a centred GP with covariance as described in Theorem 3.

Proof. Using Lemma 27 and the Cramér Wold device (Billingsley, 1986, p. 383), we can again restrict our attention to
one dimensional projections of finite dimensional marginals of G?,

T = (Bo", G r = (B,
(w%e[: (w;e[: \/d7 Z

) (K 5(2)) ") g

(@) (K25 (@) ")

j=1 a:hell

=Pn,j

The above formula suggests the desired result follows from Lemma 7:

e Exchangeability requirement is satisfied by Lemma 13.
e Zero mean and covariance follow from Lemma 14.

e Convergence of variance is established in Corollary 15.
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e Convergence of E[p?, ;2 ,] is proved in Lemma 16.

e o(d") growth of the third absolute moments is implied by Lemma 17. O

Lemma 13. Under the assumptions of Theorem 3, @, ; are exchangeable over the j index.

Proof. Observe
@ @) = g @)W W) Tl @)

n,j n,% n,% n

which means that the individual terms ¢, ; are i.i.d. if we condition on {g5~!(z): z € Lx}. Application of de Finetti’s
theorem concludes the proof. O

Lemma 14. Under the assumptions of Theorem 3, E[py, 1] = E[pp 10n,2] = 0.

Proof. For E[p, 1] = 0, note that for any h € N, E[p,, 1] can be expressed as a sum over terms

<5w,h’E[gfl—l(x)WZh,Q(WZh,K)Tgf;—l(x)T]>F _ <Bw,h7 O>F _ 0’

n,J n,J

as long as E[gﬁ_%(z)gﬁ_%(I)T] is entry-wise finite for any (z,n) € Lx x N which can be obtained by Lemma 32. For
E[¢n,1¢n,2] = 0, we have to evaluate a weighted sum of terms of the form
n,-1 n,-2 n,

(5" E {gﬁ1<x>W£7aQ<W”"K>Tgf;1(x>Tgf;1<z’>wfh’*Q<w"%;’K>Tgf,1<x'>T A

which are all equal to zero as long as

)

- 1T e _ T
g9 @)e (=) gn M (2)gi (&)
1 1
n n
is entry-wise finite. Since the integrand converges in probability to ¢ (z, 2)&* (2, ") by Lemma 33, an argument analogous
to the one made above for the E[¢,, 1] = 0 concludes the proof. O

2

we

Corollary 15. Under the assumptions of Theorem 3, limy, o E[p? ] = o
Proof. The second half the proof of Lemma 14 establishes E[p,, ;¢ ;] converges for any i, j. O

Lemma 16. Under the assumptions of Theorem 3, lim, o0 B2 102 5] = 0.

Proof. Defining Rz,j (z) = Q" »(x)(Kfff,j(x))T, we can rewrite E[p?2 2 ,] as

n,J
> (B"ME [RZ,I<w>R2,1<w)TWw“’>TR2’,2(x’>RZﬁ2(x’)T} Ci
(z,h),(z",h")

where we have w.1.0.g. assumed all matrices have been flattened as (A, B)p = vect(A) " vect(B). The above could be
further rewritten as a weighted sum of terms which take the following form:

E[ B @K (@)Q (@)K ()Q ) K (@) <z’>K”,z;42<x'>}

n,a1l 7 n,azl e n,as2 n,as2 n

— — T -1 -1 T - — T -1 -1 T
gfl,all-(m)gfl,ag(x) gn,bl-(x)gn,bg-(x) gfz,alg-(x/)gfz,al‘;-(x/> gn,bg-(x/)gn,bAl»(xl)
df—l dé—l df—l d@—l :

n n n n

Thanks to Lemma 33 and the continuous mapping theorem, we know that the integrand converges in probability to

<E|

4 4 ~0 ~0 ~0 IAANY o
UQUKKalag ($,.73)/€b1b2 (l"x)’illgadl (.73 y & )Kb3b4 (.73 ) L ) ’
and thus we can use Theorem 29 to obtain that the above expactation converges as long as the sequence of integrands is
uniformly integrable. Noting that we can upper bound by max c(qs max.c., E| gffcll (2)|® by Holder’s inequality and
exchangeability, uniform integrability can be obtained by Lemma 28. O
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Lemma 17. Under the assumptions of Theorem 3, E |¢,,.1]*> = o(y/d%).

n

Proof. Using Holder’s inequality, it is sufficient to show lim sup,, E |¢,,.1]|? < oco. Setting RZ,j (z) = QY ]< )(Kéh ()T
Elenil'= 2, (6f’h>TE[Rﬁ,l<x>R,’i,1<x)T/3$vh</3m’*’“>TRz’,1<x'>RZﬁl<x’)T g
(z,h),(z",h")

analogously to the proof of Lemma 16. Substituting for the individual terms and using Holder’s inequality, we we can see
that each of the terms in the above sum can be itself decomposed into a sum over (d“~!)® terms that are up to a constant
upper bounded by

8
ma. ma.
ae[d}‘“(] ze{w,)af’} Ign al( )| ’

which means we can conclude this proof by bounding this quantity by a constant independent of n by Lemma 32. O

B.2. NTK convergence proof
We need to prove convergence of the attention NTK at initialisation, i.e., for any a,b € [d®], i,j € N,and z,2’ € X
T

af'rt; ai af'rt; (I,)
80§§ ) aggﬂ L 6i:j@§b (1‘, LL'/) ) (20)

where 6 is the collection of trainable parameters in the first £ layers, as n — co. We will further use 6%, to refer to the
—~ 0 H ~— —~ —~

trainable parameters of the £ layer; e.g., for the attention layer 84 = {W£} U Jim | {Wh-Q WikK Jyth.Vy,

Note that

010s() Wiy (@) _ 0hs®) 08y | Ofsil®) 09t @) D9t &) " OSp )
005" ooxt 00, 00} dgn ' (z) 395” R GO
direct indirect

where the direct part corresponds to the contribution due to gradient w.r.t. the parameters of the /" layer itself, and the
indirect part is due to effect of the /" layer on the contribution due to the parameters of preceding layers. The next two
sections show convergence of each of these terms to a constant in probability, implying the desired result:

Theorem 18 (NTK convergence). Under the assumptions of Theorem 3 (including those stated at the beginning of
Appendix B), for any a,b € [d®], and z,x’' € X
T

8f£ () afrl;,bj (") P

96=" 0= —— 6i=;OL, (z,2'),

where
o N _
O, (x,2") =2kl (z,2') + 0y Y Ol (x,2') E[Go (2)Ghy (2)]+
a’ b’
d°
- i i oG, () 0GE) ()
6 %UOVUQK(zK’ (I7I/) + eflb(xﬂ LE/)) (‘;(12 Hlecfz (I7x/)’€21d2 (I’7I/) ]E 8Gfl1dl (.T) aGgérz( /)
dy.d>
¢
OG*YL (z) oG4 (')
6,105y 05Kk, (2,2 i, (2, /)0 @, (@, )E Ll bea (22)
~47bvrtn (5.5) 2, b 961, (1) 911 ()

d17d2

Theorem 18 will be proven in the following two subsections.
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B.2.1. DIRECT CONTRIBUTION

The direct contribution of an attention layer can be expanded as

T T
0 ﬁaz( )a 'rt;,bj(x/) 8f’réL at( ) 'rl;b]( ,)
oo, 00y, ani O awp©
T T T
Z O (@) 08L @) T OFL (@) 08 T OfL () OFL ()
— WY awihY oW gwihe oW K gk
We prove convergence of each of these terms next.
£ e NI
Lemma 19. 6;%29 %2%) Ly skl (2,27 |
Proof of Lemma 19. Observe
T d[ H d({ \4
Ol )8ffilij( ) = Z Z e () frlon (')
oWwLe  awlto ]hlk 1d”’d” makis
Ayt g th th (o
7% (Vi (), Ve, . (2))

S S SR REI TR
- ZJ H n,ac nc
d@, 1 2 d{iLV

. h=1c1,c2=1

Since d° is fixed, we can focus on an arbitrary pair ¢1,ce € [d®]. Notice that by the continuous mapping theorem and
Lemmas 30 and 33, the individual summands converge in distribution

(Vire, (), Viile,. (2))

Gl ()GER, () 2t 7 T2 62 GO (2)GE ()R, (2, 2)
where G*" follows the (4 pushforward of the GP distribution of G* described in Theorem 3 if 7 = i, or G'(z) =

((ogok R’ (x, 7)) as. if 7 = 1 (Yang, 2019b, appendix A). The desired result could thus be established by application of
Lemma 31, averaging over the h index, if its assumptions hold.

