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A. Necessary Conditions
A.1. We need at least three edges
Let G = (V, E; U E3) be the union of the graphs from both mixtures. In this subsection, we prove it is impossible to learn

the weights of F; and F if G has less than three edges:

One edge: For a graph on two nodes, we have already seen that the cascade distribution are identical if p1o = 8 = 1 — ¢q2,
for any value of 3, which proves the problem is not solvable.

Two edges: When we have two nodes and two edges, we can without loss of generality assume that node 1 is connected to
node 2 and node 3. Then, if:

e pi2=p

e gp=1-p
l_ﬁ_;'_l

® D13 = Q%iﬁ“
1_8

® qi3 = ‘%_é

The cascade distribution is identical for any value of § < % By simple calculations, we can show the following,

1
12*

Fraction of cascades with only node 1 infected:

Fraction of cascades with only node 2 infected:

=

e Fraction of cascades with only node 3 infected: é.

Fraction of cascades where 3 infected 1, but 1 did not infect 2:

el

L1
12°

Fraction of cascades where 3 infected 1, 1 infected 2:

Fraction of cascades where 1 infected 3, but 1 did not infect 2:

ol

Fraction of cascades where 1 infected 2, but 1 did not infect 3:

el

Fraction of cascades where 1 infected 3 and 2: 1—12

e Fraction of cascades where 2 infected 1, but 1 did not infect 3:

il

e Fraction of cascades where 2 infected 1, then 1 infected 3: %

Since the distribution of cascades is the same for any value of 5 < %, the problem is not solvable.
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A.2. We need A-separation

Separability is necessary for the existence of sample efficient algorithms. Specifically, we show that there exist (many)
graphs where separability is violated, and for which the sample complexity is exponential in the size of the graph.

Indeed, consider a graph G' composed of two subgraphs A and B, connected by a path P of length d. Suppose the path has
the same weight in both mixtures, and for the edges e € P, max.cp p. < 1. Similar to the disconnected graph, we write
A; = AN E;, and B; = BN E;. To learn the graph completely we need to differentiate between the mixture on £y and Fs,
and the mixture on £f = A1 UP U By and F} = A, U P U B;.

The path P is not informative in the above differentiation as both the mixture in the path have same weights. Therefore,
we need at least one cascade covering at least one edge in A and one edge in B. Since P is of length d, this happens
with probability at most e ~(?), To see such a cascade, we need at least e®*(%) cascades in expectation. Therefore, setting
d = cN, for some constant ¢ > 0, we prove that exponential number of samples are necessary for any algorithm to recover
the graph if the A-separated Condition is violated.

A.3. Dealing with mixtures which are not A-separated

In this section, we show how to detect and deduce the weights of edges which have the same weight across both component
of the mixture. We assume both G; and G2 follow Conditions ?? and ?? if we remove all non-distinct edges, and in
particular remain connected.

Suppose there exists an edge (4, j) in the graph, such that p;; = ¢;; > 0. Then in particular, there exists another edge
connecting 7 to the rest of the graph GGy through node k, such that p;; # ¢;%. Then:

Lemma 1. Suppose G| and G4, follow assumption ?? after removing all non-distinct edges. We can detect and learn the
weights of non-distinct edges the following way:

]inj >0,andVk eV, X;p, >0 = Y;‘kﬂ;j — Xisz‘j =0, then Pij = Qij = Xij.

Proof. Since G is connected on three nodes or more even when removing edge (4, j), we know there exists a node [ such
either [ is connected to either 7 or k. Therefore, either Y;;, ;1 — X1 X3 > 0 or Yy 11 — X5 X > 0. In both these cases, we
deduce p;r # ¢ix. This in turns allow us to detect that p;; = g;;. Once this edge is detected, it is very easy to deduce its
weight, since p;; = X;; = g;; by definition. O

B. Proofs for unbalanced mixtures

B.1. Estimators - proofs

Lemma 2. Under Conditions ?? and ??, in the setting of infinite samples, the weights of the edges for a line structure are
then given by:

(Yhour = XuaXup) R (Y, 0wy = XuaXup) R
Pua = Xua + Sua [ y Qua = Xua — Sua ‘
Yub7bc - XuaXbc Yub,bc - XuaXbc
| |
(Y—ub be XuaXbC)Rl (Y;Lb be XuaXbC)Rl
DPoe = Xuc + Spe ‘7 s Qbe = Xue — Spe ‘7
Yuu,ub - Xchua Yua,ub - Xchua
\ \
(Yuc,ua - Xchua)(Y;Lb be — XuaXbc)
Pub = Xub + Sub\/ Rl 5
] D = X Xua) (Vi e = Xua Xoe)
Qua ua ua Rl ;

| | |
z ~XuaV)y o XpeY)
where Rl = X0 Xpe + —asubibe 4 X::’bc w240 and for s,q € {—1,1}
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Proof. In this case, there is no edge between u and ¢, which implies that p,,. = g, = 0. Hence, we cannot use a variation
of the equation above for finding the edges of a star structure without dividing by zero. Therefore, we need to use Z |

