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Abstract
We consider the problem of learning the weighted
edges of a balanced mixture of two undirected
graphs from epidemic cascades. While mixture
models are popular modeling tools, algorithmic
development with rigorous guarantees has lagged.
Graph mixtures are apparently no exception: until
now, very little has been known about whether
this problem is solvable.

To the best of our knowledge, we establish the
first necessary and sufficient conditions for this
problem to be solvable in polynomial time on
edge-separated graphs. When the conditions are
met, i.e., when the graphs are connected with at
least three edges, we provide an efficient algo-
rithm for learning the weights of both graphs with
optimal sample complexity (up to log factors).

We give complementary results and provide
sample-optimal (up to log factors) algorithms for
mixtures of directed graphs of out-degree at least
three, for mixtures of undirected graphs of unbal-
anced and/or unknown priors.

1. Introduction
Epidemic models represent spreading phenomena on an
underlying graph (Newman, 2014). Such phenomena in-
clude diseases spreading through a population, security
breaches in networks (malware attacks on computer/mo-
bile networks), chains of activations in various biological
networks (activation of synapses, variations in the levels of
gene expression), circulation of information/influence (ru-
mors, (fake) news, viral videos, advertisement campaigns),
and so on.

Most settings assume the underlying graph is known (e.g.,
the gene regulatory network), and focus on modeling epi-
demics (Del Vicario et al., 2016; Wu & Liu, 2018; Gomez-
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Rodriguez et al., 2013; Cheng et al., 2014; Zhao et al., 2015;
Liu et al., 2019), detecting them (Arias-Castro et al., 2011;
Arias-Castro & Nov; Milling et al., 2015; 2012; Meirom
et al., 2014; Leskovec et al., 2007; Khim & Loh, 2017), de-
tecting communities (Prokhorenkova et al., 2019; Xie et al.,
2019), finding their source (Shah & Zaman, 2010a; 2012;
2010b; Spencer & Srikant, 2015; Wang et al., 2014; Sridhar
& Poor, 2019; Dong et al., 2019), obfuscating the source,
(Fanti et al., 2016; 2015; 2017), or controlling their spread
(Kolli & Narayanaswamy, 2019; Drakopoulos et al., 2014;
2015; Hoffmann & Caramanis, 2018; Farajtabar et al., 2017;
Wang et al., 2019; Yan et al., 2019; Ou et al., 2019).

The inverse problem, learning the graph from times of infec-
tion during multiple epidemics, has also been extensively
studied. The first theoretical guarantees were established by
Netrapalli and Sanghavi (Netrapalli & Sanghavi, 2012) for
discrete-time models. Abrahao et al. (Abrahao et al., 2013)
tackled the problem for some continuous-time models, for
exponential distributions. Daneshmand et al. (Daneshmand
et al., 2014) solved the problem for a wide class of con-
tinuous models which fit real-life diffusions. Pasdeloup et
al. (Pasdeloup et al., 2017) characterized a set of graphs
for which this problem is solvable using spectral methods.
Khim and Loh (Khim & Loh, 2018) solved the problem for
correlated cascades. Subsequently, Trouleau et al. (Trouleau
et al., 2019) showed how to learn the causal structure of
Hawkes processes under synchronization noise. In parallel,
Hoffmann and Caramanis (Hoffmann & Caramanis, 2019)
showed that it is possible to robustly learn the graph from
noisy epidemic cascades, even in the presence of arbitrary
noise.

However, this line of research always assumes that the epi-
demic cascades are all of the same kind, and spread on
one unique graph which entirely captures the dynamics of
the spread. In reality, our observations of cascades are far
more granular: different kinds of epidemics spread on the
same nodes but through different mechanisms, i.e., differ-
ent spreading graphs. Epidemic cascades we observe are
often a mixture of different kinds of epidemics. Without
knowledge of the label of the epidemic, can we recover the
individual spreading graphs? For a concrete example, let us
consider the ubiquitous Twitter graph. Individuals usually
have multiple interests, and will share tweets differently ac-
cording to the underlying topics of the tweets. For instance,
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two users may have aligned views on football and diametri-
cally opposed political views, and hence may retweet each
others’ football tweets but not political posts. Interesting
settings are those where the epidemic labels (in this sim-
ple case, football and politics) is not observable. While
football and politics may be easy to distinguish via basic
NLP, the majority of settings will not enjoy this property
(e.g., she retweets football posts relating to certain teams,
outcomes, or special plays). In fact, the focus on recover-
ing the spreading graph stems precisely from the desire to
study very poorly-understood epidemics whose spreading
mechanisms, symptoms, etc. remain elusive. Examples out-
side the Twitter realm (e.g., human epidemics with multiple
spreading vectors) abound.

