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Abstract
Variational inference (VI) and Markov chain
Monte Carlo (MCMC) are approximate posterior
inference algorithms that are often said to have
complementary strengths, with VI being fast but
biased and MCMC being slower but asymptoti-
cally unbiased. In this paper, we analyze gradient-
based MCMC and VI procedures and find the-
oretical and empirical evidence that these pro-
cedures are not as different as one might think.
In particular, a close examination of the Fokker-
Planck equation that governs the Langevin dy-
namics (LD) MCMC procedure reveals that LD
implicitly follows a gradient flow that corresponds
to a variational inference procedure based on op-
timizing a nonparametric normalizing flow. This
result suggests that the transient bias of LD (due
to the Markov chain not having burned in) may
track that of VI (due to the optimizer not having
converged), up to differences due to VI’s asymp-
totic bias and parameterization. Empirically, we
find that the transient biases of these algorithms
(and their momentum-accelerated counterparts)
do evolve similarly. This suggests that practi-
tioners with a limited time budget may get more
accurate results by running an MCMC procedure
(even if it’s far from burned in) than a VI proce-
dure, as long as the variance of the MCMC esti-
mator can be dealt with (e.g., by running many
parallel chains).

1. Introduction
The central computational problem in Bayesian data anal-
ysis is posterior inference. Exact inference is usually in-
tractable, so practitioners resort to approximations. Two
of the most popular classes of approximate inference algo-
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rithms are Markov chain Monte Carlo (MCMC) and varia-
tional inference (VI). VI chooses a family of tractable dis-
tributions, and tries to find the member of that family with
the lowest KL divergence to the posterior, whereas MCMC
simulates a Markov chain whose stationary distribution is
the posterior.

VI and MCMC are often said to have complementary
strengths: VI is faster but biased, whereas MCMC is slower
but asymptotically unbiased. But statements like this are im-
precise; the question is not “how much longer does MCMC
take to converge than VI?” but “for a given computational
budget, will VI or MCMC give more accurate estimates?”
For that matter, the notion of a one-dimensional computation
budget is an oversimplification, since parallel computation
(especially on GPUs and TPUs) has become cheap but clock
speeds have remained nearly constant.

In this paper, we will be motivated by the following ques-
tion: for a given parallel-compute budget, will VI or MCMC
reach a given level of accuracy faster? We examine this
question both theoretically and empirically for two popular
gradient-based VI and MCMC algorithms: reparameterized
black-box VI (BBVI; Ranganath et al., 2014; Kingma &
Welling, 2014; Rezende et al., 2014; Roeder et al., 2017)
and Langevin-dynamics MCMC (LD; Roberts & Rosenthal,
1998). By reformulating LD as a deterministic normalizing
flow (Rezende & Mohamed, 2015) via the Fokker-Planck
equation (Jordan et al., 1998; Villani, 2003), we arrive at a
reinterpretation of BBVI as a parametric approximation to
the nonparametric LD MCMC procedure. This interpreta-
tion suggests that the transient bias (Angelino et al., 2016)
of BBVI (i.e., bias due to incomplete optimization rather
than approximations) may track the transient bias of LD
(i.e., bias due to the Markov chain not having warmed up),
and that claims that VI is faster than MCMC demand closer
scrutiny. Empirically, we find that BBVI’s transient bias
indeed tracks that of LD on several problems.

Our main results are:

• We show theoretically that LD and BBVI both fol-
low the same gradient flow, up to gradient noise and a
tangent field induced by the variational distribution’s
parameterization. We also analyze the effects of gradi-
ent noise in BBVI.
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• We show empirically that the transient biases of
BBVI and MCMC estimators often converge at simi-
lar speeds, even when BBVI uses very low-variance
gradient estimators and can exactly match the target
distribution. When BBVI is asymptotically biased, we
likewise find similar convergence behavior until this
asymptotic bias kicks in.

