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A. Appendix

Table A.1. M3-Mortality prevalence of labels for the binary
classification task

Train  Test Val
0.135 0.116 0.135

In-hospital deaths

Table A.2. P-Mortality prevalence of labels for the binary
classification task

Train  Test Val
0.142 0.142 0.142

In-hospital deaths

Table A.3. P-Sepsis prevalence of labels for the online predic-
tion task

Train  Test Val
0.018 0.018 0.018

Sepsis occurrence

A.1. Dataset preprocessing

Filtering Due to memory requirements of some of the
competitor methods, it was necessary to excluded time
series with an extremely large number of measurements.
For M3-Mortality, patients with more than 1000 time
points were discarded as they contained dramatically dif-
ferent measuring frequencies compared to the rest of the
dataset. This led to the exclusion of the following 32 pa-
tient records: 73129_2, 48123_2, 76151_2, 41493_1,
655651, 55205.1, 41861_.1, 58242_4, 540731,
46156_1, 55639.1, 89840.1, 43459.1, 10694_2,
51078-2, 90776_-1, 892231, 12831_.2, 80536_1,
78515_1, 62239.2, 587231, 401871, 793371,
51177.1, 70698_1, 48935.1, 54353.2, 19223_2,
58854.1,80345.1, 48380_1.

In the case of the P-Mortality dataset, some in-
stances did not contain any time series information at all
and were thus removed. This led to the exclusion of
the following 12 patients: 140501, 150649, 140936,
143656, 141264, 145611, 142998, 147514,
142731,150309,155655,156254.

For P-Sepsis some instances did not contain static val-
ues or were lacking time series information all together.
We thus excluded the following files: p013777.psv,
pl108796.psv,pll15810.psv.

Static variables The datasets often also contain informa-
tion about static variables, such as age and gender. Ta-
ble[A 4] lists all the static variables for each of them.

Table A.4. Static variables used for each of the datasets in the ex-
periments. Categorical variables are shown in italics and were
expanded to one-hot encodings.

Dataset Static Variables

M-Mortality Height
P-Mortality Age, Gender, Height, ICUType
P-Sepsis Age, Gender, HospAdmTime

Time series variables For all datasets, we used all avail-
able time series variables including vitals, lab measure-
ments, and interventions. All variables were treated as con-
tinuous, and no additional transformations were applied.

Splits All datasets were partitioned into three subsets
training, validation and testing. For the M-Mortality
dataset, the same splits as in (Harutyunyan et al.| [2019)
were used to ensure comparability of the obtained re-
sults. For both Physionet datasets (P-Mortality and
P-Sepsis), we did not have access to the held-out test
set used in the challenges and thus defined our own splits.
For this, the full dataset was split into a training split (80%)
and a testing split (20%), while stratifying such that the
splits have (approximately) the same class imbalance. This
procedure was repeated on the training data to addition-
ally create a validation split. In the case of the online task
P-Sepsis, stratification was based on whether the patient
develops sepsis or not.

Implementation We provide the complete data pre-
processing pipeline including the splits used to gener-
ate the results in this work as a separate Python pack-
age medical-ts-datasets, which integrates with
tensorflow—datasets(TFD). This permits other re-
searchers to directly compare to the results in this work.
By doing so, we strive to enable more rapid progress in the
medical time series community.

A.2. Comparison partners

The following paragraphs give a brief overview of the
methods that we used as comparison partners in our ex-
periments.

GRU-simple GRU-sIMPLE (Che et al.,[2018) augments
the input at time ¢ of a Gated-Recurrent-Unit RNN with
a measurement mask m‘f and a §; matrix, which contains
the time since the last measurement of the corresponding
modality d, such that
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where s; represents the time associated with time step ¢.

GRU-D GRU-D or GRU-Decay (Che et al., 2018) con-
tains modifications to the GRU RNN cell, allowing it to de-
cay past observations to the mean imputation of a modality
using a learnable decay rate. By additionally providing the
measurement masks as an input the recurrent neural net-
work the last feed in value. Learns how fast to decay back
to a mean imputation of the missing data modality.

Phased-LSTM The PHASED-LSTM (Neil et al.l 2016
introduced a biologically inspired time dependent gating
mechanism of a Long short-term RNN cell (Hochreiter
& Schmidhuber, 1997). This allows the network to han-
dle event-based sequences with irregularly spaced observa-
tions, but not unaligned measurements. We thus addition-
ally augment the input in a similar fashion as described for
the GRU-SIMPLE approach.

Interpolation Prediction Networks IP-
NETWORKS (Shukla & Marlin, [2019) apply multiple
semi-parametric interpolation schemes to irregularly-
sampled time series to obtain regularly-sampled represen-
tations that cover long-term trends, transients, and also
sampling information. The parameters of the interpolation
network are trained with the classifier in an end-to-end
fashion.