In such cases, applying existing techniques for estimating
the spreading graph would recover the union of graphs in
the mixture. For Twitter and other social networks, this is
essentially already available. However, this union is typi-
cally not informative enough to predict the spread of tweets,
and may even be misleading.

We address precisely this problem. We consider a mixture
of epidemics that spread on two unknown weighted graphs
when, for each cascade, the kind of epidemic (and hence
the spreading graph) remains hidden. We aim to accurately
recover the weights of both the graphs from such cascades.

Mixture models in general have attracted significant focus.
Even for the most basic models, e.g., Gaussian mixture
models, or mixed regression, rigorous recovery results have
proved elusive, and only recently has there been significant
progress (e.g., (Balakrishnan et al., 2017; Yi et al., 2014;
2016; Chen et al., 2017; Diakonikolas et al., 2018; Kwon
et al., 2019; Xu et al., 2016; Daskalakis et al., 2017; Kwon
& Caramanis, 2019)). This work reveals some similari-
ties to prior work. For example, here too, moment-based
approaches play a critical role; moreover, here too, there
are conditions on separation of the two classes needed for
recovery. Interestingly, however, the technical key to our
work is much more combinatorial in nature, rather than
appealing to more general-purpose tools (like tensor de-
composition or EM). As we outline below, the crux of the
proof of correctness of our algorithm is a combination of a
characterization of forbidden graphs that cannot be learned,
and a decomposition-reduction of a general graph to smaller
subgraphs that can be learned and later patched to produce
a globally consistent solution.

1.1. Contributions

To the best of our knowledge, this is the first paper to study
the inverse problem of learning mixtures of weighted undi-
rected graphs from epidemic cascades. We address the
following questions:

Recovery: Under the assumption that the underlying graphs
are connected, have at least three edges and under some sep-
arability condition (detailed in the next section), we prove
the problem is solvable and give an efficient algorithm to
recover the weights of any mixture of connected graphs
with equal priors on the same set of vertices.

Identifiability: We show the problem is not solvable in
polynomial time of one if the condition mentioned above
is violated. The problem is unidentifiable when one of
the graphs of the mixture has a connected component with
less than three edges. Moreover, there exist (many) graphs
which violate the separability condition, and for which any
algorithm would require at least exponential (in the number
of nodes) sample complexity.

Sample Complexity: We prove a lower bound on the sam-
ple complexity of the problem, and show that our algorithm
always matches the lower bound up to log factors in terms
of the number of nodesN . It also matches the bound exactly
in terms of the dependency in the separation parameter 1

∆ if
the graphs have min-degree at least 3.

Extensions: We give similar guarantees for the case of
directed graphs of min-degree at least 3, and of undirected
graphs with unbalanced and/or unknown mixtures priors.
Finally, we discuss how to obtain numerical solutions for
K > 2 mixtures.

2. Preliminaries
We consider an instance of the independent cascade model
(Goldberg et al., 2001; Kempe et al., 2003). We observe in-
dependent epidemics spreading on a mixture of two graphs.
In this section, we specify the dynamics of the spreading
process, the observation model, and the learning task.

2.1. Mixture Model

We consider two weighted graphsG1 = (V,E1) andG2 =
(V,E2) on the same set of vertices V . Unless specified
otherwise, the graphs considered are undirected: pij = pji
and qij = qji. Note that pij (qij) is 0 if there is no edge
between i and j in G1 (G2).

We say that the mixture is ∆-separated if:

min
(i,j)∈E1∩E2

|pij − qij | ≥ ∆ > 0.

We denote the minimum edge weight by
pmin := min

(i,j)∈E1

min
(k,l)∈E2

min(pij , qkl). Note that pmin is

positive.