Starting with the exchangeability assumption, note that if we condition on g°~!(z), g“~*(z'), the individual terms are i.i.d.
because the parameters of individual heads are i.i.d. Since {Gacl( )Gbcz( ') }p>1 are also i.i.d. (see Theorem 3 for 7 = 1,
and constancy under 7 = 1), it is also clear that the E[X, 1 X, o] = (E[X, 1])? is satisfied. All that remains is to show

limsup,,_, o E | X, 1|**° < oo, and where we will use ¢ = 2 for convenience. By Holder’s inequality

o ot
E GZl ( )anu‘,( /) <Vn,c ( ) VnCQ( )>‘|

n,acy dflV
< 5ol EIGL ()16 16
< poly (c,cfe[d?}li’é (o) Ghveer (277 e E|gy 1 (2)]
where we used the assumed exchangeability of g“~1(z) over its columns. Application of Lemma 32 implies that the above
can be bounded by a constant independent of n, implying all assumptions of Lemma 31 are satisfied. O
Ao Oft (@) OfL () T

Lemma 20. > )" —=2 Ly ikl (@2

h=1 Qv “gwirv

Proof of Lemma 20. Note that

T d/Hd/V
af'gaz()afﬁbj(‘r/) 57Lh,07576h,0 o} ~
b WOy 1% Gflhal, £71$7Gf1h‘33 (—1 '

,;awfihv P dZHdWhZI; W S (Gl ) @), Gl (g )
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(ger ! (@), e (@)
! '

X Ti7¢h, 07 7£h,0 ¢
7d€I?IdXVZ Z W’ﬂk}l Wnk] Gnhacl( )anCQ( )

h,k c1,c2=1

Since d*° is fixed, we can focus on an arbitrary ¢;,co € [d®]. Notice that by the assumed independence of the entries of
W£hO | the continuous mapping theorem and Lemmas 30 and 33, the individual summands converge in distribution

(96, (), ge, (2"))
Wﬁhkzowfhk?szhacl( )Gn ch( ) - dzflz ~ Wﬁhkg)wrfhk?Gﬁ}il( )Gch( ) f‘lCQ (.CE, :E/) )
n

with the distribution of é“‘(x) as in the proof of Lemma 19. The desired result can thus again be obtained by applying

Lemma 31, averaging over h and k, if its assumptions hold. As E[Wf;hkzOthk?] = 0;—; and E |Wf;h,ﬂ " < oo for any

t > 1, the same argument as in Lemma 19 applies. [
45 Oft (@) 0Fh @) T B (@) Ofh L) T . ”
Lemma21. )", PR aWbZhQ + oK aW%Jh’K converges in probability to
d’ a4 AL (o
0GY () 0G§L (2')
0imjb _12025y,025 kRl (z, 2 R z, 2 &4, (z,x ac bey
1=j9r=1200VvIQK ab( C;Q C1C2( ) dldz( ) aGﬁldl(iﬂ) 801212( ,)
di,d2

Proof of Lemma 21. By symmetry, it is sufficient to prove convergence for the gradients w.r.t. Wﬁh’K . Observe

T
Z 8fr€az( )8 be]( /)
T1-¢h, K 1-¢h, K
— gWiE oWl
dSH gty T
ac;(fzhac (l‘) 8Gn be ( ,) aC;n ad ( )8G£hbd (CC/)
ZH A% Z Z Z Wﬁhk?lwﬁhkgjvn C1k1< )fo,}ézkz (x )aGZh - 9Gth : ’ Zth /‘)“Zif K
d dr h=1 ki kp=1 cL,C2 n,ady (z) n,bdg(x) oW, oW,
1,d2

Since d* is fixed, we can focus on arbitrary ¢, ca, dy, d2 € [d°]. Rewriting the r.h.s. above for one such choice, we obtain

O'OO'K Z WZh oWehoV ( )V ( )8Gf,hapl (z) avahch( )« fl}fa.(x), fL},Lb.(ml» <95;1($)79§2_~1(x/)>
dé Hdﬁvh e~ n,k1i" " n,kaj ' n,c1ky n,coko \L 8szhad1 (I) aGn,bdz( /) (df{G)%— dffl '

Noting that <g§1__1 (x), gfl;l (2"))/d%~1 only depends on the spatial dimension indices d; and dg, we can use Lemma 33 to
establish it converges in probability to Rf;l ds (z, "), implying that we only need to prove that the rest of the terms in the
above sum also converges in probability. Let

I e, () OGN, (2) Q1. (@), Q. (2)

Sn ZhO éhOV Vv n,acy ’
di Hdev hgkz n,k1i nkgj nclkl( ) nczkz( )aGthad (.’13) aGn}:bdz( ,) (deG)QT

QL (2),Q8, (&) (952 ()9, . (21) 8G}L . (2) OGTL,,, (2)
(df}jc)2r dfl ! acflad (w) aGn bdz( I)

suggests that the required result could be obtained using the Chebyshev’s inequality

and note that E[S,,] = §;,—; E by exchangeability. This

B(S, — ES,| > 8) < T ;]E[ Sl

if E[S,,] converges to the desired limit. To establish this convergence, observe

< f;l,a(x) leb( /)> <g7[z7_011 ( ) gn ,Co- ( )> 6sz1acl (l‘) nbcz( /)

0i=j
Ay di ! 0, aa, (1) 0G0, (')
dGL (x) OGLL (')
2 ¢ ~0 acy bea
iy 0QRa (. 8)Rere, (@ 8) Gai 0y S ) =
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since the first two terms converge in probability (Lemma 33), and the last converges in distribution by Theorem 3 and
the continuous mapping theorem, implying that the product of all three thus converges in distribution by Lemma 30.
Convergence of E[S,,] could thus be obtained by establishing uniform integrability of the (S,),>1 sequence (Theorem 29).

By Lemma 28, uniform integrability of .S,, can be established by showing E[S2] — {E[S.]}? which would also imply

Sh N [E[S.] by the above Chebyshev’s inequality. For the rest of this proof, we drop the z, z’ from our equations for
brevity; this allows us to write

1 fht+1 th+1 ~lhiv1 qovthest

E[§2] o 1 E H T1-lht+1,075-4he 11,0y hiqn Lhyiy1 < n,a 7Q > aGn ,acq aGn ,bea

nl ™ 0 H 0,V yo 2 : n,koer14 " n,kat42] " n,cikarp1 | n,cokaiyo ,Gor Lhitq Lhiiq

(dn d ) hi,hs t=0 (d” ) aGn ,ady aG‘n ,bds
k1,ka,ks,ka

From above, we can restrict our attention to groups of terms that include at least O((d% d%"V")?) of the summands as long
as the expectation of the square of each term can be bounded by a constant independent of the h, k and n indices.