Taken together, these results have important implications for
practitioners choosing between BBVI and gradient-based
MCMC algorithms. In particular we argue that BBVI is un-
likely to be significantly faster than MCMC unless we can
use an amortized-inference strategy (Gershman & Goodman,
2014) to spread the cost of BBVI across many problems,
or we do not have access to enough parallel computation
that we can reduce the variance of our MCMC estimator to
acceptable levels by running many chains in parallel. Other-
wise, as an alternative to BBVI we recommend running as
many short MCMC chains as possible, possibly discarding
all but the last sample of each chain. As GPUs and TPUs
continue to get cheaper, more and more one-off Bayesian
data-analysis problems will be susceptible to this strategy.

2. Langevin as an Implicit Normalizing Flow
In this section, we show that the Langevin dynamics (LD)
algorithm can be interpreted as implicitly doing black-box
variational inference (BBVI) with a nonparametric normal-
izing flow. One can view this derivation as a translation of
the classic “JKO” result of Jordan et al. (1998) to the lan-
guage of modern flow-based variational inference (Rezende
& Mohamed, 2015). While this result is well known in
the optimal-transport literature, and has more recently been
used to prove non-asymptotic convergence rates for LD algo-
rithms (Wibisono, 2018; Ma et al., 2019a), we are more con-
cerned with its implications for parametric BBVI algorithms.
We will show that gradient-based MCMC algorithms and
parametric BBVI are following the same gradient signals
(up to a tangent field due to the mapping from function space
to parameter space), suggesting that BBVI’s convergence
behavior may track that of LD.

We begin by considering BBVI with a nonparametric nor-
malizing flow g, and taking the functional derivative of the
Kullback-Leibler (KL) divergence between the resulting
variational distribution qg(θ) = q0(g−1(θ))|∂g

−1

∂θ | and the
target distribution p(θ):

δ

δg(ε)

∫
ε

q0(ε)(log qg(g(ε))− log p(g(ε)))dε

= ∇θ log qg(g(ε))−∇θ log p(g(ε)).

(1)

(Following Roeder et al. (2017) we omit the zero-
expectation score-function term capturing the effect of g
on qg(·).) That is, we want to push samples towards regions

of high density under p and away from regions of high den-
sity under q. If g is instead a parametric function controlled
by parameters φ (as it almost always is in practice), then the
gradient becomes

d

dφ

∫
ε

q0(ε)(log qφ(gφ(ε))− log p(gφ(ε)))dε

=

∫
ε

(∇θ log qg(gφ(ε))−∇θ log p(gφ(ε)))
∂g

∂φ
dε.

(2)

That is, the standard BBVI gradient step is the projection
of the “ideal” BBVI functional gradient onto the parameter
space of gφ. We will show below that LD is implicitly
following the ideal functional gradient in equation 1.

First, we need to review LD and its relation to the Fokker-
Planck equation. In each iteration of LD, we update our
state θn ∈ RD to

θn+1 = θn + η∇ log p(θn) +
√

2ηξ, (3)

where η is a step size and ξ ∼ N (0, I) is a standard-normal
random variable. This is a first-order discretization1 of the
Langevin stochastic differential equation (SDE)

dθt = ∇ log p(θt)dt+
√

2dWt, (4)

where dW (t) is a D-dimensional Wiener process. The
distribution q(t, θ) of a population of particles evolving ac-
cording to the Langevin SDE from some initial distribution
q(0, θ) is governed by the (deterministic) Fokker-Planck par-
tial differential equation (PDE), which we write (in slightly
non-standard form) as

∂ log q
∂t=∇θ log q(t,θ)>(∇θ log q(t,θ)−∇θ log p(θ)) +tr(∇2

θ log q(t,θ)−∇2
θ log p(θ)).

(5)

q(t, θ) = p(θ) is a stationary point for this PDE. Jordan
et al. (1998) showed that q actually approaches p by a
steepest-descent path, with “steepness” defined in terms
of Wasserstein-2 distance and KL divergence between q and
p; specifically, in the limit as η → 0,

q(t+ η, ·) = arg min
q

1

2
W2

2 (q, q(t, ·)) + ηEq
[
log

q(θ)

p(θ)

]
.