2.2. Dynamics of the Spreading Process

We observe M independent identically distributed epidemic
cascades, which come from the following generative model.
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Figure 1: Unsolvable structures

Component Selection: At the start of a cascade, an i.i.d.
Bernoulli random variable b ∈ {1, 2} with parameter α
(Pr[b = 1] = α) decides the component of the mixture,
i.e., the epidemic spreads on graph Gb. We say that the
mixture is balanced if α = 0.5, and we call α and 1 − α
the priors of the mixture. Unless specified otherwise, the
results presented are for balanced mixtures.

Epidemic Spreading: Once the component of the mix-
ture Gb is fixed, the epidemic spreads in discrete time on
graph Gb according to a regular one-step Susceptible →
Infected → Removed (SIR) process (Netrapalli & Sang-
havi, 2012; Hoffmann & Caramanis, 2019). At t = 0, the
epidemic starts on a unique source, chosen uniformly at
random among the nodes of V . The source is in the Infected
state, while all the other nodes are in the Susceptible state.
Let It (resp. Rt) be the set of nodes in the Infected (resp.
Removed) state at time t. At each time step t ∈ N, all
nodes in the Infected state try to infect their neighbors in the
Susceptible state, before transitioning to the Removed state
during this same time step (i.e., Rt+1 = Rt ∪ It) 1. If i is in
the Infected state at time t, and j is in the Susceptible state
at the same time (i.e i ∈ It, j ∈ St), then i infects j with
probability pij if b = 1, and qij if b = 2, with 0 ≤ pij ≤ 1.
Note that multiple nodes in the Infected state can infect the
same node in the Susceptible state. The process ends at the
first time step such that all nodes are in the Susceptible or
Removed state (i.e., no node is in the Infected state).

One realization of such a process, from randomly picking
the component of the mixture and the source at t = 0 to the
end of the process, is called a cascade.

2.3. Observation Model

For each cascade we do not have the knowledge of the
underlying component, that is, we do not observe b and we
treat this as a missing label. For each cascade, we have
access to the complete list of infections: we know which
node infected which node at which time (one node can have
been infected by multiple nodes). This list constitutes a
sample from the underlying mixture model.

1Once a node is in the Removed state, the spread of the epi-
demic proceeds as if this node were no longer on the graph.
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Figure 2: Solvable local structure

2.4. Learning Objective

Our goal is to learn the weights of all the edges of the
underlying graphs of the mixture, up to precision ε <
min(∆, pmin). Specifically, we want to provide p̂ij and q̂ij
for all vertex pairs i, j ∈ V such that maxi,j∈V 2 max(|pij−
p̂ij |, |qij − q̂ij |) < ε.

2.5. When is this problem solvable?

Prior to presenting our main results, we offer some intuition.
We show that it is not always possible to learn the weights
of both components of the mixture, even for settings that
appear deceptively easy.

Indeed, it is impossible to learn the graph on two nodes i
and j, with only one directed edge from i to j (see Figure
1a). To see this, consider a balanced mixture, for which
edge (i, j) has weight β in G1, and weight 1 − β in G2.
Node i will infect node j half of the time, independently
of the value of β. This shows that we cannot recover the
original weights, and the mixture problem is not solvable.
If we add another edge, and i is now connected to a new
node k (see Figure 1b), the problem is still not solvable (see
Supplementary Material).

Surprisingly, if i has a third neighbor l (see Figure 2a),
it becomes possible to learn the weights of the mixture.
Learning this local structure is one of the main building
blocks of our algorithm.

One might think that four nodes are needed for this problem
to be solvable. However, we can learn the edges of a triangle
(see Figure 2b). Similarly, the intuition that nodes need to
be of degree at least three is misleading. If a line has more
than three nodes (see Figure 2c), it is solvable. The line
on four nodes is the other local structure which forms the
foundation of our algorithm.

On the other end, the setting for which there exists (at least)
two parts of the graph A and B for which cascades never
overlap is a general unsolvable setting (see Figure 1c). We
write Ai = A ∩ Ei, Bi = B ∩ Ei. Let E′1 = A1 ∪ B2,
E′2 = A2 ∪ B1. We notice that a mixture spreading on
edges E1 and E2 yields the same cascade distribution as a
mixture on E′1 and E′2. Therefore, the solution is not unique.
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The three simple shapes in Figure 2 form the core of this
paper. Our key insight is in showing that any graph that
can be built up using these three building blocks (i.e., each
node belongs in at least one of these structures) is solvable.
This effective decomposition succeeds in reducing a general
problem to a small number of sub-problems, for which we
provide a solution.