2
1 €h1+1 éhp+1 ~lh +1 Z}Lt+1
E H WﬂhHhOWthH,O Lhiyq Lhitq < ’Q > Gn (tlcl aGn ,bca
n,kar419 " nykaro) " nycikorpr | nycakoryo (di G)Q.,. 8G€ht+1 (9GN“+1
t=0 n n,ady n,bds
1 < eht+1 tht+1>
Lh Lh ’ 16
SER T Ve Vit < poly max g (24)
~ P n,c1kat41’ n,cokoryo (dflG) ~ c€lds],z€{x,x'} | n, Cl( )| ’

by Holder’s inequality and exchangeability. Application of Lemma 32 allows us to bound the above r.h.s. by a constant
independent of h, k and n as desired.

We can thus only focus on the terms for which i1 # hz. Among these, the only ones with non-zero expectation are those
where i = j, k1 = ko, and k3 = k4, contributing to E[S?] by

2
0(2)0\2/ Z E <<g1€ c11 7957, clg >> < fll,a»’ ﬁlb> < sz,aw > 8G7€1acl 8C:lebc 8Gﬁ2acl aG;’?ch (25)

Oimj =

Nt dy! (dr )2 <dﬁ:(">2f 0G0y 0G0, OC aay OG0,
k1,k2
by exchangeability. Noting that the sum cancels out with the de H dz V terms, we see that the limit of E[S2] will be identical
to that of Equation (25). Applying Lemmas 30 and 33, Theorem 3 (resp. the result by Yang (2019b, appendix A) if 7 = 1),
and the continuous mapping theorem

S <<g7(1 011 ’g’fl 012 >>2 < fll,aw o > < na 7Q£2 > szlacl 8Gn beo 8Gf12acl aGn ,bea
i=j

! (dfiG)QT (dp)2r 0GY . OGL,, 0GR, 0GL,,
8Gm G oG AGE2
4 1~4 21~ acy beo acy beo
~ 6i:jéT:%OQ[Kab (xaaj/)] [Kclcg (.’17 T )] aGﬁ}il aGi}i aGf;le 8G£32 ) (26)

~Lh
where % follows the (V()4 pushforward of the GP distribution of G* described in Theorem 3 if 7 = %, and is a.s.

2 b
constant if 7 = 1 as the limit G*" is a.s. constant (Yang, 2019b, appendix A) both by the assumed continuity of V(.

Finally, because Equation (24) establishes uniform integrability, and 2 dG“ is independent of 2 deZ by Theorem 3, we can
combine Equations (23) and (26) with Theorem 29 to conclude that both E[S?] and {EE[S,,]}? converge to the same limit. []

B.2.2. INDIRECT CONTRIBUTION

The indirect contribution of an attention layer can be expanded as

Ofnai(?) 09,7 () ag£-1<m/>T6f£bg . Z o) Vi) 057 (+)

dgn t(x) 005 90t gh( et Oge () Ol (a!)
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where!!

@e/-/ 15 (CE fl?l) = agnal ({17) 8971 b'j ’( /)
B o0t a0 )

27

which we know converges a.s., and thus also in probability, to 6i’:j'éfl/ w (z, x") for architectures without attention layers
(Yang, 2019b). Expanding the indirect contribution further

ZZ@ b" )8f7€az(x) afé ( /)

a’,b’ 1,5’ agna’z’( )agnb/ ’( )
dl/H dl/V ~ ~
o' Wéhl Ojtha,0 3G4h1( )Vehl (z) 5Gfbhé( )th/zgg( )
S S By ) By Y S W e Mol L2}
a’ b il d hi,ho=1k1,ko=1 In, a’z’( z) b s ()

In the rest of this section, we drop the x, 2’ from most of our equations so as to reduce the number of multi-line expressions.
Continuing with the inner sum from above we obtain

6@@}1,1 thl 8G€h1 th

2 : @hl,OWth,O
0, H / 1% n,kqi n,kaj
dn”di” 3,““, 3gnb,,
k1,k2
d® Lhy ~Ch Lhi
Tt O tha.0 Githa v, clkl vl oG, 8Gn ad1
d[ Hde A4 n Jkid n NY n,acy a — + n,clkl aGéhl a :
hi,ho c1=1 n a’i’ n,ad;y n a z’
k17k2

d® Lh ~Lh Lh
Z Géhz 8Vn c22k2 + V£h2 Z aCT‘n ;CQ aGn gdg
n,bca 6 l— b’ n,caka aG€h2 ’

-1
c2=1 i’ da—1 nbdga b”

which gives us four sums after multiplying out the terms inside the parenthesis, for each of which we prove convergence

separately. Since the spatial dimension d° does not change with n, we will restrict our attention to an arbitrary fixed choice
ofa’, V', ¢1,cq,dy,ds € [d?] throughout.
2 A 7 0h O7j7th=,0 Githy  Gith Vo >
_ 9% _ [ 15 2,0 xlhy 2 __merhy _ nieghy
Lemma 22. yin i Doir o Dohihe Orin i Wi i W o Gt G, Bt Bt

n,a’i

converges in probability to

k1,k2 'nb’/

8izjle,—a' 0DV Oy (2,2 E[GLL, (2) G, (2')]

Cz:b/ acy
Proof of Lemma 22. Note that
Lhy Lho
@ fh1,OW5h2,OG£h1 Géhz 8Vn Clk'l n C2k2
dé Hdé 1% a’i’"\b'j" " ki Jkaj T m,acy T n,bes a — 8
©',j" hi,ha In,a'i’ gn b’
k17k2
_ E E Eh170 Lha,O7578h1,V 11Lh2,V Abhy  Alhs . 2
_661—0. de Hdz Vde 1 1§t b G nklz W’I’Lkz] Wn”ﬂW 'sz”lachn,b62 = 601:(1:0"/5”
i/,j" hi,ho ca=b

k1,ka

Further, E[S,] = E[ég,l)b,lGﬁlac 3y Gn be,] DY exchangeability. As in the proof of Lemma 21, the desired result could thus
be obtained by an application of Chebyshev’s inequality, P(|S,, —E S,,| > §) < 6~ 2[E[S?] — {E[S,]}?]. if E[S,] converges
to the desired limit and |E[S?] — {E[S,]}?| — 0 as n — oco.

To establish convergence of the mean, first note that @f;,lb,lGnla01 GY ey ™ 0%, G G%! by Theorem 3, the continuous

acy

mapping theorem, éﬁ,lb/l il (:)f;,b/ (Yang, 2019b), and Lemma 30. Inspecting Theorem 29 and Lemma 28, we see it is

"8 should technically also be subscripted with n as all other variables dependent on the §5¢; we make an exception here and omit this
from our notation as the number of subscripts of © is already high.
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sufficient to show E[S2] — {E[S.]}? to establish both convergence of the mean, and S,, N E[S.]. We thus turn to E[S2]

Fav 117¢h2t+1,0757h2t 42,0778 hae 1,V 737€haet2, V' Alhoy g ~Chatto
(dl de Vdé 1 Z Z H ®a'ii+17b'jt’+1Wn,k2t+1i Wn,k2t+2j Wnyi§+1k2t+1Wn,jéﬂszz Gy ,act Gn \bea
(.} hoha b hy |10
il,5h k1 2,k3,k4

We can thus restrict our attention to groups of terms that include at least O((d% d%" d’~1)?) of the summands, as long
as the expectation of the square of each term can be bounded by a constant independent of the h, k, 7', j' and n indices.
Observe that