ua,ub,bc”
I [ [
Z, —XuaY, —XbeY,, . . . .
Let Rl = X0 Xpe + —asubibe ““X“:‘b“ we.ub We notice a remarkable simplification:
\ | \
R‘ X X + Zua,ub,bc - Xuayub,bc - XbCYua,ub
= Aya<V‘be
Xub
PuaPubPbctquadubdy Puatqua | PuaPbctquadp Pbetgve | PuaPuatquadua
:pua+qua .pbc+qbc+ ua u. C2 uadu c __ ua2 ua ua C2 ua c __ 62 c . ua U(12 uad{ua
2 2 Pubtqub
2
1 2 DPuaPubPbe + Quaqubdbe
= 7(puapbc + Puabe + QuaPbe + quaqbc) +
4 DPub + Gub 2

1
_Z (puapubpbc + QuaPubPbc + PuaQubGbe + Qanubec)

1
- i (puapubpbc + PuaPubqbe + GuaqubPbe + Qanubqbc):l

1 1
= 7(puapbc + Pualbe + QuaPbc + quaqbc) - [Quapubpbc + Puaqubove + PuaPubqbe + Qanubec]
4 2(pub + Qub)
1

1
= 7(puapbc + QuaPbe + Quaqbe + puaqbc) -

4 [(pub + Qub)(Quapbc + puaqbc)}

2(pub + Qub)

1
Z(puapbc + Quaqvbe — Pua9be — quapbc)

1
= Z(pua - Qua)(pbc - (ch)

We can then use the same proof techniques as in Lemma ??, and finally obtain:

A | |
Y | — XyaX waubbe—XuaYup pe—XbeY 0 up
( ua,ub ua ua) XuaXpe + —aubebe XZ;,' c wa,u

|pua - QU(L| = ‘
Yub,bc - XuaXbc

This gives us the required result. O

B.2. Resolving Sign Ambiguity across Base Estimators

The following lemma handles the sign ambiguity (s,,,) introduced above.

Lemma 3. Suppose Condition ?? and ?? are true, in the setting of infinite samples, for edges (u,a), (u,b) with a # b for
any vertex u with degree > 2, the sign pattern S, Syp satisfy the following relation.

SuaSub = Sgn(Yua,ub - XuaXub)~

Proof. From previous analysis, we have sgn(puq — qua) = Sua- Therefore:

= SuaSub-

O

Thus fixing sign of one edge gives us the signs of all the other edges adjacent to a star vertex. A similar relationship can be

z! —Xu.Y

s M s ua,u c u C be ua,u
established among the edges of a line vertex, using sgn | X q Xpe + —2u22 < Z’b ub >
u
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B.3. Main algorithm - proofs

Here we will present in detail the sub-routines required by our algorithm and the essential lemmas needed for our main
proof.

LearnEdges This procedure detects the edges in the underlying graph using the estimate X,,,,.

Algorithm 1 LEARNEDGES
Input Vertex set V'
Output Edges of the graph

: SetE ()

: foru <veVdo

Compute )A(m,

if Xm, > ¢ then

E <+ FEU{(u,v)}

: Return £ =0

Claim 1. LEARNEDGES(V') outputs E such that E = Fy U E.

Proof. For each pair of nodes u,v € V, if (u,v) € Ey U E3 then X, # 0 since X, = 0 if and only if p,, = qus = 0,
which is equivalent to the edge (u, v) not belonging in the mixture. O

LearnStar This procedure returns the weights of the outgoing edges of a star vertex using the star primitive discussed
before.

Algorithm 2 LEARNSTAR
Input Star vertex u € V, edge set I/, weights W
Output Weights of edges adjacent to u

Use star primitive with star vertex v and learn all adjacent edges weights W*.
if W = () then

Fix sign of any edge and ensure sign consistency.
else

Set v € V such that (u,v) € W.

Use 54, to remove sign ambiguity

Return W*. =0

LR

Lemma 4. If deg(u) > 3, LEARNSTAR(u, S, W) recovers pya, Gua for all a such that (u,a) € E.

Proof. The proof follows from using Lemma ?? on star vertex u (degree of © > 3) and using Lemma 3 to resolve sign
ambiguity through fixing an edge or s, ((u,v) € W hence know sign). O

LearnLine This procedure returns the weights of the edges of a line a — b — ¢ — d rooted at vertex b of degree 2 using the
line primitive discussed before.
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Algorithm 3 LEARNLINE
Input Line a — b — ¢ — d with deg(b) = 2, edge set E, weights W
Output Weights of edges (a, b), (b, ¢), (¢, d)
0: Use line primitive on @ — b — ¢ — d rooted at b and learn all edges weights W1,
0: if W = () then
0: Fix sign of any edge and ensure sign consistency.
0: else
0
0
0

Find edge e € {(a,b), (b,c), (¢,d)} such thate € W.
Use s, to remove sign ambiguity.