That is, q(t+ η, ·) tries to minimize KL divergence as much
as possible without moving too far in Wasserstein-2 distance.

1The O(η2) discretization error can be addressed by a
Metropolis-Hastings (Hastings, 1970) correction, but this makes
the analysis much more difficult so we ignore it here and focus
on the continuous-time limit. Our empirical results using the
Metropolis-adjusted algorithm are consistent with the intuitions
from this continuous-time limit.
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Under some fairly mild assumptions on the smoothness,
compactness, and boundedness of q(0, ·) and p, we can write
the squared Wasserstein-2 distanceW2

2 (q(t, ·), q(t+ η, ·))
in terms of a transport map ft

W2
2 (q(t, ·), q(t+ η, ·)) = min

ft

∫
θ

q(t, θ)||θ − ft(θ)||2.

s.t. q(t, θ) = q(t+ η, ft(θ))

∣∣∣∣∂ft∂θ
∣∣∣∣ .

The solution to this optimal-transport problem turns out to
be the ideal functional BBVI gradient step from equation 1
(Villani, 2003, Chapter 8):

ft(θ) = θ + η∇θ log p(θ)− η∇θ log q(t, θ). (6)

Indeed, if we define q(t + η, ·) by plugging ft into the
change-of-variables formula q(t + η, f(θ))|∂f∂θ | = q(t, θ),
it is not hard to verify that the result satisfies the Fokker-
Planck equation (equation ?? above) to first order in η:

log q(t+ η, θ) = log q(t, f−1
t (θ))− log

∣∣∣∣∂ft∂θ
∣∣∣∣

= log q(t, θ − η∇θ
log p(θ)

log q(t, θ)
+O(η2))

− log

∣∣∣∣I + η∇2
θ

log p(θ)

log q(t, θ)

∣∣∣∣
= log q(t, θ)

+ η∇θ log q(t, θ)>∇θ
log q(t, θ)

log p(θ)

+ ηtr(∇2
θ

log q(t, θ)

log p(θ)
) +O(η2).

(7)

In principle, this gives us a deterministic way to reproduce
the behavior of LD: sample from q(0, θ), and then recur-
sively apply equation 62. This amounts to doing variational
inference with a composition of normalizing flows:

q(t, θ) = q(0, g−1
t (θ))

∣∣∣∣∂g−1
t

∂θ

∣∣∣∣
gt , ft ◦ ft−η ◦ · · · ◦ fη ◦ f0.

(8)

Since the difference between gt and gt−η is the functional
gradient step from equation 1, gt can be interpreted as the
result of running t/η steps of BBVI on a nonparametric
normalizing flow. So (to first order in η) LD can be inter-
preted as an implicit VI procedure where one runs k steps
of nonparametric BBVI and then draws one sample from
the result.

2This is not practical to do for more than a few iterations, since
each iteration requires computing higher-order derivatives than the
last one. An exception is if q(0, θ) and p are Gaussian, since then
these derivatives vanish.

2.1. Momentum and Preconditioning

So far, we have only discussed versions of BBVI based
on simple gradient descent. But practitioners often use op-
timization schemes such as Adam (Kingma & Ba, 2015),
which can make faster progress than gradient descent by us-
ing momentum and gradient preconditioning. In this section,
we find momentum-accelerated nonparametric BBVI to be-
have similarly to an underdamped Langevin diffusion in the
space of probabilities. In section 5, we will confirm that
momentum and preconditioning do indeed let both BBVI
and MCMC algorithms reduce transient bias more quickly.