3. Main Results
In this section we present our main results on the impos-
sibility and recoverability of edge weights for a balanced
mixture.

3.1. Balanced Mixture of Undirected Graphs

Impossibility Result Under Infinite Samples

Condition 1. The graph G = (V,E1 ∪ E2) is connected
and has at least three edges: |E1 ∪ E2| ≥ 3.

Claim 1. Suppose Condition 1 is violated. Then it is im-
possible to recover the edge weights corresponding to each
graph (even with infinite samples).

Impossibility Result Under Polynomial Samples

Condition 2. The mixture is ∆-separated: for every edge
(i, j) ∈ E1 ∪ E2, pij 6= qij .

Claim 2. Suppose Condition 2 is violated. Then there exist
(many) graphs for which we need at least exponential (in the
number of nodes N ) samples to recover the edge weights.

Recoverability Result with Finite Samples

Theorem 1. Suppose Conditions 1 and 2 are true. Then
there exists an algorithm that runs on epidemic cascades
over a balanced mixture of two undirected, weighted graphs
G1 = (V,E1) and G2 = (V,E2), and recovers the edge
weights corresponding to each graph up to precision ε with
probability at least 1− δ, in time O(N2) and sample com-
plexity O

(
N

ε2·∆4 log(Nδ )
)
, where N = |V |.

Remark on Partial Recovery: An important element of
our results is that if Conditions 1 and 2 are not satisfied for
the entire graph we can still recover the biggest subgraph
which follows these conditions. In particular, if the graph
we obtain by removing all non ∆-separated edges is still
connected, we can detect and learn all the edges of the
graph (see Supplementary Material for more details). This
is important, as it effectively means that we are able to learn
the mixtures in the parts of the graph that matter most. On a
practical note, this also means that our algorithm is resistant
to the presence of bots in the network that would repost
everything indifferently.

3.2. Extensions

Extension to Directed Graphs Interestingly, the tech-
niques used to prove the theorem above can be immediately
applied to learn mixtures of directed graphs of out-degree at
least three (see Supplementary Material for complete proof).
Note that the better dependency in 1

∆ comes from the as-
sumption on the degree 2. Since many applications on social
networks can ignore nodes of out-degree less than three,
as thoses nodes have very little impact on any diffusion
phenomena, this result is of independent interest:

Theorem 2. Suppose Conditions 1 and 2 are true. Then
there exists an algorithm that runs on epidemic cascades
over a balanced mixture of two directed, weighted graphs
of minimum out-degree three G1 = (V,E1) and G2 =
(V,E2), and recovers the edge weights of each graph up to
precision ε with probability at least 1 − δ, in time O(N2)
and sample complexity O

(
N

ε2·∆2 log(Nδ )
)
, where N = |V |.

Extension to Unbalanced/Unknown Priors If the mix-
ture is unbalanced, but the priors are known, we can adapt
our algorithm to learn the mixture under the same condi-
tions as above, at the price of a higher dependency in 1

∆ .
If the priors are unknown, we can only recover graphs of
min-degree at least three.

3.3. Lower Bounds

We provide two lower bounds for mixtures of two graphs,
one for undirected graphs, one for directed graphs.

Theorem 3. When learning the edge weights of a balanced
mixture on two ∆-separated graphs on N nodes up to pre-
cision ε < ∆, we need:

1. Ω
(
N
∆2

)
samples for undirected graphs, which proves

our algorithm is optimal in N up to log factors in this
setting.

2. Ω
(
N log(N) + N log log(N)

∆2

)
samples for directed

graphs of minimum out-degree three, which proves
our algorithm has optimal dependency in N and in 1

∆2

in this setting.

4. Balanced Mixture of Undirected Graphs
In this section, we provide our main algorithm (Algorithm
1) that recovers the edge weights of the graphs under the
conditions presented in Theorem 1.