. Return W!. =0

Lemma 5. If deg(b) = 2, LEARNLINE(a, b, ¢, d, S, W) recovers pap, Gabs Dbes Gbes PCAy Ged-

Proof. The proof follows from using Lemma ?? on line a — b — ¢ — d rooted at vertex b (degree of b = 2) and using Lemma
3 to resolve sign ambiguity by fixing an edge or using s.. O

Learn2Nodes This procedure chooses a pair of connected vertices in our graph and outputs the weights of all outgoing
edges of each of the two vertices. We initialize our algorithm using this procedure.

Algorithm 4 LEARN2NODES

Input Vertex set V', Edge Set E/

Output Set of 2 vertices V', Weight of all edges adjacent to the vertices W

0 W=20

0: Setu = argmax,cy deg(a)
0: Setv = argmin,cy, (, q)cr deg(a)
0: if deg(u) > 3 then
0 W < LEARNSTAR(u, E, W)
0 if deg(v) = 3 then
0 W < W ULEARNSTAR(v, E, W)
0 else if deg(v) = 2 then
0 Lett € V be such that (¢,v) € Fand ¢ # u
0: Let w € V be such that (w,u) € E and w # v,
0: if v = ¢ then
0
0
0
0
0
0
0
0
0
0

W < W U LEARNLINE(t, v, u, w, W)

: else
w be such that (w,u) € F and w # v
if deg(v) = 2 then
Lett € V be such that (¢,v) € Fand t # u
W < LEARNLINE(w, u, v, t, W)
else
Lett € V be such that (t,w) € F and t # w
: W < LEARNLINE(v, u, w, t, W)
: Return (u,v), W =0

Lemma 6. Under Conditions ?? and ??, LEARN2NODES (V') outputs two connected nodes (u,v) and weights of all edges
adjacent to u,v.

Proof. We will break the proof down into cases based on the degree of chosen vertices w, v as follows,

e deg(u) > 3: By Lemma 4, we can recover all the edges of « and fix a sign.

- deg(v) > 3: By Lemma 4, we can recover all the edges of v and ensure sign consistency by using the edge (u, v).
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— deg(v) = 2: Since deg(v) = 2, there exists a vertex ¢ # wu such that (¢,u) € E. Since deg(u) > 3, there must
exist w # t, u such that (u, w) € E. Now we have line primitive ¢ — v — u — w with deg(v) = 2 and Lemma 5
guarantees recovery of the edge weights.

— deg(v) = 1, then we already know all the edges adjacent to v.

e deg(u) = 2,deg(v) = 2: Since the max degree of the graph is 2 and it is connected then it can either be a line or a
cycle. There are at least 4 nodes in the graph, thus there exist w # v such that (w,u) € E and ¢ # u, w such that
(v,t) € E. This gives a path w — u — v — t with deg(u) = 2 and Lemma 5 guarantees recovery of all edges.

e deg(u) = 2,deg(v) = 1: As in the previous case, the underlying graph is a line. Therefore there exist path v —u—w—t
and we can similarly apply Lemma 5 to guarantee recovery of all edges.

B.4. Finite sample complexity - proofs

In this section, we provide explicit proof for the sample complexity of our algorithm. To do so, we bound below the number
of cascades starting on each node through Bernstein inequality, and use this number to obtain concentration of all the
estimators.

Definition 1. Among M cascades, let M,, be the number of times node . is the source.

Claim 2. With M samples, every node is the source of the infection at leasl ~ times with probability at least 1 — e~ 36N .

Proof. Among M cascade, the expectation of M, is %, since the source is chosen uniformly at random among the N
vertices of V. Since M,, can be seen as the sum of Bernoulli variable of parameter %, we can use Bernstein’s inequality to
bound it below:

M M M
Pr(M, < o) =Pr (= — M, > —=
(M < 35) r(N >2N>
(3%)°
<e MNU-Ntsaw
§€7236M

Claim 3. Let u either be a star vertex, with neighbors a, b and c, or be part of a line structure rooted in u, with neighbors
a, b, and c neighbor of b. Suppose M, > 35 I . Then with M = N 7 log (12N ) samples, with probability at least 1 — 6N2’
we can guarantee any of the following:

Xur - Xur

1. Vr € a,b,c, < €.

2. Vr # s € {a,b,c}, | < e

| urus_ ur,us

o o | o |
Yua,ubl < €1 and |Yua,ab - Yua,ab| < €1

| ua,ub

_ 7l

|Z ua, ubb(‘| < €.

ua,ub,be

Proof. By Hoeffding’s inequality:

M,

Pr(|Xur - ur| > 61 Z 1{u—>r | uelo} — My - Xur

> Mu 61)

M
( Z 1{u~>r | uelp} — - Xur| > ﬁ T €1
—2

M .
2N €
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Therefore, the quantity above is smaller than el ]f,z for M > —g log (—12?] ’ ) The proof is almost identical for the other
1
quantities involved.