We begin by introducing momentum. A nonparametric
BBVI-with-momentum scheme is

rk+1 = αrk + η∇θ log
p(θk)

q(θk)
; θk+1 = θk + rk+1, (9)

where r is an auxiliary momentum vector with the same
shape as θ, η is a step size, and α is a smoothing parameter
between 0 and 1. It essentially collects an exponentially
weighted moving average of functional gradients. The aux-
iliary vector r can also be seen as a displacement map from
q(θk) to q(θk+1), sampled at θk. This notion establishes
the momentum BBVI method as an acceleration scheme for
the Langevin dynamics. To see this, we set v = r/

√
η and

α̂ = (1 − α)/
√
η and examine the continuous dynamics

associated with the above momentum BBVI scheme:

dθt
dt

= vt;
dvt
dt

= −α̂vt +∇θ log
p(θt)

q(θt)
. (10)

Formally, we define Tt : Rd → Rd as the optimal transport
plan from q to p at time t. Then for every θt, its instanta-
neous velocity is ∂t((Tt)−1)Tt(θt). Using this notion, we
can represent the entire velocity field vt : Rd → Rd as
vt(·) = ∂t((Tt)

−1)Tt(·) (see, e.g., Y. Wang, 2019). We
thereby obtain the expanded vector flow from the gradient
flow of ∇θ log q

p :(
vt

−α̂vt −∇θ log q
p

)
= −

(
0 −I
I α̂I

)(
∇θ log q

p

vt

)
,

which corresponds to the dynamics of accelerated gradient
descent (Su et al., 2014; Wilson et al., 2016).

Another approach to accelerated gradient descent in the
space of probability is via introducing a joint distribution
over z = (θ, v). Letting the joint target distribution p(z) ∝
p(θ) exp

(
− 1

2‖v‖
2
2

)
, we can extend the gradient flow as:

dzt = −
(

0 −I
I α̂I

)
∇z log

q̂(zt)

p̂(zt)
dt. (11)

The above dynamics correspond to the underdamped
Langevin diffusion, which leads to many acceleration
schemes in MCMC (Cheng et al., 2018; Mangoubi & Smith,
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2017; Mangoubi & Vishnoi, 2018; Lee et al., 2018; Dalalyan
& Riou-Durand, 2018; Ma et al., 2019a; Shen & Lee, 2019).

For both forms of continuous dynamics (in equations 10
and 11), anO(

√
m) rate of convergence can be achieved for

m-strongly log-concave target distributions p(θ) (Y. Wang,
2019; Y. Cao, 2020), which corresponds to accelerated gra-
dient descent in finite dimensions (Su et al., 2014; Wilson
et al., 2016).

In summary, VI leverages momentum to achieve similar
acceleration behavior as underdamped Langevin MCMC,
but in a more deterministic fashion due to its use of a finite-
dimensional parameterization over the space of probabili-
ties. It would be interesting to see how other variations of
Langevin dynamics (see, e.g., Tzen & Raginsky, 2019; Mou
et al., 2019; Ma et al., 2018) correspond and contribute to
the optimization processes of VI.

3. Implications
The equivalence between BBVI and LD has implications
for how the bias of BBVI and LD estimators evolves as a
function of time. Estimators based on BBVI with a nonpara-
metric normalizing flow should have roughly the same bias
as LD estimators if both are run with the same step size and
number of steps3.

One reason that the bias of BBVI with a parametric flow
gφ may differ from that of LD is due to the influence of
the tangent field ∂g

∂φ from equation 2 that translates from
function space to parameter space. This is clearly a point
against BBVI in the “non-realizable” setting where there
does not exist a φ such that qφ(θ) = p(θ). But even in the
realizable setting, the tangent field ∂g

∂φ distorts the geometry
of the gradient flow ∇θ log p

q . This distortion will often be
harmful, insofar as normalizing flows are usually designed
without this sort of geometric consideration in mind. How-
ever, there are cases where it can be helpful; we will give an
example in section 5.1.

Gradient noise can also affect the transient bias of paramet-
ric BBVI. Approximating the gradient in equation 2 using a
small number of samples from q will divert the evolution of
the variational distribution from its ideal gradient flow, but
this issue can be mitigated using variance reduction (e.g.,
Roeder et al., 2017) or by averaging gradient signals from
many samples computed in parallel. This is discussed in
more detail in section 4.