2
a4 ith2t+1,0  1rlhoty2, 015 Lhoey 1,V iplhoty2,V Nlhoy g ;lh2t42
E H@a/i2+1vb'j£+1wn«,k2t+1i Wn,k2t+2j Wn,i;+1k1 W Nl ke G” acy Gn \bea
a4 n4 8
5 pOly , {na;x/ E[@a/i/’b/j/(z, z ) ] B maXS E[Gn c,c! (Z) ] y (28)
a' b eld’],i ' e{1,2} c,c’€ld’]
z,2' e{z,x'} z€{z,z'}

and thus we can obtain the desired bound by applying Lemma 32. We thus shift our attention to the terms that are not
o((d5H d%V d%=1)2) of which there are three types: (i) i = j, (hy,k1,4)) = (ha, k2, j3), and (hs, k3,i5) = (ha, ks, 4);
(11) i = j (h17 kly 1/1) (h47 k47]4) and (h27 k27 Z/Q) - (h37 k37]§) (111) (h17 kla Z/1) = (h37 k3> 213)7 and (h27 k?? Z/2) =
(ha, k4, 4}). Hence the limit of E[S2] will up to a constant coincide with that of

2
VaY4 ~l1 L2 VY4 VaY4 oV oY ~01
E [(@a/l,b’QGn,aa’ Gn,bb’) :| + (;iij E |:<®a’1,b/1@a’2,b’2 + @a’l,b’ZGaQ,b/l) Gn aa’G bb/Gn aa’ Gn bb' |

by exchangeability. Noticing éfl converges in distribution by Theorem 3 and the continuous mapping theorem, and the ot
converges in this distribution (Yang, 2019b), both integrands converge in distribution by the continuous mapping theorem
and Lemma 30. Since the G*" corresponding to different heads are independent in the limit (Theorem 3), and the limit of
@fl, i prj+ 18 non-zero only if i = j' (Yang, 2019b), application of Theorem 29 combined with the bound from Equation (28)
concludes the proof. O

~Cho thy thy
5-h1,0157-8ha,0O oG 0G oG e} .
Lemma 23. pis Hdg v D ijr Dahioha @f; rir i Wi Wi yltha yrthe Zh’l‘cl ez —medl 92 converges in

K1,k nk1t mokej Tmerky Tniezk 0G,, ca; 9G bay 09, 411 O fL bl’ i’
probability to
oG (z) aéfl ( ")
8izj 0%y 05Oy (z, " )RE, . (x,2') | 0, (@, 2y + 0, RS 4 (x,2)) | E L
=y ore crea (0T Sty = 9GE, (x) 9G3%, ()

Proof of Lemma 23. To make the notation more succinct, we define

oGt dy®
n adl _ hy Tlhi K o ~—h.0
agn wli - d[ G \/deil Z (sdl a’O'KQaqu,l Wn i'uq + (5a/7aO'QKn dllulw’ﬂ,i’ul . (29)

7F

s
which leads us to

U
S @ Zhl,O WZhQ,O Lhy Lho aC;’flhal‘('l 8Gn g('Q h1 th
n d@ Hdé Vdé 1 dEG 2r j : z : a’i’ b W n,k1i k2 Tnseiks Tncaka oGt aGéhg nyi'ur n,jlug
i’ ki,k2 n,ady n,bds
By, o U1:U2

Unlike in the proof of Lemma 22, the mean

B <gé 1 ’g > aGel oG élb
E Sn = (S ]E @ RNy moer In,ca nac n,0c2 Fl Fl y 30
[ } dz 1 df G 27_ ; ugz a’i’ b’ j dfl 1 8Gn s 8Gn s n,i ut n,j ug (30)

only eliminates some of the sums. This issue can be resolved with the help of Lemma 24.
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Lemma 24. The random variable

Qhiha .__ § : 2 : h1 ha
Sn — Z 1 EG 27_ @ a'i’ b’ /Fnlulrn]u2,

i/, u1,u2

converges in probability to

o,

=1
—2

5h1 hzaQKG /b’(x T ) <5d1—a"%£b (‘rvx/) + 5a;:a"~$flld2 (xvxl)> :
do=b' b'=b

Proof. Notice

2 £ L L L
_ g, ~ <g -79 > <g .79 >
E[S’Zlh&] :6h1:h24 QgK E @2/1,[)/1 <6d1a/ na 1n7b + 50./:04 n7d1 n7d2 +

0.Gror_ = — —1
(dn )2T ! da=b’ d7L b'=b dn
2 [ —1 01 —1
5 00K E |8 5 In,a19n,d,1 5 In dllgn b1 31
hi=h2 0 G or_1 a’1,b'1 | Ydi=a’ —1 t 04— —1 ) GD
(dn ) b =b n do=b" dn

and thus we can combine the fact that (:)f;,i,,b/ i il (5i/:j’é£/ » (Yang, 2019b) with Lemmas 32 and 33, the continuous
mapping theorem, and Theorem 29 to obtain

E[§h"] 5 6,

=1
2

5h2 hza-QK(9 b’ (Jf T ) <5d1—a/”%§b (x,x’) + 5%;22‘%21@ (.Z‘, ZJ)) )
d2:b =

as n — oo. To obtain the convergence of S"1"2 to in probability, it is thus sufficient to show |E[(Sh172)2] — {E[S/1h2]12|
converges to zero as n — 0o. Substituting

Qhih _ 0 1 1 1 1
E[(Snl 2) } d@ 1 d@G 27_ Z Z E [@ "4 ,b’ /G)a’z/z ]él—‘nz ulrnj uzrn zzugrn,j2u4] )

( S s U, U2
Zla]l U3, Uy

15,55

we can once again restrict our attention to groups of terms that include at least O((d%*(d%%)?7)?) of the summands as
long as each term can be bounded by a constant independent of the ¢/, j’ and n indices. This bound can be again obtained
by a repeated application of Holder’s inequality, followed by Lemma 32. We can thus shift our attention to the terms
for which either of the following holds: (i) (i}, u1) = (j1,uz2) and (5, u3) = (45, uq); or (ii) (¢}, u1) = (i5,us3) and
(J1,u2) = (Ja, ua); or (i1, u1) = (43, ua) and (j1, uz) = (iz, us).

As in Equation (31), we can use the above established boundedness to see that the contribution from any terms that involve
the cross terms like Q% K“dllw“ KWKilQ, and terms with either of ¢} # j5 and ¢ # j5 (the limit of éa’i’,b’,j’ is zero if
i’ # 47), vanish. With some algebraic manipulation analogous to that in Equation (31), we thus obtain

2

5h1 ha JQK@ ’b’(m z ) (6d1=a"~€£b (.%', x/) + 5a;=a’%21d2 (x7x/)> ’
do=b' b'=b

E[(S3"2)%] = o,

_1
2
as desired. Application of Cheybshev’s inequality concludes the proof. O
With Sh1h2 defined as in Lemma 24, we can revisit Equation (30)

<gfn 011 agn ca > 6Gel aG

n,acy n,bca
ds oG4

E[Sn] = 51‘:]'0'%‘/ E SH 8G
n bd2

n,ad;
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Note that the first two terms converge in probability to constant by Lemmas 24 and 33 and the continuous mapping theorem,

9G! L., OG, . 9GLL OGEL

acy
D
l1 l1 1 1
8Gn,ad1 6G1’L,bd2 8Gad1 adeg

if = % by Theorem 3, and in probability to a constant if 7 = 1 (Yang, 2019b, appendix A), both using the assumed
continuity of V(. Since V( is also assumed to be bounded, we can combine Holder’s inequality with Lemma 32 to establish
uniform integrability (see the proof of Lemma 24 for the bound on S!!) via Lemma 28, and with that convergence of E[S,,]
by Lemma 30 and Theorem 29, yielding

E[S*n] - 5i={ U%VU%Kéﬁw (xaﬂﬁ/)’%ﬁm (53733/) (5(11—(1”%217 (%33/) + 6a;:akfl1d2 (z, 37/)) E

T=3% do=b’ b'=b

OGLL (x) OGEL (o)
oGy (x) 9GS (a)

ad1

Convergence of S, to the same constant can be obtained via Chebyshev’s inequality by proving [E[S2] — {E[S,]}?| — 0.
Using the notation from Lemma 24, the second moment of \S,, can be written as