Transformer In the TRANSFORMER  architec-
ture (Vaswani et al., |2017), the elements of a sequence
are encoded simultaneously and information between
sequence elements is captured using Multi-Head-Attention
blocks. Transformers are typically used for sequence-
to-sequence modelling tasks. In our setup, we adapted
them to classification tasks by mean-aggregating the final
representation. This representation is then fed into a
one-layer MLP to predict logits for the individual classes.

A.3. Implementation details

All experiments were run using tensorflow 1.15.2
and training was performed on NVIDIA Geforce GTX
1080T1i GPUs. In order to allow a fair comparison be-
tween methods, the input processing pipeline employed
caching of model-specific representations and transforma-
tions of the data.

In contrast, due to the high complexity of the LATENT-
ODE model, we relied on the implementation provided
by the authors and introduced our datasets into their code.
This introduces the following differences between the eval-
uation of LATENT-ODE compared to the other methods:
1. input processing pipeline is not cached 2. model code is
written in PyTorch 3. due to an order of magnitude higher
runtime, a thorough hyperparameter search was not feasi-

ble . This can introduce biases both in terms of runtime and
performance compared to the other methods.

A.4. Training, Model Architectures, and
Hyperparameter Search

General All models were trained using the Adam op-
timizer (Kingma & Ba, [2015), while log-uniformly sam-
pling the learning rate between 0.01 and 0.0001. Further,
the batch size of all methods was sampled from the values
(32,64, 128,256,512).

Recurrent neural networks For the RNN based meth-
ods (GRU-SIMPLE, PHASED-LSTM, GRU-D and IP-
NETS), the number of units was sampled from the
values (32,64, 128,256,512,1024). Further, recurrent
dropout and input dropout were sampled from the values
(0.0,0.1,0.2,0.3,0.4). For the PHASED-LSTM method,
however, we did not apply dropout to the recurrent state
and the inputs, as the learnt frequencies were hypothe-
sized to fulfil a similar function as dropout (Neil et al.
2016). We additionally sample parameters that are spe-
cific to PHASED-LSTM: if peephole connections should
be used, the leak rate from (0.001,0.005,0.01) and the
maximal wavelength for initializing the hidden state phases
from the range (10,100,1000). For IP-NETS, we addi-
tionally sample the imputation stepsize uniformly from the
range (0.5, 1.,2.5,5.) and the fraction of reconstructed data
points from (0.05,0.1,0.2,0.5,0.75).

Static variables were handled by computing the initial hid-
den state of the RNNs conditional on the static variables.
For all methods, the computation was performed using a
one-hidden-layer neural network with the number of hid-
den units set to the number of hidden units in the RNN.

SEFT-Attn We vary the number of layers, dropout in be-
tween the layers and the number of nodes per layer for
both the encoding network hy and the aggregation net-
work gy from the same ranges. The number of layers
is randomly sampled between 1 and 5, the number of
nodes in a layer are uniformly sampled from the range
(16,32, 64, 128, 256, 512) and the dropout fraction is sam-
pled from the values (0.0, 0.1,0.2,0.3). The width of the
embedding space prior to aggregation is sampled from the
values (32,64, 128,256,512,1024,2048). The aggrega-
tion function was set to be sum as described in the text.
The number of dimensions used for the positional em-
bedding 7 is selected uniformly from (4, 8,16) and ¢, i.e.
the maximum time scale, was selected from the values
(10,100, 1000). The attention network f’ was set to always
use mean aggregation. Furthermore, we use a constant ar-
chitecture for the attention network f’ with 2 layers, 64
nodes per layer, 4 heads and a dimensionality of the dot
product space d of 128. We sample the amount of attention
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dropout uniformly from the values (0.0, 0.1,0.25,0.5).

Transformer We utilize the same model architecture as
defined in |Vaswani et al.| (2017, where we use an MLP
with a single hidden layer as a feed-forward network, with
dimensionality of the hidden layer selected to be twice
the model dimensionality. The Transformer architecture
was applied to the time series by concatenating the vec-
tors of each time point with a measurement indicator. If no
value was measured, input was set to zero for this modal-
ity. The parameters for the Transformer network were
sampled according to the following criteria: the dimen-
sionality of the model was sampled uniformly from the
values (64, 128,256,512,1024), the number of attention
heads per layer from the values (2,4, 8), and the number
of layers from the range [1,6] € IN. Moreover, we sam-
pled the amount of dropout of the residual connections and
the amount of attention dropout uniformly from the values
(0.0,0.1,0.2,0.3,0.5), and the maximal timescale for the
time embedding from the values (10, 100, 1000) (similar to
the SEFT approach). Further, 1000 steps of warmup were
applied, where the learning rate was linearly scaled from
Irmin = 0 to the learning rate 7, sampled by the hyper-
parameter search.

Latent-ODE We utilize the implementation from
Rubanova et al.|(2019) and extended the evaluation metrics
and datasets to fit our scenario. Due to the long training
time almost an order of magnitude longer than any other
method considered a thorough hyperparameter search as
executed for the other methods was not possible. We thus
rely on the hyperparameters selected by the authors. In
particular, we use their physionet 2012 dataset settings for
all datasets. For further details see Table[A.3]

Selected hyperparameters In order to ensure repro-
ducibility, the parameters selected by the hyperparameter
search are shown in Table[A 3] for all model dataset combi-
nations.
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Table A.5. Best hyperparameters of all models on all datasets.