Claim 4. If we can estimate X q,Y ), b,
41

- * €1.
pm,inAz

| | o . o .. o
Yua,ab and Zua,ub,bc within €1, we can estimate p,, within precision € =

Proof. If u is of degree three or more, we use a star primitive to estimate it. Let a, b and ¢ be three of its neigbors:

% Yua ub — XuaXu Y/ua uc XuaXuc
e MHM\/( b = K Xu) Vaa )
Yub,uc - Xuquc

§ Xua + e

1
+s (Yua,ub - XuaXub + Sua (]- + Xua + Xub) 61)(Yvua,uc - XuaXuc + Sua []- + Xua + Xuc) 61) 2
e Yub7bc - Xuquc — Sua (1 + Xub + Xuc) 61)

1
1 3e1\2\ 2
(i/ua,ub - XuaXub)(Yua,uc - XuaXuc) ( + Sua %2)
S Xua + €1 + Sua
Yub,uc - Xuquc 1-—- Su

3e1

@ Az

1
12 6

S Pua + €1 +pua A2 + AQ c €1 + 0(61)

19
< Pua + Az e + o(eq).

Where we have used Yy s — Xour Xus > %2, sia =1, pua <1,1 < ﬁ. We then conclude by symmetry.

If u is of degree two, we use a line primitive to estimate it:

. S N XV XY
(Y'ul,a,ub _XuaXub) (XuaXbc+ wa,ub,be _“*uatup be cYua,ub

ﬁua = Xua + Sua > ~ ~
Yub,bc - XuaXbc

Xub—Sua€1

| I |
| Zua,’ub,b07X“aYub,bc7Xchua,ub+5Suael
(V) p = XuaXub + 38uaer) | XuaXoe + 261+
S Xua + €1 + Sua

\
Yub,bc — XuaXpe — 38ua€1

As shown in the proof of Lemma ??, we have:

1
ZL(J,,ub,bc - XuaYJLbJ)C - XbCYu‘a,ub = 7(pub + qub)(Quapbc + puaqbc)

2
> p?nin
- 2
Z — XY, — Xy Y 1
Jub,b atubb be ub
(XuaXbc + B “Xub - R = Z( ua Qua)(pbc - ch)
u
A2
> —.
— 4
Therefore:
5
Z| — XuaYy e — XoeY)y oy +5 A — XY, - X,V L+ Sua s -
ua,ub,bc ua s yb,be betya,ub Sua€l < ua,ub,be ua s yb,be bet ya,ub —mn
Xub — Sua€l - Xup 1- Suaz’;ﬁ
Z — XuaY), . — XpoY 12
< ua,ub,bc u’lXub,bc c ua,ub T Sua ( - )61 +0(61).
ub Prin
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We also have:

| \ | \ | |
XuaXbC " 261 n Zua,ub,bc - XuaYub,bc - Xbcyumub + 5Sua61 < < uaXbc " Zua,ub,bc — Xuayub,bc — XbCYua ub)

Xub — Sua€l XUb

#
14 544 27';” €1 | +o(er).

4

Combining all the above inequalitites:

2 =KoYy e XY
(Yul,a ub XuaXub) <XuaXbc o ub.be XZZ be 2 b)
ﬁua S Xua + €1 + Sua ‘
Yub be XuaXbc
314 %
(1 + 361) (1 + Sua T8 61)
1-— sua%
4
9 6 28 6
< Pua + €1+ PuaSyq E + == A2 E - €1+ 0(51)
m7,n
41
<pua+ 3 A2 c €1 +O(61).
mzn
We can conclude by symmetry.
Since A2 c€1 > i—% - €1, we conclude that we can know p,,, within precision € = 41 77 " €1 regardless of the degree
of u. fn P

Theorem 1. Under Conditions ?? and ??,, with probability 1 — §, with M = N - A4 = log (12N ) =0 (Eﬂ2 log (%))

samples, we can learn all the edges of the mixture of the graphs within precision e

Proof. We pick € = ﬁ . We use Claim 2 to bound the quantity Pr(M, < 2%), and Claim 3 and 4 to bound
Pr([pua — pual > 1)37 61|M > ). For (u, a) edge of the graph:
M M
Pr(|ﬁua 7pua‘ > 6) S Pr(|]§ua 7pua| > E‘Mu < %) : Pr(Mu < ﬁ)
M M
Pr(|pua — M, > —) -Pr(M, > —
+ Pr([pua — Pual > €My > Qn) r(M, > ZN)
< 1 : 2672% + Pr(|ﬁua 7pua‘ > 6|]\4u > %) : 1
o — 2N
) 41 M
< P Aua - Pua M
— 12N2 + r(|p p ‘ > m,LnAQ Ell 2N)
< 1) n é
— 12N2  12N?2
< é
~ 6NZ°

We conclude by union bound on the six estimators involved for all the pairs of nodes in the graph, for a total of at most 6 N2
estimators.