4 1 ~lhoii1 qrithaets

E[SQ] _ o) E H §h2t+1h2t+gwe’l2t+l7owéh2t+27oveil2t+l Véh2t+2 6Gn7a01 aG",bC2
n (dé,HdZ,V)Q z : n n,kat 1% n,katy2j ' m,crkai41 n,cakaiyo aGZh2t+1 8G6h2t+2

n n hi,ha,hs,hy t=0 n,ad;y n,bds

k1,k2,ks,ka

Because V( is bounded by assumption, we can again use Holder’s inequality together with Lemma 32 to bound each
of the summands by a constant independent of the h, k and n indices. This means we can restrict our attention only to
groups of terms that include at least O((d%* d’"")?) of the summands. These fall into one of the following three categories:
(1) 1= j, (hl,]{il) = <h27k‘2), and (h3, kg) = (h4, k‘4); (1) (hl, k‘l) = (h37 k‘g), and (h27k4) = <h4,k‘4); and (111) 1= j,
(h1,k1) = (ha, k4), and (ho, ka) = (hs, k3). Using exchangeability, we thus obtain

-1 0—1 0—1  0—1 01 01 02 02
<gn,c1-7gn,c1<> <gn,¢:2-7gn,c2<> aGn,acl 6Gn,b02 aGn,acl 6Gn,b¢:2

E[Sy] =06y E | 5,28,

! ! aGfll,adl aGfll,bdQ aGf«?,adl aGbedg
- - 2 05 e ~ e
5 _04 E (5,115,22 + 512521) <g7€,c11-7gf7,,c12<> aGle,acl 8Gn1,b02 aGf?,acl aGTLQ,bCQ
=30V 0—1 01 01 02 02
e e dn aGn,ad1 aGn,bdg 8G'n,adl aGn,bdz

o((dy"dy")?).

Note by the assumed continuity of V(, Theorem 3, Lemmas 24 and 33, the continuous mapping theorem, and Lemma 30,
both the integrands converge in distribution, which, combined with the above derived bound and Theorem 29, implies

, aG™, (x) AGE, (a')

E[SZL] — 0= U%VU(QQK@ﬁ’b’ (I, xl)’%ﬁwz (JJ, I/) <6d1—a:’%§b (Z‘, xl) + 5%;:;)1’%21(12 (.13, 33/)) E
T= do=b =

dGLL (x) 0GE!, <x'>]

where we have used the fact that S"12 converges in probability to zero whenever hy # hy (Lemma 24), and the asymptotic

indepedence of G*! and G*? (Theorem 3 if 7 = %, resp. (Yang, 2019b, appendix A) if 7 = 1). O
Lh ~Lh Lh
2 ~ —~ —~ ~ ov. "L 9G. "2  9G "2
90 14 Lh1,0757Lh2,0 ~ehy Lho n,c1ky n,beg n.bdy P
Lemma 25. Grmier 2ivyr 2 Owivry Wil Wakag Onlaes Vicana 351 o6, ot~ 0

. vt ) v .
Proof of Lemma 25. Observing that alf‘}’” = 0c,—a'0v —=L and setting
157 d -

n,a’i n
~Zh2 th
5 — ov Z Z ég ’erhl,owehz,owehl,vvehz éem 8Gn,bcg aGn,bdz
W H 4V -1 a5 ki ke Tnaitky Tnicaky et g athy g f=1 T
dn dn dn i’ 5" hy,ha n,bds gn,b’j’
k1,k2
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we immediately see that

_ oG, oG
_ Z (-1 ~e1 n,bea n bd2
E[Sn - _J Z 1 ZE a’i’ b’ j i"9n czz’Gn acy aGlebdz agn b
Analogously to the proof of Lemma 23, we define
aGih
Gh bd
S,n d‘e 1 Z a’i’ b’ j /gn 021/ a ZL . 2 (32)
n b/ !
dé ,G
oh Tilh K S0h,Q
(dz I 3/2 EG Z Z 9 a’il b’ /gn 021 <6d2 VOK n,Lbu1Wn] "y + Oy — bUQKn dzuanJ Ul) R (33)
i, 5 ur=1 —
T nyglug

and make use of an auxiliary lemma.

Lemma 26. S" -2 0.

Proof. Observe E[S"] = 0if 7 = 1 (independence of key and query weights), and

ah OQK Z v 0—1 0—1 0—1
#loel = (di ') - [@a/i/’b'ﬂ"g”»c#’ <5d2—b’gn7bﬁ + 5b/—b9n,dzj’>] 7
n i/,j/

if 7 = 1 (key and query weights are equal a.s.). Since each of the summands can be bounded by a constant indpendent of
the ', ' and n indices by Lemma 32, we can restrict our focus to the terms for which i’ # j', yielding

E[S«h] _ dﬁil(dﬁil B 1) E éé -1 5 l—1 -‘1-5 —1 + ((d271)2)
nl = —(d%,l)Q a’1,6'29n,¢51 | 9da=b"9p b/ b'=b9n,dy 5’ olla, )

Since ¢ a'1,b'2 L0 (Yang, 2019b), and the gn CQZ, gn o ;+ products converge in distribution by continuity of the assumed
¢ and the continuous mapping theorem, the mt_egrand converges to zero in distribution by Lemma 30. Using Lemmas 28
and 32 and Theorem 29, we again establish E[S"] — 0.

To obtain convergence in probability, observe

Qh\2 0 VY4 —1 h h
E[(Sn) } (dg 1 d@ G 27_ Z Z |:®a’i/1,b’ji®a/i/2,b’ gn ,Caif n 5212Fnj ulrn] uQ] 5
-/

11,31 uy,u2
05,55

and note that we can again bound each of the summands using Holder’s inequality and Lemma 32 as in to Lemma 24. We
can thus restrict our attention to groups of terms that include at least O((d%1)3(d%%)?7) of the summands. If 7 = 1, we

can thus focus on u; # ug, in which case integrating FZ g ulFZ yus OVET key and query weights will yield an additional

d’~! factor, for example
2

WK WK 7Q
[Qbul n, j ulQbug n]2“2] = dT.gn,b/jign,b/jé )
using the equality of key and query weights. Since @a,l, 1y converges in probability to zero whenever ©/ # j’ (Yang,
2019b), and there are only (d‘~!)? terms for which i) = j} and i = j}, we can use the continuous mapping theorem,
Lemma 30, and Theorem 29 to establish that E[(S”)?] — 0. If 7 = 1, all terms for which u; # 0 will have zero expectation
(independence of key and query weights), and thus analogous argument to the one for 7 = 1. O

With Lemma 26 at hand, we can simplify

1

_ oG
E[Sn] =0i= '0-\2/ E|S Gfllacl —uben ’
! aGlebdz
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and use the assumed continuity of V( together with the continuous mapping theorem and Lemma 30 to establish that the
integrand converges in distribution to zero. Since V( is bounded by assumption, we can used Holder’s inequality and
Lemma 32 to establish uniform integrability via Lemma 28 (see the proof of Lemma 26 for the bound on S). We thus have
E[S,] — 0 by Theorem 29.