At this point one might ask: if LD and BBVI are so simi-
lar, why do practitioners find that BBVI often gives useful
results faster than LD? We claim that the answer has to
do with the variance of LD estimators. Once a paramet-

3Although in practice BBVI may sometimes allow for slightly
larger step sizes than LD; see section 5.

ric variational distribution qφ has been fit, one can usually
draw many samples from qφ cheaply to accurately estimate
expectations Eq[h(θ)]; insofar as these estimates diverge
from the true expectations Ep[h(θ)], it is mostly due to bias
due to qφ 6= p. By contrast, if one compares BBVI with
single-sample gradient estimators to a single chain of LD
(so that both methods do roughly the same computational
work per step), then the LD estimator will have error due to
both transient bias (if the chain is not run to convergence)
and variance (since the estimator will be based on a small
number of samples). If LD and BBVI are run for a rela-
tively short time so that LD and BBVI have similar transient
bias (and this transient bias dominates BBVI’s asymptotic
bias), then LD’s higher variance will lead to less-accurate
estimates than BBVI. On the other hand, if it is cheap to
reduce this variance by running many LD chains in paral-
lel, LD’s lack of asymptotic bias and ability to follow the
undistorted nonparametric gradient flow∇θ log p

q may yield
more-accurate estimates for any wall-clock time budget.

How many parallel MCMC chains do we need to run to
reduce variance to an acceptable level? One way to answer
this question is to suppose we are doing posterior inference
on a Bayesian model, and that the dataset we are analyzing
was drawn from that model’s prior-predictive distribution.
We want to estimate some quantity φ whose variance under
the posterior is v. If we can draw M independent samples
from the posterior, the expected squared error E[(φ̂− φ?)2]

from our estimator φ̂ to the true value φ? is v(1 + 1
M )—the

Monte Carlo error v
M plus the posterior variance v (which

can only be reduced by gathering more data). So the scale

of the error of φ̂ will be
√
v(1 + 1

M ) ≈
√
v(1 + 1

2M ). So
if we run 50 parallel MCMC chains to near-convergence
and take the last sample, we can expect our estimators to
have about one percent higher error than they would given
infinite computation. A single GPU can quickly run 50
parallel chains for many Bayesian inference problems, and
as cheap GPUs get more powerful, more and more problems
will be amenable to this sort of “last-sample” workflow.

4. Convergence of VI and MCMC
The goal of this section is to explore the convergence speed
of VI with gradient descent to attain a local approxima-
tion and how it compares to the convergence of an MCMC
method. We consider the simple problem of approximating
a centered normal distribution: p(θ) ∝ exp

(
− 1

2θ
>Λ∗θ

)
,

where the precision matrix Λ∗ is non-singular.

Two scenarios are considered here. One is the “open-box”
scenario where the algorithm knows that the posterior is a
centered normal distribution and performs gradient descent
to converge to it. In this oversimplified scenario, we prove
that the posterior is captured exponentially fast. Another
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scenario is the “black-box” case where the algorithm is only
given queries to the posterior values and its gradient informa-
tion. Stochastic approximation must be made with samples
from the approximating distribution, q(θ|·). In this case,
we prove that the convergence is much slower. To approxi-
mate the posterior in Rd up to ε accuracy, Ω (d/ε) iterations
as well as Ω(d) samples from q(θ|·) in each iteration are
required, which is comparable to the computational com-
plexity of the Langevin algorithm provided in section 4.4.

Before delving into further details, we quickly note that both
VI and MCMC can make use of acceleration techniques
discussed in section 2.1 to improve their convergence speed.
This point is further manifested in the experiment section.