B.5. Complete graph on three nodes

In this section, we prove it is possible to recover the weights of a mixture on three nodes, as long as there are at least three
edges in F/; U E5. Since no node is of degree 3, no node is a star vertex, and since there are less than four nodes, no node is
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a line vertex, and we can not use the techniques developped above for connected graphs on four vertices or more. However,
we can still use very similar proofs techniques. Suppose the vertices of V are 1, 2 and 3.

Definition 2. We reuse the quantities defined for star vertices:

1 M
g . 5 A 2m=1 Lisjicrm
e Fori, jdistinctin {1,2,3}, X;; = Y regr————20

M 2m=1 Lierp

Moo Xij = —52

1 M
A Zm=1 Limvjimk e

e Fori, j, k distinct in {1, 2,3}, Yi; ir = TS g
m=1Tuell"

PijPik+qijdik
.

— M—oo Yijik =

Even though neither 1, 2 or 3 is a star vertex, we can write the same kind of system of equations as a star vertex would
satisfy. In particular:

i — il _ | Vigin = Xigik) (Vi jn — X5iXr)
2 Yiiks — XXk

Resolving the sign ambiguity as previoulsy (Lemma 3), this finally yields:

Yijiw — Xijik)(Yji e — X5 Xk
pij = Xij + 54 (Ys i1k) (Yjiy j 1)7
Yiinj — XwiXuj

Yijik — Xijik) (Yijw — X;i Xk
g = Xij + 515 (Y, i1k) (Vi i Xjk)
Yiini — XuiXkj

C. Lower Bounds

C.1. Directed lower bound

We consider the task of learning all the edges of any mixture of graphs up to precision € < A. To do so, we have to be able
to learn a mixture on a specific graph, which we present below.

Figure 1: Lower-bound directed graph

The example we focus on is the directed graph of min-degree 3, comprised of a clique on 4 nodes, which we call nodes 1 to
4, and N — 4 other nodes with 3 directed edges to nodes 1, 2 and 3. All edges have weight p in E7, and p + A in Es.

We define a valid sample for edge (i, j) as a cascade during which ¢ became infected when j was not infected. Indeed, in
this case, an infection could happen along edge (i, j), and we can therefore gain information about the weight of this edge.
We first state a general claim:

Claim 5. We need at least Q(ﬁ) valid samples for edge (i, j) to determine the weights of this edge in the mixture.
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Proof. Using Sanov’s theorem (?), and writing the Kullback—Leibler divergence between p and ¢ as D(p||q), we know we
need at least Q(D(p||p + A)) valid samples to determine whether the valid samples came from a random flip of probability
p, or a random flip of probability p + A, which is an easier task than computing both weights of the mixture.

Then, using standard Kullback-Leibler divergence bounds (?), we obtain D(p||p + A) > x5, which gives us the desired
result.

‘We now combine this with Coupon collector’s result to obtain our lower bound.

Claim 6. We need at least ) (N log(N) + %‘ggm) cascades to obtain enough valid samples for all the edges in the
graph.

Proof. We notice that if we want to learn all edges in the graph, it implies that we have to learn all the edges from
the N — 4 nodes to node 1. However, if ¢ is not part of the clique, any valid sample for such an edge (i, 1) has
to have ¢ as its source. Having enough valid samples for each of these edges is therefore equivalent to collecting
Q(ﬁ) copies of N — 4 distinct coupons in the standard Coupon collector problem. Using results from (2??), we need
Q((Klog(K) + (d—1) - K -loglog(K)) samples to obtain d copies of each coupon when there are K distinct coupons in
total, which is here Q ((N — 4)log(N — 4) + (g5 — 1) - (N — 4) - loglog(N — 4)) cascades. Using standard approxima-
tion, we get the desired result.

Combining the results:

Theorem 2. We need at least ) (N log(N) + %‘;g(m) cascades to learn any mixture of directed graphs of minimum
out-degree 3.

C.2. Undirected lower bound

We reuse a lot of the techniques in the previous subsection. This time, we consider a simple line graph on N nodes, where
forall 1 <7 < N — 1, node ¢ is connected to node ¢ + 1. Like in the previous example, the weights are all p in G, and all
P + Ain GQ.

Reusing Claim 5, we now prove:

Claim 7. We need at least 2 (%) cascades to obtain enough valid samples for edge (1,2).

Proof. To provide a valid sample, either:

e Node 1 is the source, which happens with probability P; = %

N
1 . 1 1
e Node 2 was infected, which happens with probability Py < ; Np:r:a%n < N1 pos
Therefore, the probability of getting a valid sample is smaller than P; + Py < % . #. Hence, we need at least

Q(H’% N - 25) = Q (£5) cascades to obtain enough valid samples.