To establish S,, —== 0, it is sufficient to show E[(S,,)?] — 0 and apply Chebyshev’s inequality.'> We have

a 1i7th2t+1,071,Lh2t42,0
E[(Sn) ] (dg Hd( Vdg 1 Z Z H @a’z’ jHan,kthi Wn,k2t+2j

11,51 ha,ha ks ha

1/2 35 k1.k2,ks ka

Lhatyo Lhatyo
1i7that4+1,V Lhaita  Alhoria n,bca [ 10—1 n,bda
Wn,i;+1k2t+1v’l’h€2k2t+2 G"7a01 Lhotto d” —1 ’

aGn,b(b ag’ﬂ o
Lhotyo
G
where notice we are multlplymg 92 by / d51 as this term scales as (d“~1)~1/2 (see Equation (32)). Since V( is
n, b’ ’“

bounded by assumption, we can use the Holder’s inequality to bound each of the summands by

1 E[O%, (2 2)Y], E[GY . (2)%], E|g% 16),
PO (1 95y B ()i, B s Bl o)
z,2' €{z,x’} ze{z,z’} z€{z,z"}

which will be bounded by a constant independent of the ', j/, h, k and n by Lemma 32. By Lemma 28, we can thus restrict
our attention to the terms that are not o((d%;d%"V d“~1)?), which fall into one of the following three categories: (i) i = j,
(hi, k1) = (h2, k2), and (3, k3) = (ha, ka); (i) (R, k1,81) = (hs, ks, i5), and (he, k2, j1) = (ha, k4, j3); (i) @ = j,
(h1,k1) = (hs, ks3), and (ha, ko) = (hy, k4). Using exchangeability, we thus obtain

o <g'€L (’1 ’gfz c1 > ay aéf&bc aGn bd
E[(5,)%) =0t E | mesInesl (Ge  Ger wbes [ i1 S nbds (34)
" v dgL ! Lo ! aGn ,bdo agn b'2
oGY, 0G™
52’: 9 2 E Sl S2G€1 Gl2 n,bcy n,bca + dZ,HdE,VdE—l 2 , 35
j40y n,aci — n,acy 8Gf} by aGﬁ%bd2 O(( n n n ) ) ( )
where we have used ]E[Wfblllen cleﬁ ‘gVn 2] = dZ"l gfl 6122,1 In e 621, and the definition of S” from Equation (32). We

prove convergence of both of these expectations to zero separately.

Starting with the second expectation in Equation (34), we can use the assumed continuity of V(, Theorem 3, Equation (32),
the continuous mapping theorem, and Lemma 30 to establish that the integrand converges in distribution to zero. Because
V( is bounded by assumption, we can combine Holder’s inequality and Lemma 32 to establish uniform integrability via
Lemma 28 (see the proof of Lemma 26 for the bound on S”), and thus convergence of the expectation to zero by Theorem 29.

For the first expectation in Equation (34), note that the absolute value of the expectation can be upper bounded by

~ 2 2
01
©4, .. | [ G4 Cnpes + dé- M
a’l,b’'2 n,acy 8Gz1 n a )
n,bds In.t b’2

(gt gt

E g

- ~ P

where, when multiplied out, we can use that @ﬁ/l vo — 0 (Yang, 2019b), and an argument analogous to the one above—
using Lemma 33 and the continuous mapping theorem to obtain convergence in probability for the inner product—to
establish convergence to zero. Finally, for the second term, observe

d/G

oG —

[ -1 nbd2 _ S K th,Q

dn = G E 5d2 bOK, bu1 Wn N + 0y = bUQKn ,do ulwn.j/ul )
agn b2 d :

12We will be using the explicit parenthesis here to distinguish between S? with 4 = 2, and (Sn)2.
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which converges in probability to a constant if 7 = 1 by Lemma 31 (using (Yang, 2019b) to establish convergence in
distribution of the keys and queries, and Lemma 32 for the moment bound). If 7 = % the sum will converge in distribution
(Yang, 2019b) and since the rest of the term in the expectation converge in probability, their product converges in distribution
by Lemma 30. One can then again combine Holder’s inequality, Lemmas 28 and 32 and Theorem 29 to obtain convergence

of the expectation to zero. Hence E[(S,,)?] — 0, implying S,, L, 0 as desired. O

B.3. Expressivity of ¢! and d—'/2 induced attention kernels

Proposition 2. There is no set of attention coefficients {(%; € R: a,i € [d*],z € X'} such that for all positive semidefinite
kernels k simultaneously

ds

- 1
Z '%i. (.13 Z‘ Cangj ZKNQ )Ny (i) l‘ T )d

ij=1

where dy is the dimension of the (flattened) convolutional filter, N,, Ny, C [d®] are the ordered subsets of pixels which are
used to compute the new values of pixels a and b, respectively, and N, (i), Ny(i) are the i’ pixels in N,, Ny.

Proof of Proposition 2. Consider kNN (z, 1) = Z?f LE N ()N () (m,x)d—lf, and the corresponding attention kernel

RATIN (3 2) = szzl Foij (2, 2)C%CE;. Note that kSN (x, =) is just sum of terms on a subset of the diagonal of 7 (z, z).

Hence it must be that (%, = +(ds)~ 1/ 2 since we require that the same set of coefficients {%;: i € [d*]} works all
kernels & simultaneously, and thus for any %,, (x, z) including all diagonal matrices with non-negative entries. Therefore
_gjl ¢ = 4(dy)~! for all 4, j, making signs the only degree of freedom.!* We conclude by noting that we can make
HATTN (z,2) # kSN (2, 2) by choosing &, (z,r) diagonal except for one pair of off-diagonal entries. O

Proposition 4. Under the d—/2 scaling, there exists a distribution over G such that for any x, x' and a,b, i, j

E[((G(2))aiC(G(2))by]

Proof of Proposition 4. We provide a simple construction here, and expand on more realistic ones after the proof.

Consider Q2 = [0, 1) with the usual Borel o-algebra 3 and the Lebesgue measure . LetR = R U {—00, 00} be the extended
real axis and Bbe the o- algebra generated by the interval topology on R. Now construct the random variables G,;: 2 — R

such that G,; = —oo as.if i ¢ N,,and G,; = 00 - 1 4,, a.s. where and A4,; = [l(“d)f 1, l(;) ), with i(,) being the position
of 7 in the ordered set IV,, and oo - 0 is to be interpreted as 0. ]

For a more realistic construction consider the usual G(x) = d~'/2Q(x)K ()" but now additionally multiply each row
of Q(z by a corresponding scalar random variable c¥: Q — R, similarly each row of K(x) by ¢&: Q — R. Then
Gab( ) = d 122c5(Qq. (), Kp.(2)) and thus one can achieve the desired result by setting up the joint distribution of
{cl b cdg i, ..., cK} in analogy to that in the above proof.

B.4. Auxiliary results

Lemma 27 (Billingsley, 1986, p. 19). Let X, (X,,)n>1 be random variables taking values in (RY, BN ), BN the usual
Borel o-algebra. Then X,, ~ X if and only if for each finite J C N and the corresponding projection T’ : RN — RY,
I'’(X,) ~T’(X)asn — oo.

Lemma 28 (Billingsley, 1986, p. 31). A sequence of real valued random variables (X, )n>1 is uniformly integrable if
supE | X, ['T¢ < 00

13 As a side note, this degree of freedom disappears when ( is a limit of the softmax variables (non-negativity).



Infinite attention: NNGP and NTK for deep attention networks

Theorem 29 (Billingsley, 1986, theorem 3.5). If (X, )n>1 are uniformly integrable and X,, ~~ X, then X is integrable and
E[X,] — E[X].
Lemma 30 (Slutsky’s lemmas). Let X, (Xn)n>1 and (Yy,)n>1 be real valued random variables defined on the same

probability space, and assume X, ~» X and 'Y, i for some c € R. Then
XY, ~ X, Xn+Y,~X+ec. (36)

Lemma 31 (Weak LLN for exchangeable triangular arrays). Let X,, := {X,;: i = 1,2, ...} be an infinitely exchangeable
sequence of random variables on RY s.t. limsup,,_, .o E | X, 1|**¢ < oo for some € > 0, and define S,, = i ngl Xni,
for some sequence (dy,)n>1 s.t. lim,_,o d,, = 00. Assuming all X,, are defined on the same space, if X, converges in
distribution to some infinitely exchangeable X, = {X, ;: i =1,2,...} s.t. E[X, 1 X 2] = (E[X,1])% then as n — oo,
E[S,] = E[X. 1], E[S2] = (E[X,1])% and