2This immediately implies a better dependency in 1
∆

for learn-
ing undirected graphs of minimum degree three.
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Algorithm 1 Learn the weights of undirected edges

Input: Vertex set V
Output: Edge weights for the two epidemics graphs
E ← LEARNEDGES(V )
S,W ← LEARN2NODES(V,E)
while S 6= V do

Select u ∈ S, v ∈ V \S such that (u, v) ∈ E
if deg(v) ≥ 3 then
W ←W ∪ LEARNSTAR(v,E,W )

end if
if deg(v) = 2 then

Set w ∈ S such that (u,w) ∈ E
Set t ∈ V such that (v, t) ∈ E and t 6= u
if t 6∈ S then
W ←W ∪ LEARNLINE(t, v, u, w, S,W )

end if
end if
S ← S ∪ {v}

end while
Return W

4.1. Overview of Algorithm 1

First, the algorithm learns the edges of the underlying graph
using the procedure LEARNEDGES. To detect whether an
edge (u, v) exists in E1 ∪ E2, we use a simple estimator
(Section 4.2.1). This also provides us with the degree of
each node with respect to E1 ∪ E2.

With the knowledge of the structure of the graph, to learn
the edge weights adjacent to a node, our algorithm uses
two main procedures, LEARNSTAR and LEARNLINE. If a
node is of degree at least three (e.g., node u in Figure 3),
procedure LEARNSTAR recovers all the edge weights (i.e.,
the weights of the two mixtures for these edges) adjacent
to this node independently of the rest of the graph. Other-
wise, if a node is of degree two (e.g., node u in Figure 4),
procedure LEARNLINE learns all the edge weights adjacent
to this node independently. Both procedures use carefully
designed estimators that exploit the respective structures.
We present the above estimators for balanced mixtures in
Section 4.2. We require Condition 2 for the existence of the
proposed estimators.

Our main algorithm maintains a set of learned nodes. A
node is a learned node if the weights for all the edges ad-
jacent to it have been learned. The algorithm begins with
learning two connected nodes (two nodes with an edge in be-
tween) using procedure LEARN2NODES. Next it proceeds
iteratively, by learning the weights of the edges connected
to one unlearned neighbor of the learned nodes using the
two procedures discussed above. The algorithm terminates
when all the nodes in V are learned.

a u

b

c

Figure 3: A star vertex u, with edges (u, a), (u, b)
and (u, c) in E1 ∪ E2.

4.2. Learning Edges, Star Vertices, and Line Vertices

In this section, we show how we recover the weights for
local structures using moment matching methods. Our proof
relies on a few crucial ideas. First, we introduce local es-
timators, which can be computed from observable events
in the cascade and are polynomials of the weights of the
mixture. General systems of polynomial equations are hard
to solve. However, we found ways of combining these spe-
cific estimators to decouple the problem, and obtain O(|E|)
systems of six polynomial equations of maximum degree
three, with six unknowns. Finally, we show how to elegantly
obtain a closed-form solution for these systems.

4.2.1. LEARNING THE EDGES IN E1 ∪ E2

We recall that I0 is the random variable indicating the set
containing the unique source of the epidemic for a cascade.
If an epidemic cascade starts from node u, then for any node
a that is infected in time step 1 there is an edge (u, a) ∈
E1 ∪ E2. This provides us with the average weight of the
edge (u, a) as Xua,

Claim 3. If u and a are two distinct nodes of V such that
(u, a) ∈ E1 ∪ E2, then:

Xua := Pr(u→ a | u ∈ I0) =
pua + qua

2
≥ pmin

2
.

Furthermore, there exists an edge between u and a in E1 ∪
E2, if and only if Xua ≥ pmin

2 > 0.

The above claim can be leveraged to design algorithm
LEARNEDGES, which takes as inputs all the Xua for all
pairs (u, a), and returns all the edges of E1 ∪E2 (see Sup-
plementary Materials).

Conditioning on Source Node: We notice that the expres-
sion of Xua is a function of weights of edges (u, a). Here,
conditioning on the event "u ∈ I0" is crucial. Indeed, if the
source had been any node other than u, the probability that
a was in the Susceptible state when u was infected would
have depended on the (unknown) weights of the paths con-
necting the source and node a. We could not have obtained
the simple expression above.
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a u b c

Figure 4: A line vertex u, with edges (u, a), (u, b) and (b, c)
in E1 ∪ E2.

4.2.2. STAR VERTEX

A star vertex is a vertex u ∈ V of degree at least three in
E1 ∪ E2 (Figure 3). We consider:
Yua,ub: the probability the star vertex u infects neighbors a
and b, conditioned on u being the source vertex.

Claim 4. For u and a, b and c as in Figure 3:

Yua,ub = Pr(u→ a, u→ b | u ∈ I0) =
puapub + quaqub

2
.