We choose our variational approximation family to be
q(θ|Λ) ∝ exp

(
− 1

2θ
>Λθ

)
, parameterized by the precision

matrix Λ. Our goal is to perform gradient descent over the
space of Λ and converge to Λ∗. In VI practice, one chooses
KL (q(θ|Λ)‖p(θ)) to minimize:

KL (q(θ|Λ)‖p(θ)) = Eq(θ|Λ) log
q(θ|Λ)

p(θ)
.

In a gradient descent step, one plugs the variational approx-
imation log q(θ|Λ) = − 1

2θ
>Λθ + 1

2 log |Λ| + C into the
gradient of KL (q(θ|Λ)‖p(θ)) and obtains

∇ΛKL (q(θ|Λ)‖p(θ))

= Eq(θ|Λ)

[
∇Λ log q(θ|Λ) log

q(θ|Λ)

p(θ)

]
=

1

2
Eq(θ|Λ)

[(
Λ−1 − θθ>

)
log

q(θ|Λ)

p(θ)

]
, (12)

where Eq(θ|Λ)

[
θθ>

]
= Λ−1. We discuss in the rest of

this section the “open-box” and “black-box” approaches to
perform (preconditioned) gradient descent with equation 12.

4.1. Convergence of “Open-Box” VI

In the “open-box” case, the algorithm knows the form of the
log-posterior, log p(θ) = − 1

2θ
>Λ∗θ + 1

2 log |Λ∗|+ C, and
can compute the expectation in Eq. 12 exactly:

∇ΛKL (q(θ|Λ)‖p(θ)) =
1

2

(
Λ−1 − Λ−1Λ∗Λ−1

)
.

After preconditioning∇ΛKL (q(θ|Λ)‖p(θ)) with Λ⊗Λ, we
obtained an update rule of preconditioned gradient descent:

Λn = Λn−1 − hn−1 g(Λn−1). (13)

We prove in the following theorem that the above update
enjoys an exponential convergence guarantee of Λn to Λ∗.
Lemma 1. For the update rule described in equation 13
with exact gradients, if we take a step size of h = 1

2 ,
we can obtain that when n ≥ log2

2
σmin(Λ∗)

‖Λ0−Λ∗‖F
ε ,

KL (p(θ)‖q(θ|Λn)) ≤ ε, for any ε ≤ 1.

4.2. Convergence of “Black-Box” VI

In practice, however, one often cannot compute the integral
in equation 12 explicitly and instead turns to a (sample-
based) stochastic estimate of this gradient (Hoffman et al.,
2013; Ranganath et al., 2014). In this case, we examine
the convergence of the (preconditioned) gradient descent
with a relatively small amount of stochastic gradient noise
as well as the cost to obtain the stochastic approximation
with the required fidelity. Let’s first assume that we can ob-
tain a stochastic approximation ĝ(Λ) to the preconditioned
gradient g(Λ) = Λ∇ΛKL (q(θ|Λ)‖p(θ)) Λ, so that their
difference ∆(Λ;Dn) = ĝ(Λ;Dn) − g(Λ) is unbiased and
bounded in expectation for any n (see Sec. 4.3 for the origin
of these constants):

E [∆(Λ;Dn)] = 0; E ‖∆(Λ;Dn)‖2F ≤ σ
2
max(Λ∗)dδ2.

(14)

Under these assumptions, we can similarly implement the
stochastic preconditioned gradient descent as

Λn = Λn−1 − hn−1 ĝ(Λn−1). (15)

Theorem 1. Consider running the stochastic precondi-
tioned gradient descent algorithm described in equation 15
for a target posterior p(θ) ∝ exp

(
− 1

2θ
>Λ∗θ

)
. Under

assumptions 14 on the stochastic gradient noise, BBVI con-
verges exponentially up to the level of stochastic gradient
noise:

E‖Λn − Λ∗‖2F ≤
(

1− hi
2

)n
E ‖Λ0 − Λ∗‖2F

+ 2hσ2
max(Λ∗)dδ2.