S, 5 E[X, 4]

Proof of Lemma 31. By exchangeability E[S,] = E[X,, 1], and thus by Lemma 28 and Theorem 29, E[S,,] — E[X, 1].
Similarly,

- dp(dn, — 1)
B[SZ] = - ElX2,)+ ==
and thus by the continuous mapping theorem and again by Lemma 28 and Theorem 29, E[S2] — (E[X, 1])? as n — oc.
Finally, the convergence in probability follows by Chebyshev’s inequality
E[S7] — (E[S.])?
52
Lemma 32 (Moment propagation). Under the assumptions of Theorem 3, for any x,x' € X, L € [L+ 1], andt > 1

E[Xn,an,Q] )

O

P{|S, ~ES.| =6} <

sup supE g, i (2)|* < oo,
celd’] n
iEN
sup supE|f, o;(2)[" < oo,
celd’] n
1€N
sup sup E | £, (2)[" < oo,
celd®] n
hyieN
sup supJE|Gncc (z)]" < o0,
c,c’€ld’] n
heN
sup supE|@m pj(z, 2" )|" < oo
a,be(d®’] n
i,jeN

Proof of Lemma 32. Beginning with E |g’, m( z)|t and E | ff;m»(a:) |, we see that this condition holds if none of the layers
1,...,¢ — 1 uses attention by the assumed polynomial boundedness of ¢ as a corollary of (Matthews et al., 2018, lemma 20)
for dense, and (Garriga-Alonso et al., 2019, pages 14 and 15) for convolutional networks.'* To extend to the case where one
or more of the preceding layers include attention, we see that it is sufficient to focus on bound for f* in the first attention
layer (i.e., with the lowest £ among the attention layer), as the bound for the following g* can be obtained from the assumed
polynomial boundedness of ¢ and exchangeability, and the bound on the following layers by a simple inductive argument.

Thus, focusing on E |ff .;(x)|* = E|f} .;(x)|" (exchangeability), we see that proving the bound for an arbitrary fixed
¢ € [d°] will be sufficient as d* is finite. Substituting

d[HdZV

E |f7€,cl( =E(E Z Z n, ck WﬁhklO

h=1 k=1

t

e+

71 leH
Ne(@) . S @)| § SE dszevchk

"*Note that the bound on E |g5) ;()|" = |zc;|" is trivial, which then leads to a bound on E | £} .;(z)|" as the individual columns will
be i.i.d. Gaussian for any n.
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where we have used that if e ~ N(0, ) and v € R? is a fixed vector, then (v, ¢) is in distribution equal to ||v||2¢” where
¢’ ~ N(0,1) by standard Gaussian identities, and the fact that E |¢’|* < co. Using Holder’s inequality if necessary, we can
assume ¢ is even, and with that multiply out the r.h.s. above, leading to

t
3

2
<E| ncl( )|t’

dZHdZVZ nck

by exchangeability. It will thus be sufficient to establish sup c(gs] n,;en SUP, E |f¢ hi(x)|" < oo for any t > 1. Observe

g1 ¢ ) t
o . _ i . L
E|fil() = EQE | |37 Gl @l J@W, | | Gl @) ol @) | ¢ SB[ Y (Gl @ j@) |
Jj=1 " J

meaning we can combine an argument analogous to the one above with Holder’s inequality and exchangeability to obtain

dl- 1Z(GM gn g( ))2

As shown at the beginning of this proof, we can bound IE|gnC (@ x)|* by a constant independent of ¢,j and

%
S poly max E|G;).. (@), max supEIan (@)]*) -
/6 ds c e[ds] . -]

n, and thus it only remains to show that max. . c|qs] SUp)cy sup,, E |Gn (@) < oo in order to bound the
E| ff; «1(2)]!. Using the assumed entrywise polynomial boundedness of ¢, we can see it will be sufficient to establish
MaxXc ¢ ¢(a+] SUPp ey SUP,, B |GE, (x)] < co. We do this separately for 7 = 1 and 7 = 3.

Starting with the former, we can again replicate the argument from above, yielding

dZG

dmZka ) Kl (@)

t

E|G, SEIQL . (2) SE|gh h(x)*,

n 0("(

by exchangeability, Holder’s inequality, and the assumed W/"®@ = WK a5 under 7 = 1 (Section 3.2). For the 7 = %
case, we start by w.l.o.g. assuming we need bound for ¢ € N even

= <C}’G> Z E H nck( )th ( ) )

n k1,...,ke s=1

le

E|Gncc/( )| Kéh ( )

nck

d/G

and noting that because W@ and WX are assumed independent under 7 = 3, there will be at most O((G)"/?) terms
with non-zero expectation, meaning that we can again apply exchangeability and the distributional equivalence between
Q" (z) and K" (x) to obtain
th
|Gn cc! ( )|t S E |Qn cl( )|2t S E |gn cl( )|4t .

The convergence of max, pe(as] SUP; jen SUP,, E \@m »j (@, 2")[* < oo for non-attention layers can be obtained by com-

bining exchangeability between the two groups of @m, p; variables with ¢ # j (resp. i = j) indices, and the results in
(Yang, 2019a) which show that expectations of polynomially bounded functions converge (this is essentially due to the
assumed polynomial boundedness of ¢ and { and their (weak) derivatives, the fact that the pre-nonlinearities in the first
layer are Gaussian for all of the considered architectures by linearity of Gaussian variables, and the standard combination of
Lemma 28 and Theorem 29—see the proofs of theorems 4.3 and 5.1 in (Yang, 2019a)). This can then be used to prove
the bound for the first attention layer by inspecting the proofs in Appendix B.2 and noting that sup,, E |@m b ]( 2')|* can
be always bounded by a polynomial in suprema over quantities from previous layers that we already know are uniformly
bounded. The proof for subsequent attention layers can thus proceed by induction. O

Lemma 33 (Convergence of inner products). Under the assumptions of Theorem 3, the following holds for any a,b € [d®],
z,2' € X, 0 €[L+1],and h € [d}]

<gf§,a1.(x),gfﬁf(w’)>] nooo ¢ (ra(2), g (@) »

E = = gy (m,2"), =] — R (z,2), 37
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-< ff,bw(x)’ éhb-(m/» n—00 ~ < fti,la-(x)’ fhb' (‘T/)> P ~

E dz,Gm = aémﬁb (x, "), G n — aé%&f;b (z,2'), (38)
: Kéh (z ,Kéh z’ Kéh. T ’th !

E < n,a ( ;K’Gn,b‘( )> nj}oo U%(f%ﬁb (.T, Z‘/), < n,a ( d)Z,Gn,b( )> i) O'%(/‘%gb (l‘,$/)7 (39)
: Zh.x,Kéh ! Zh_m,KZh !

E Dre ie,cn’b.( ) " Srmroqr iy, (€, 1), ni C)IE,Gmb'( ) £, Sr=100KRLy (z,27) . (40)

Proof of Lemma 33. Notice that all the statements involving Q“" or K*" are of the form

_ 0— T
e (@)W (W) T gy (2')

dsc

)

i.e., with the same weight matrix multiplying the layer inputs g/ ~! () (recall that under 7 = 1, we assumed W@ = W th-K
a.s.). Taking the expectation of the above term we obtain a term proportional up to g or o to

1 =1/
. l<gi,a.(w),gn,b. (x'))

d€—1 = ]E |:gf;,_a11 (x)7gfl7_bl1 ($/):| )

by the assumed exchangeability of g%~*. Since the integrand converges in distribution by the assumed continuity of ¢ and the
continuous mapping theorem (Dudley, 2002, theorem 9.3.7), we can combine Lemma 32 with Lemma 28 to obtain uniform

integrability and thus E[gf;all (2), g5 1 (")) — &L, (x,2") by Theorem 29, proving the convergence of expectations.