Since we need to learn at least edge (1, 2) to learn all the edges of this graph:

Theorem 3. We need at least ) (%) cascades to learn any mixture of undirected graphs.
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(v) (b) ()

(a) A star vertex u for a directed graph.  (b) First structure to ensure sign con- (c) Second structure to ensure sign con-
sistency. sistency.

Figure 2: Structures for directed graphs of minimum out-degree three.

D. Directed graphs
D.1. Structures

Star vertex For directed graph of out-degree at least 3, every vertex is a star vertex. This implies we can reuse the star
vertex equations to learn the weights of the whole neighborhood of each node. However, if we learn the neighborhoods of
node u in both graphs, which we call N7 and N3', as well as the neighbordhoods of node a, which we call N{* and N, it is
impossible to recover from the star structure alone if N* and N{* are in the same mixture, or if it is A" and N instead. We
therefore use the two other structures in Figure 2 to ensure mixture consistency.

Mixture consistency Suppose we have learned the weights of all the edges stemming from a, as well as all the weighted
edges stemming from u, and suppose there is no edge between a and b. The probability that a infected u, which in turn
infected b is:

_ DPauPub T dauduy

Pla = v — bla € Iy) 3

This gives us a way to decide whether N} and N{* are in the same mixture, or if it is N}* and N instead. Indeed,
if we know po,, € N{, qaw € N§, and we also know wy,, € N{*,w!, € N3, and we have an estimator Yy, 5 for

/
My““w“b, in which case N}* belongs with N, or

, in which case M} belongs in the with A/{*. We call this procedure CHECKPATH.

Pla — u — bla € Iy), then we can check whether f{w)ub ~

N o .
whether Yy, 45 & Mubigqauub

Similarly, if there is an edge between a and b, then:

aul_ a U aul_ a u
P(a—>u—>b|aelo):p( pb)pb‘;q( Gab)qub

This also allows us to ensure mixture consistency. We call this procedure CHECKTRIANGLE.

Here is the final algorithm:
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Algorithm 5 Learn the weights of directed edges

Input Vertex set V/
Output Edge weights for the two epidemics graphs
E < LEARNEDGES(V)
Select any first node v
W <— LEARNSTAR(v, E, W)
S = {v}
while S £ V do
Select @ € S,v € V\S such that (a,u) € E {v has out-degree at least 3}
N1, Ny < LEARNSTAR (u, E, W)
Select b # a neighbor of u {b exists because u os of degree at least 3.}
if (a,b) ¢ E then {Use first structure.}
if CHECKPATH (v, u, b, W, N7, N2) then
W = {Wl UNl,WQ UNQ}
else
W ={Wy UNy, Wo UN7}
else{Use second structure.}
if CHECKTRIANGLE(v, u, b, W, N1, N>) then
W = {W1 UNy, Wa UN2}
else
W = {Wl UNQ, Wy UNl}

S« Su{u}
return W =0

S PR PRI

E. Unbalanced/Unknown Mixtures

In this section we provide the primitives required for LEARNSTAR and LEARNLINE, when the first mixture occurs with
probability « and the second mixture with probability (1 — ).

Notations: In this section, to avoid clutter in notation we use ¢, j and k to be all distinct unless mentioned otherwise. Also,
let o({a,b,c}) = {(a,b,c), (b,c,a), (c,a,b)} denote all the permutations of a, b, and c.

Claim 8. If a and b are two distinct nodes of Vi N Va such that (a,b) € E; N Ey then under general mixture model
Xab = apap + (1 — a)qap.

Fuither, when the four nodes u, a, b and c forms a star graph (Fig. ??) with w in the center under general mixture model

1) VZ?J € {(Z, bv C}v Zaj 7£ Uu, Yui,uj = apuipuj + (1 - a)quiquj7
2) Zua,ub,uc = QPyaPubPuc + (1 - O‘)Qu(LQubQuc-

Finally, when the four nodes u, a, b and c forms a line graph (Fig. ??) under general mixture model

1) Yula_’ub = QPyaPub T (1 - a)Qanum 2) Yulbybc = QPubPbe + (1 - a)Qubqbc;

3) ZLa,ub,bc = OPyaPubPbc + (1 - Oé)CIanubec-

The proof of the above claim is omitted as it follows closely the proofs of Claim ??, ??, and ??.

E.1. Star Graph

We now present the following two lemmas which recover the weights p,,;,and q,,; for all i € {a, b, ¢} in the star graph
(Fig. ??), and the general mixture parameter «, respectively.
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Lemma 7 (Weights of General Star Graph). Under Conditions ?? and ??, in the setting of infinite samples, for the star
structure (u, a, b, c) with u as the central vertex the weight of any edge (u, a) is given by:

Yua ub XuaXu Yua uc XuaXuc
puaXua+5ua\/1;a\/( b b)( ; )

Yub,uc - Xuquc

o (Yua,ub - XuaXub)(Yua,uc - XuaXuc)
Qua = Xua - Sua\/ 10‘\/

Yub,uc - Xuquc
where sy € {—1,1} and b,c € Ny (u) N Na(u) such thatb,c # a, b # c.