We emphasize that the conditioning is once again crucial to
obtain such a simple form for Yua,ub. Further, we make a
key observation that for i 6= j ∈ {a, b, c},

Yui,uj −XuiXuj =
(pui − qui)(puj − quj)

4
. (1)

This directly leads to the closed-form expressions for the
weights of the edges adjacent to the star vertex u.

Lemma 1. Suppose Conditions 1 and 2 are true and α =
1/2. Let sua ∈ {−1, 1}. The weight of any edge (u, a)
connected to a star vertex u, with distinct neighbors a, b
and c in E1 ∪ E2, is given by:

pua = Xua + sua

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc
,

qua = Xua − sua

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc
.

Furthermore, any two signs sui and suj , for i 6= j and
i, j ∈ {a, b, c}, satisfy suisuj = sgn(Yui,uj −XuiXuj).

Resolving Mixture Ambiguity: Separating the weights
of both graphs in the mixture is not enough to learn the
mixture: we also have to assign the two weights to the
right component of the mixture. The identity suisuj =
sgn(Yui,uj −XuiXuj) allows us to identify three weights
belonging to the same mixture component: pua, pub and
puc. If one of these weights had been learned before, it
is immediate to assign the two new weights to the same
component. This leads to the following algorithm:

LEARNSTAR: This algorithm takes as input a star vertex
u, the set of edges ofE1∪E2, and all theXui and Yui,uj for
all (i, j) distinct neighbors of u, and returns all the weights
of the edges connected to u in both mixtures using the above
closed-form expressions (see Supplementary Materials).

4.2.3. LINE VERTEX

We now consider a node u that has degree exactly two in
E1 ∪E2 and forms a line structure. Specifically, let u, a, b
and c be four distinct nodes of V, such that (a, u), (u, b) and
(b, c) belong inE1∪E2. We call such a node u a line vertex
(see Figure 4).

To recover the weights of the edges adjacent to a line vertex,
only considering events in the first two timesteps is insuf-
ficient. Contrary to a star vertex, for a line vertex we have
only one second moment.

We circumvent the problem by considering:
1) Yub,bc: the probability of the event when (in Figure 4)
u infects only b, and in turn b infects c, conditioned on u
being the source.
2) Zua,ub,bc: the probability of the event when (in Figure 4)
u infects both a and b, and in turn b infects c, conditioned
on u being the source.

Claim 5. For a line vertex u and nodes a, b and c as in
Figure 4:

• Y |ua,ub = Pr(u→ a, u→ b | u ∈ I0) = puapub+quaqub

2 ,

• Y |ub,bc = Pr(u→ b, b→ c | u ∈ I0) = pubpbc+qubqbc
2 ,

• Z |ua,ub,bc = Pr(u→ a, u→ b, b→ c | u ∈ I0)

= puapubpbc+quaqubqbc
2 .

The result for Y |ua,ub is similar to Claim 4.. However, the

proof for Y |ub,bc and Z |ub,bc,bc not only requires u to be the
source, but also relies on the fact that u is of degree 2, which
implies puc = quc = 0.

We note that Y |bc,ua does not exist, as c cannot be in-
fected if b is not. So we cannot immediately replicate
the star vertex proof. Let us define R| := XuaXbc +
Z

|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub
. However, we prove the fol-

lowing equality, which acts as a surrogate for (Y
|
ua,bc −

XuaXbc):

R| =
1

4
(pua − qua)(pbc − qbc). (2)

As in Lemma 1, we now obtain the closed-form expressions
for the weights associated with the line vertex u. For the
sake of notation consistency, we define Y |bc,ua := (R| +
XbcXua) (it has no probabilistic interpretation).

Lemma 2. Suppose Conditions 1 and 2 hold and α = 1/2,
then for sua, sub, and sbc in {−1, 1}, the weights of the
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edges for a line structure are given by:

∀(e1, e2, e3) ∈ {(ua, ub, bc), (ub, bc, ua), (bc, ua, ub)},

pe1 = Xe1 + se1

√√√√ (Y
|
e1,e2 −Xe1Xe2)(Y

|
e3,e1 −Xe3Xe1)

Y
|
e2,e3 −Xe2Xe3

,

qe1 = Xe1 − se1

√√√√ (Y
|
e1,e2 −Xe1Xe2)(Y

|
e3,e1 −Xe3Xe1)

Y
|
e2,e3 −Xe2Xe3

.