If we take a step size of h = O
(

σmin(Λ∗)
σ2
max(Λ∗)δ2 ·

ε
d

)
for any

ε ≤ 1, we can obtain that KL (p(θ)‖q(θ|Λn)) ≤ ε with

a high probability, when n ≥ Õ
(
σ2
max(Λ∗)δ2

σ2
min(Λ∗)

d
ε

)
. We also

prove that this bound is tight.

This dichotomy between the “open-box” and the “black-
box” regimes of exponential versus linear convergence is
caused by the stochastic gradient noise. Via scrutinizing
the convergence behavior, we can observe that up to the
accuracy level of ε = O(dδ2), the convergence of BBVI is
still exponential. It becomes linear when the step size must
be small enough to contain the effect of stochastic gradient
noise. If one can approximate the gradient with higher pre-
cision, so that dδ2 scales less than or equal to the accuracy
requirement ε, then the more appealing fast convergence
scenario of Lemma 1 can be achieved in the “black-box”
setting. We explore this possibility in section 5 where the
variance-reduced sticking-the-landing (Roeder et al., 2017)
update significantly increases convergence speed.
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4.3. Sample Complexity of “Black-Box” VI

Define v (Λ; θ) = Λ∇Λ log q(θ|Λ)Λ · log q(θ|Λ)
p(θ) . Then

ĝ(Λ;Dn) = 1
|Dn|

∑
θi∈Dn v (Λ; θi) and g(Λ) =

Eθ∼q [v (Λ; θ)]. We first use the above definitions to de-
velop the expression of

E‖∆(Λ;Dn)‖2F

=
1

|Dn|
Eθ∼q

[∥∥∥v (Λ; θ)− Eθ̂∼q
[
v
(

Λ; θ̂
)]∥∥∥2

F

]
,

where Eθ̂∼q
[
v
(

Λ; θ̂
)]

= 1
2 (Λ− Λ∗).

It can be further calculated that:

Eθ∼q
[∥∥∥v (Λ; θ)− Eθ̂∼q

[
v
(

Λ; θ̂
)]∥∥∥2

F

]
=

1

2
(tr(Λ− Λ∗))

2 − 1

4
‖Λ− Λ∗‖2F

+

(
1

8

∥∥I − Λ∗Λ−1
∥∥2

F
+

1

16
(KL (q(θ|Λ)‖p(θ)))2

)
·
(

(tr(Λ))
2

+ tr
(
Λ2
))
.

If one initializes Λ0 sufficiently close to Λ∗, so that ‖Λ0 −
Λ∗‖2F and KL (q(θ|Λ0)‖p(θ)) are upper bounded by abso-
lute constants, then

Eθ∼q
[∥∥∥v (Λ; θ)− Eθ̂∼q

[
v
(

Λ; θ̂
)]∥∥∥2

F

]
= O

(
1

σmin(Λ∗)
d2

)
.

Hence to obtain that E‖∆(Λ;Dn)‖2F ≤ σ2
max(Λ∗)dδ2, we

need O
(

1
σmin(Λ∗)

d
δ2

)
number of samples in Dn.

4.4. Convergence of Langevin Algorithms

It has been demonstrated that for a posterior distribution
p(θ) ∝ exp (−U(θ)) with strongly convex and Lipschitz
smooth potential, U(θ), the unadjusted Langevin algorithm
(ULA) converges within O (d/ε) number of steps and the
Metropolis adjusted Langevin algorithm (MALA) converges
within O (d log 1/ε) iterations when initialized close to
the posterior (Dalalyan, 2017; Durmus & Moulines, 2019;
Dalalyan & Karagulyan, 2017; Cheng & Bartlett, 2018;
Dwivedi et al., 2018; Ma et al., 2019b).

We formally state the result of ULA below and provide a
simple proof in the appendix. To quantify convergence, we
follow the same standard as in the VI setting and use the
KL divergence between the distribution qn(θ) of the current
iterate θn and the posterior p(θ).