Proof. We notice that for r # j € {a,b,c}

(Yui,uj - Xu'LXuj) = (apuzpuj + (1 - a)QUZQU]) - (apui + (1 - OZ)QM) (apuj + (1 - a)QMJ)
= O‘(l - O‘)(pui - qui)(puj - Quj)~
The rest of the proof follows the same steps as given in the proof of Lemma ?? with the above modification. O

Lemma 8 (Sign Ambiguity Star Graph). Under Conditions ?? and ??, in the setting of infinite samples, for edges
(u,a), (u,b) for the star structure (u, a,b, c) with u as the central vertex, the sign pattern Syq, Syp, satisfy the following
relation.

SubSua = Sgn(Yua,ub - XuaXub)~

Proof. The proof of the first statement follows the same logic as the proof of Lemma 3, after noting that sgn(a(1 — «)) = 1
fora € (0,1). O

E.2. Line Graph
We now present the recovery of parameters in the case of a line graph with knowledge of «

Lemma 9 (Weights of General Line Graph). Under Conditions ?? and ??, in the setting of infinite samples, the weights
of the edges (u,a), and (u,b) for a line graph a — u — b — ¢ can be learned in closed form (as given in the proof), as a
function of

(1) the mixture parameter q,

(2) estimators Xua, Xup Xoe, V.

ua,ub’

(3) one variable s, € {—1,+1}.

YJb’bC, and Z|

ua,ub,bc’

Proof. We first note that we have access to the following three relations
1) <Yu‘a,ub — XuaXup) = (1 — @) (Pua — qua) (Pub — qub)
2) (Vipge — XunXoe) = a1 = @) (but — ) (Pre — o)
3) (Zl‘m,ub,bc + XuaXub Xoe — Xuayqlb,bc - Xchila,ub)
=a(l = a)((1 — @)pubr + aqub) (Pua — qua) (Poc — be)-

The first two inequalities follow similar to Lemma ??. We derive the final equality below.

A

ua,ub,bc

+ XuaXubXbc - XuaYul[Lbc - Xbcyl

wa,ub
= apuaPubPoc + (1 — @)quaGuboe

— (aPua + (1 = @)qua) ((@PubPre + (1 — @)qupgve) — (appe + (1 — @) gye) ((PuaPub + (1 — @) quaqus)
+ (apua + (1 = @)qua) (@pup + (1 — @)qup) (appe + (1 — @) qpe)

= a(1 — @)*puaPubPrc + (1 — @) quaGubse

— a1 = a)*puaPub@se + > (1 — Q)puaGusPbe — (1 — @)*quaPubPre

— o*(1 = &) quaGuepye + (1 — @) quapusve — &*(1 — @)PuaGuvec

= a1 — a)((1 = @)pup + 2qus) (Pua — Qua) (Pe — Gbe)
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Therefore, we obtain the following quadratic equation in p,,; and g, (unlike the o = 1/2 case it cannot be easily reduced to
a linear equation),

O[(]. - a)(pub - QUb) o (Yula ,ub XuaXu{?)(Yulb,bc - XubXbC)

((1 - a)pUb + aq’Ub) (ZJJ,G, ub,bc + X’U«U«XUbXbC - XuaYJb,bc - XbCYu‘a ub)

= CL,,

Note that X, = apyp + (1 — @)qusp, thus the above can be reduced to

a(l — o) (pus — Xuw)?/(1—a)®

(pw(1—20) + aXy)/(L—a) ¥
pay —2 (Xub + UEEQ) Czlw) Pub = C/Lqub - X2,

2
Pub = Xuv + 55 20)0' » + Sub\/((lgja)cub) + %CLqub

2
Qub = Xup — (11 QZ;CI sub\/(él(l_ng CLb) + ﬁCLqub
We substitute in the above two equations 6 and s, as defined below

a:%(l—sa\/@), (1—a):%(1+8a\/§), (1 - 2a) = s, V0.