Furthermore, for all e1, e2 ∈ {ua, ub, uc} and e1 6= e2,
se1se2 = sgn(Ye1,e2 −Xe1Xe2).

LEARNLINE: In the same fashion as for the star vertex,
we can use the expression in Lemma 2 to design an algo-
rithm LEARNLINE, which takes as input a line vertex u, the
set of the edges of E1 ∪ E2, and the limit of the estimators
Xua, Xub, Xbc, Y

|
ua,ub, Y

|
ub,bc, Z

|
ua,ub,bc for a, b and c as in

Figure 4, and returns the weights of the edges (u, a), (u, b)
and (b, c) in both mixtures (see Supplementary Materials).

LEARN2NODES Our main algorithm is initialized by
learning weights associated with edges connected to two
nodes using subroutine LEARN2NODES. As this algorithm
is very similar in spirit to our general algorithm, we leave
the details to the Supplementary Materials.

4.3. Correctness of Algorithm 1

To prove the correctness of the main algorithm, we show
the following invariant:

Lemma 3. At any point in the algorithm, the entire neigh-
borhood of any node of S has been learned and recorded in
W :

∀u ∈ S, ∀v ∈ V, (u, v) ∈ E =⇒ (u, v) ∈W.

Proof. We prove the above by induction on the iteration of
the while loop. Due to the correctness of LEARN2NODES
(proven in Supplementary material), after calling this func-
tion, W contains all edges adjacent to the two vertices in
S. Hence the base case is true. Let us assume that after k
iterations of the loop, the induction hypothesis holds.

We consider three cases in the (k + 1)-th iteration:
• deg(v) ≥ 3: We recover all edges adjacent to the star
vertex v by using LEARNSTAR (correct due to Lemma 1).
Sign consistency is ensured using edge (u, v) ∈ W since
u ∈ S.
• deg(v) = 2: There exists w ∈ S such that (u,w) ∈ E
since |S| ≥ 2 and is connected. Since deg(v) = 2, there
exists t 6= u such that (t, v) ∈ E. Now if t ∈ S then
(t, v) ∈W and we are done. If t 6∈ S then v is a line vertex
for t−v−u−w. By using LEARNLINE we recover all edges

on the line (correct due to Lemma 2). Sign consistency is
ensured through edge (v, u).
• deg(v) = 1: Since u ∈ S, we have (u, v) ∈ W , so we
are done.

Thus by induction, after every iteration of the for loop, the
invariant is maintained.

Theorem 4. Suppose Conditions 1 and 2 are true; Algo-
rithm 1 learns the edge weights of the two balanced mixtures
in the setting of infinite samples.

Proof. Since at every iteration, the size of S increases by
1, after at most |V | iterations, we have S = V . Using
Lemma 3, we also have W = E1 ∪ E2.

4.4. Finite Sample Complexity

In this section, we investigate the error in estimating the
quantities Xui, Yui,uj for i, j ∈ {a, b, c} in the case of
a star vertex, and Xe1, Y |e1,e2 and Zua,ub,bc for e1, e2 ∈
{ua, ub, bc} in the case of a line vertex, using a finite num-
ber of cascades. We further investigate the effect of the error
in these quantities on the accuracy of the recovered weights.

We use a simple count-based estimator. Specifically, for
events E1 and E2, we estimate the probability Pr(E1|E2) =∑M

m=1 1E1∩E2∑M
m=1 1E2

. As a concrete example, we have the estimator

for Xua as X̂ua :=
∑M

m=1 1u→a,u∈Im0∑M
m=1 1u∈Im0

. Here Im0 denotes

the source of the m-th cascade and u → a denotes that u
infects a. We can argue, using the law of large numbers and
Slutsky’s Lemma, that the above approach provides us with
balanced estimators.

We first establish high probability error bounds for the base
estimators with a finite number of cascades, for both the star
vertex and the line vertex. Finally, using the above guaran-
tees, we provide our main sample complexity result for the
balanced mixture problem. See Supplementary Material for
proofs.

Theorem 5. Suppose Condition 1 and 2 hold. With
M = O

(
1

p6min∆4
N
ε2 log

(
N
δ

))
samples, Algorithm 1 learns

the edge weights of a balanced mixture on two graphs within
precision ε with probability at least 1− δ.