Model P-Mortality M-Mortality P-Sepsis

GRU-D Ir: 0.00138, bs: 512, n_units: Ir: 0.00016, bs: 32, n_units: 1Ir: 0.0069, bs: 128, n_units:
128, dropout: 0.1, recur- 256, dropout: 0.0, recur- 512, dropout: 0.3, recur-
rent_dropout: 0.1 rent_dropout: 0.2 rent_dropout: 0.3

GRU-SIMPLE Ir: 0.00022, bs: 256, n_units: Ir: 0.00011, bs: 32, n_units: Ir: 0.00024, bs: 64, n_units:
256, dropout: 0.0, recur- 512, dropout: 0.3, recur- 1024, dropout: 0.3, recur-
rent_dropout: 0.0 rent_dropout: 0.4 rent_dropout: 0.3

IP-NETS Ir: 0.00035, bs: 32, n_units: Ir: 0.00062, bs: 16, n_units: Ir: 0.0008, bs: 16, n_units:
32, dropout: 0.4, recur- 256, dropout: 0.2, recur- 32, dropout: 0.3, recur-
rent_dropout: 0.3, im- rent_dropout: 0.1, im- rent_dropout: 0.4, im-
putation_stepsize: 1.0, putation_stepsize: 1.0, putation_stepsize: 1.0,
reconst_fraction: 0.75 reconst_fraction: 0.2 reconst_fraction: 0.5

TRANSFORMER Ir: 0.00567, bs: 256, Ir: 0.00204, bs: 256, Ir: 0.00027, bs: 128,

warmup_steps: 1000, n_dims:
512, n_heads: 2, n_layers: 1,
dropout: 0.3, attn_dropout:
0.3, aggregation_fn:  max,
max_timescale: 1000.0

warmup_steps: 1000, n_dims:
512, n_heads: 8, n_layers: 2,
dropout: 0.4, attn_dropout:
0.0, aggregation_fn: mean,
max_timescale: 100.0

warmup_steps: 1000, n_dims:
128, n_heads: 2, n_layers: 4,
dropout: 0.1, attn_dropout:
0.4, aggregation_fn: mean,
max_timescale: 100.0

PHASED-LSTM

Ir: 0.00262, bs: 256, n_units:
128, use_peepholes:  True,
leak: 0.01, period_init_max:
1000.0

Ir: 0.00576, bs: 32, n_units:
1024, use_peepholes: False,
leak: 0.01, period_init_max:
1000.0

Ir: 0.00069, bs: 32, n_units:
512, use_peepholes: False,
leak: 0.001, period_init_max:
100.0

LATENT-ODE optimizer: Adamax, optimizer: Adamax, optimizer: Adamax,
Ir_schedule: exponential Ir_schedule: exponential Ir_schedule: exponential de-
decay, Ir: 0.01, bs: 50, decay, Ir: 0.01, bs: 50, cay,lr: 0.01, bs: 50, rec-dims:
rec-dims: 40, rec-layers: rec-dims: 40, rec-layers: 40, rec-layers: 3, gen-layers:
3 gen-layers: 3, units: 50, 3 gen-layers: 3, units: 50, 3, units: 50, gru-units: 50,
gru-units: 50, quantization: gru-units: 50, quantization: quantization: 1, classification:
0.016, classification: True, 0.016, classification: True, True, reconstruction: True
reconstruction: True reconstruction: True

SEFT-ATTN Ir: 0.00081, bs: 512, Ir: 0.00245, bs: 512, Ir: 0.00011, bs: 64,
n_phi_layers: 4, phi_width: n_phi_layers: 3, phi_width: n_phi_layers: 4, phi_width:
128,  phi_dropout: 0.2, 64, phi_dropout: 0.1, 32, phi_dropout: 0.0,
n_psilayers: 2, psi_width: n_psilayers: 2, psi_width: n_psilayers: 2, psi_width:
64, psi_latent_width: 64, psi_latent_width: 64, psi_latent_width:
128, dot_prod_dim: 128, 128, dot_prod_dim: 128, 128, dot_prod_dim: 128,
n_heads: 4, attn_dropout: n_heads: 4, attn_dropout: n_heads: 4, attn_dropout:
0.5, latent_width: 32, 0.1, latent_width: 256, 0.1, latent_width: 512,
n_rho_layers: 2, rho_width: n_rho_layers: 2, rho_width: n_rho_layers: 3, rho_width:
512,  rho_dropout: 0.0, 512, rho_dropout: 0.1, 128, rho_dropout: 0.0,
max_timescale: 100.0, max_timescale: 1000.0, max_timescale: 10.0,

n_positional _dims: 4

n_positional_dims: 8

n_positional_dims: 16