From the substitution we obtain,

sa\/(§(1+sa\/§)CL 1-0)X,
Pub = Xup + = (1 + SaSuby /1 + (ec)ubb>

SaVO(1—s4V0 8)C! X
qQub = Xup ((1—9) s <1 SaSuby /1 u 9?\ b>

Next we use pyp, and gy, to obtain p,,, and g.,. Specifically, we have

a(l - a)(pub - qub)(pua - qua) (Yula wb XuaXub)

(Yu‘a ub X“aXUb)
(pua - Qua) = (00 %o .
sa\/é (1 + SaSubs /1 + 9())
Finally, we use the above relation to arrive at the required result.
2(1 + 504\/5) (Y'ul,a ub XuaXub)
Pua = Mua
(A=0)Xup
Sa\/é (1 + SaSub 1+ 9C7|Lh )
2(1 = 50 V) (Vo = XuaXu)
Qua = Xya —
Sa V0 (1 + SaSubs |1+ Mp{’“’)
6c.,

O

Lemma 10 (Sign Ambiguity Line graph on 5 nodes). Under Conditions ?? and ??, in the setting of infinite samples, for a
line structure a — u — b — ¢ — d the sign patterns sy, and sp. satisfy the relation, SyupSpe = sgn(Y;lb be = XupXpe)-

Proof. The proof is almost identical to the other sign ambiguity proofs. O
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E.3. Finite Sample Complexity

We start by observing that the Claim 2 still holds in the general case.

Claim 9. If we can estimate X, Yua wb> YJa o and Z, La ub.be within €1, we can estimate py, and q,, within precision
e = O (e1/min(ppin, A)° min(a, 1 — a)?).

Proof. The proof proceeds in a very similar manner as Claim4. Following the derivations for p,,, and ¢, in the proof
of Claim4, we can see that for the star primitive all the computation carry over with a scaling of ﬁ as we have

Y s — XurXus > A%a(1 — «) instead of A? /4.

ur,us

The line primitive presents with increased difficulty as the estimator is more complex. We first observe that a(1 — o) A? <
CLb < max(a, (1 — «)). We recall that

(2,

ua,ub,bc

+ XuaXubXbc - Xuayule)C - XbCYJLa ub)

= a(l - a)(<1 — Q)Pub + aqub)(pua - qua)(pbc - ch)
> min(o, 1 — a)zpmm min(pmin, A)2/2,

(Yt‘m ub — XuaXup) = (1 = @) (Pua — Qua) (Pub — qus) = min(a, 1 — o) min(ppin, A)2/2.

+ XuaXubXoe — XuaY)y o — XocY,

(7]
Let us assume the error in (Z waub

vatsb.be ) is bounded as ¢4 and the error in (Y

ua,ub

XuaXub)(Yu‘b e — XubXpe) is bounded as €,,. We have €, < 4e; and €q < 3¢; as all the estimators are assumed to have
error bounded by ¢;.

Therefore, using |z /y — 2/9| < x/y(0z/x + 0y/y) + O(d50y),

Al | — €n €q
|Cub Cub' S €= o min(a,1—a)? min(pmin,A)?* + min(a,1—a)?pmin Min(Pmin,A)?

= O(e1/ min(a, 1 — a)2 min(pPmin, A)4).

Using the above bound in the expression of p,,, we can obtain,
[Pua = Pual < [Xua = Xua| + 5522 |CL, — Clgl +
(520 U5l - (B52220k) ¢ sl
<[ Xua — X ua|+M| e = Clal + -

((1 2&)) |Cq|,L(],_C'l|,L(L|(C'I|,La+C| )+(1%.;l)|éLaXua_C'l|LaXua|

2
(1—2a) | (1—a) Al
\/(2a Cua) + o OuaXua

2
<e+ U2 SR Ei T oy (2 ((152'1)) e+ 2% (e; + ec)> + o(e1) + o(ec)

< O(er/ min(pmin, A)a(l — «)) + O(e./ min(pmin, A)a2(1 —a)) +o(e1) + o(ec)

+

Therefore, using the estimate of €. we obtain,
|Pua — Pual < O (el/min(pmm, A)’amin(a, 1 — a)S) )

Switching «v and (1 — «) gives us the same bounds for |Gya — Gual- O

2
In the above derivation we have used \/((1220‘)@'“1) + %CLQXM > (1 — @) min(pmin, A)/2. We now derive the
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above inequality.

2
M/((l;ja) CLa> + (l;a)CLaXua‘ _ |pua G (1—204)0\

20 ua|

(1—20) (1= ) (Pua —qua)?
—Q (pua - q'u,a) - 2((17a)puazjra4u(i) ‘

1

(1 — @) min(pmin, A), (@ > 1/2 A pua > qua) V (@ < 1/2 A pua < Gua)
> (1 - O‘) min(pmina A)|1 - &17_23) ‘7 (O‘ < 1/2 A Pua 2 Qua)

(

—1
a

1-— Oé) min(pmi’ruA)H - (237)‘7 (O[ Z 1/2 /\pua < Qua)a

Finally, using union bound on all the estimators involved accross all possible edges, we can obtain the error bound in the
following Theorem 4.

Theorem 4. Suppose Condition ?? and ?? are true, there exists an algorithm that runs on epidemic cascades over a mixture
of two undirected, weighted graphs G1 = (V, E1) and G2 = (V, Es), and recovers the edge weights corresponding to each
graph up to precision € in time O(N?) and sample complexity O (]\SCEN) fora=1/2and O (%) for
general o € (0,1), 0 # 1/2, where N = |V/|.