5. Extensions
5.1. Extension to Directed Graphs

We notice that in the case of directed graphs of minimum
out-degree three, we can simply use the star structure to
learn all the directed edges. This, however, would not be
enough to ensure mixture consistency; we therefore need
to also use two new structures to solve the problem. The
algorithm is very similar to Algorithm 1, and the structures
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are very similar to the structures encountered so far. Precise
details are left for the Supplementary Material.

5.2. Extension to Unbalanced/Unknown Priors

While previous results only considered balanced mixtures,
i.e. with parameter α = 0.5, we focus here on unbalanced
mixtures (α 6= 0.5 known) and on mixtures of unknown
priors (α unknown).

We first note that the main algorithm for recovering the
graph does not depend on the prior once the correct LEARN-
STAR and LEARNLINE primitives are provided. Therefore,
we show how to design these primitives.

Unbalanced Mixtures We can easily extend Equation 1
for star vertices in the case of unbalanced mixtures. Specifi-
cally, we have for all i 6= j ∈ {a, b, c}:

Yui,uj −XuiXuj = α(1− α)(pui − qui)(puj − quj).

However, Equation 2 does not extend easily (see Supple-
mentary Material for details) in the general case:

Theorem 6. Suppose Conditions 1 and 2 are true. Then
there exists an algorithm that runs on epidemic cascades
over an unbalanced mixture of two undirected, weighted
graphs G1 = (V,E1) and G2 = (V,E2), with |V | = N ,
and recovers the edge weights corresponding to each graph
up to precision ε in time O(N2) and sample complexity:

• O
(
N logN
ε2 poly( 1

∆ )poly( 1
min(α,1−α) )

)
in general.

• O
(
N logN
ε2∆2 poly( 1

min(α,1−α) )
)

for graphs of minimum
degree three.

Mixtures of Unknown Priors If the graph has at least
one star vertex, we can learn the entire mixture by learn-
ing the parameter α from this node, and use the results
from above to learn the rest of the graph once α has been
recovered. Details can be found in Supplementary Material.

5.3. Extension to Mixtures of K > 2 Graphs

For graphs of minimum degree 2K−1, writing the equations
using first and second moments (i.e. the Xua and Yua,ub)
as above yields at least as many equations as unknowns.
Using Quadratic Constraints Quadratic Programming, we
can obtain numerical solutions. Note that the constraints are
not convex, so there is no guarantee this problem is solvable
in polynomial time. As there is also no immediate reduction
to a NP-hard problem, we do not know the complexity of
learning mixtures of K > 2 graphs.

6. Experiments
We validate our results on synthetic data. We first draw
random graphs from a distribution (specified below), and
each sample is a simulation of a cascade spreading on it.
Once the graphs are drawn, the experiments are run 10 times.
The shaded area represents the 25th to 75th percentiles.

Our first two experiments are on Erdös-Renyi G(N, p)
graphs. In Figure 5a, we investigate the maximum error
on learned edges and compare it with the average error. We
find that the "Max error" curve follows the dependence pre-
dicted by our theory, of ε = O

(
1/
√
N log(N)

)
. It is also

worth noting that the average error on the existing edges
is one order of magnitude smaller than the max error. By
plotting the normalized histogram of the absolute value of
the errors (Figure 5b), we confirm that only a few edges
keep the maximum error high. Finally, by varying the de-
gree on random d-regular graphs with a fixed number of
vertices (Figure 5c), we see that the sample complexity is
multiplied by 2 as the number of edges grows from Θ(N) to
Θ(N2), as predicted since the dependence in the degree is
logarithmic. Therefore, our algorithm is as sample-efficient
(up to small constants) on dense graphs as on sparse graphs.
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7. Conclusion
We provided an efficient algorithm for learning the edge
weights of a balanced mixture of two undirected graphs from
epidemic cascades, as well as matching lower bounds (up
to log factors). We extended our results to directed graphs
of min-degree three, and unbalanced/unknown mixtures.

Our algorithm is robust, in the sense that it has partial recov-
ery guarantees, and it is unaffected by adversarial examples
which would consist of adding nodes/edges. Due to its local
structure, it is also easily parallelizable.

Learning mixtures of more than two graphs, or mixtures of
directed graphs without restriction on the minimum degree,
are still open problems, and are left for future work.
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