The obtain the convergence in probability, it is sufficient to show that

2 dt=t
— £— — £— «
= Z E |:gn,a1i1 (x)gn,bé'l (m)gn,aliQ (x)gn,bé'g (l‘>W’r€fll1(Wghjl)TWi}zz(WﬁZz)T ’
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i d[,G

converges to the square of the mean as by Chebyshev’s inequality: P(|X,, — E X| > ) < 6 2(E[X?2] — {E[X,]}?). Since
we can bound each of the summands using Holder’s inequality combined with Lemma 32, the limit of the above expectation
will up to a constant coincide with that of
dl—l
1 N o— 0— o— o— o— o— o— 0— -
@1 2 B @ @@l @) =B [0 @5 @@l @) + o)
" .3

where the equality is by the assumed exchangeability. Since the individual columns of g“~! are asymptotically independent
by assumption, we can use an argument analogous to that we made for the E[gf;all (z) gffbll(x)] above to obtain the

(%L, (x,2"))? limit. Noting that the Lh.s. above is equal to E [ ({g5 .} (2), gf&f (x’)>/dff1)2] concludes the proof. O

C. Positional encodings

As in the proofs for attention without positional encodings, we assume the ‘infinite width, finite fan-out’ construction of
the sequence of NNs. In particular, we will assume that for any n € N, there is a countably infinite set of random variables

{Ef ;:ieN} ={E}:ieN}, where E{ ~ N(0, R) i.i.d. over the i index, but only a finite number dv” € Nis add-ed,

g (@) = Vag, " (2) + V1 - aB,,

or append-ed
gn (@) =95 (2), Bp],

to each of the layer inputs g¢~*(z). In the append case, we further assume o = limy,_oc d~1/(d5” + d‘~1).
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C.1. NNGP limit

Note that all Theorem 3 relies on is that the layer’s inputs {g°~!(z): # € X'} converge in distribution to some g*~!(x) with
mutually independent columns, and on the fact that the elementwise absolute moments of gf;*alz(a:) are bounded uniformly

in a, i and n. Let us thus replace g5~ !(z) by g5~ !(z), and see whether the proofs still apply.

Exchangeability: The proofs of exchangeability in Lemmas 5, 8 and 13 are all based on conditioning on g~*(z) for some
fixed finite subset of the inputs x, and then showing that the random variables are conditionally i.i.d. for any given n € N. If
positional encodings are used, the variables will be again i.i.d. if we add E’ into the conditioning set.

Convergence in distribution: To establish {§‘~1(z): z € X'} converges in distribution in the add case, we can use a
simple argument based on the Cramér-Wold device and pointwise convergence of the characteristic function, which implies
convergence in distribution by Lévy’s continuity theorem (using the fact that Ef; ; are assumed to be i.i.d. N'(0, R) and the
distribution of a particular Ef;l does not change with n). An alternative approach has to be taken for the append case
where the weak limit of the layer input’s distribution may not be well defined; closer inspection of Appendix B.1 reveals that
all the proofs depend on the convergence of the layer inputs only through Lemmas 32 and 33, which we discuss next.

Convergence of inner products and boundedness of moments: The proof of each statement of Lemma 32 relies on
{957 (x): @ € X} only through the bound max,e4:) Sup;cy sup,, E l9: "2 (x)]* < oo which is essentially established

n,ct
using the assumed polynomial bound on |¢| and the Gaussianity of the weights at initialisation. All we need to extend
Lemma 32 to the case where positional encodings are used is to establish max, ¢4+ sup;cp sup,, E | G- Ma)|* < oc. This

can be done by observing E \gf;ci ()" < max{E |gfL;1i(x)|t7 E|E} 1|} < oo by the assumption Ef;l ~ S(0,R) ii.d.
over the ¢ index for any n € N.

Similarly, the proof of Lemma 33 can be modified by observing that

(G (), Gy, () it dn”
B |-t = o5 E [0k (@) gt (@) + B [B Bl
l d%E +dffl de,E —l-dffl n,al bl df{E —|—d£;1 ,al b1

:Rab

in the append case by the independence of EY and exchangeability. Using the Gaussianity of positional encodings and
a =lim, o di7t/ (deE + d%~1), an analogous argument to that made in Lemma 33 can be used to establish convergence
of theths. to Z o &%, (x,2") = ail, (v,2') + (1 — @) R, in both probability and expectation. For the add case,

. l<gﬁ,a1.<x>,§f;,b?<x'>>]

= aE [l @), g ()] + (1 - ) E[EL o Bl
N——
=R b

a

d5t

again by the independence of Efl and exchangeability, and thus a similar argument to the one above applies.

Putting all of the above together, addition of positional encodings does not prevent GP behaviour in the infinite width limit;
the only modification of the results in Appendix B.1 is thus replacement of any Rﬁb (x, 2') in the expression for the limiting
covariance of f and G¢ by Z o &', (z,2").

C.2. NTK limit

There are two sets of changes to the NTK limit. First, the gradients w.r.t. g"~'(z) in the indirect part will now be multiplied

by v/a in the add case, and by [d5~1/(d’, + df{E)]l/ 2__to ensure convergence of corresponding inner products—in the
append case, and all the terms of the form

—y_ —l— k
(Grat (), G (=)
dy® + di!

E

for some k > 0 in the direct part will converge to the k™ power of the Z o &%, (z,2') = ak%, (z,2') + (1 — a)R,,;, kernel
as discussed. Since we have shown that Lemmas 32 and 33 hold mutatis mutandis in the previous section, the rest of the
proofs in the direct part can be modified in the obvious way, replacing f%f;b (x,2")byZ o /Z;flb (x,2") as necessary.
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Second, there will be a new contribution to the direct part due to the gradient w.r.t. the trainable EfL. Since EY is add-ed
(resp. _append- -ed) to the layer input g°~!(x), this contribution will be quite similar to the indirect contribution, however
with ©F it b (z,2") (Equation (27)) replaced by (1 — «)da/=p ;7= Inspecting Lemmas 22, 23 and 25, this will lead

to two changes. Firstly, since E |(1 — «)dq/—pdi—j/|* < o0, all bounds involving E |@a/i/1b/j/ " can be trivially reduced.
Secondly, as shown in the previous section, all appearances of the &%, (z,z) are to be replaced Z o &’ (x, 2'), including
those involved indirectly through the modified asymptotic distribution of G%. The rest of the proofs is affected by the
introduction of positional encodings only through Lemmas 32 and 33 which, as mentioned, do hold in a modified form.
Substituting (1 — )dg/=p 07 =+ for ®£,i,’b,j, (z,2") in Lemmas 22 and 23, we thus conclude that the new contribution to

the NTK due to the gradient w.r.t. EY is

(1-a) aOVZEG“ (z')]+
ds
G} (x) oGH ()
5 1(1— 2 2 T ~0 / 5. . T ~/ / 5 T ~/ / E acy beo
3 (= oy 30 To Ry (297 (e 05 (7:3) + T R, (229 B | G Ly
dy,d2

D. Residual attention
Observe that by (Garriga-Alonso et al., 2019; Yang, 2019b), the covariance induced by the skip connection, ff;(x) =
Vagi~t(z) + 1 — aff(x), in the infinite width limit is equal to
E[f21 () f51(2)] = aBlgiy (@) ' (2)] + (1 — @) E[fg (2) fi ()]
= afify (z,2') + (1 — o) E[f5 (x) foy (2)] .
To obtain the ai’, (z,2') + (1 — a)R, &’ (x,2')R,. from Equation (14), it is thus sufficient to choose f(z) to be the

output of attention layer under the d~! scaling with structured positional encodings (covariance R), identity function for ¢
and the interpolation parameter for the attention layer set to zero, resulting in the R, & (z,2') R} (see Table 1).