Proposition 1 ((Dalalyan, 2017; Durmus & Moulines, 2019;
Cheng & Bartlett, 2018; Ma et al., 2019b)). Assume that the

target distribution p(θ) ∝ exp (−U(θ)) with m-strongly
convex and L-Lipschitz smooth potential, U(θ). For the
unadjusted Langevin algorithm described in equation 3
with step size η, it converges exponentially up to the level of
discretization error:

KL (qn‖p) ≤ e−mηnKL (q0‖p) +

(
2
L4

m2
η2 +

L2

m
η

)
d.

If we take a step size of η = O( mL2
ε
d ), we can obtain that

KL (qn‖p) ≤ ε when n ≥ Õ
(
L2

m2
d
ε

)
.

Note that ULA has exactly the same behavior
as vanilla BBVI. One can substitute {L,m} for
{σmax(Λ∗), σmin(Λ∗)} and observe this correspondence in
the convergence rate in Theorem 1. More importantly, ULA
also exhibits the exponential-towards-linear transition in its
convergence behavior: when ε = O(d), ULA’s convergence
is exponential. It becomes linear when the step size must be
small enough to control the stochasticity, which has O(d)
variance.

From the convergence results of both VI and MCMC, we
can observe that they are both performing approximate gra-
dient descent via simulating continuous paths on the space
of probabilities. A crucial factor in this approach is how
large the step size can be taken. Without any stochastic-
ity, VI can achieve exponential convergence rate via effi-
cient parametrization of simple target distributions. With
stochasticity, however, vanilla BBVI is subject to stochastic
gradient noise comparable to the injected noise of MCMC.
Hence vanilla BBVI does not enjoy any additional benefit
from the finite-dimensional parametrization.

4.5. Sample Complexity of Monte Carlo Estimation

As discussed earlier, the parallelization of BBVI applies
directly to MCMC: one can run a number of parallel MCMC
chains to obtain mean estimates as soon as the Langevin
algorithm converges. We demonstrate here that the number
of chains required scales less than the number of parallel
machines needed for BBVI in the (sample-based) stochastic
gradient estimate.

Assume we want to estimate the mean of any Lf -Lipschitz
function f : R → R via i.i.d. samples {Θi · · ·ΘK} ob-
tained from running K parallel chains following the ULA.
By the Herbst argument (see, e.g., Ledoux, 1999), we know
that any random variable Θ with m-strongly convex po-
tential is a sub-Gaussian random variable with parameter

1√
m

. We can further combine it with the Prékopa-Leindler
inequality to show that any Lf -Lipschitz function of Θ is
2Lf√
m

-sub-Gaussian (see, e.g., Theorem 3.16 in Wainwright,
2019). This leads to the Hoeffding concentration bound:
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Figure 1. Kullback-Leibler (KL) divergence achieved by BBVI
and MALA algorithms as a function of number of iterations. KL
divergence is estimated for MALA assuming that the state of the
chain at a given time is drawn from a multivariate Gaussian and
estimating its parameters from 100, 000 chains.

Pr
(∣∣∣ 1
K

∑K
k=1 f(Θk)− Ef(Θ)

∣∣∣ ≥ t) ≤ 2 exp
(
−Kmt

2

4L2
f

)
.

Therefore, the number of samples required for a mean es-
timate of f up to accuracy ε with probability (1 − ε) is

K = 4
m

L2
f

ε2 log
(

2
ε

)
. For the normalized accuracy δ = ε/Lf ,

this implies a sample complexity of O
(

1
m

1
δ2

)
. Comparing

to the BBVI sample complexity in Sec. 4.3, we see that
BBVI requires an extra dimension factor of samples.

5. Experiments
In this section we empirically evaluate various flavors of
BBVI and gradient-based MCMC to see how well the the-
oretical results of sections 2 and 4.3 agree with practice.
We begin by considering the realizable setting, where the
true target distribution p can be exactly matched by a para-
metric distribution qφ for some parameter vector φ; this
eliminates BBVI’s asymptotic bias and lets us focus on
short-term convergence behavior. We then consider real-
world data analysis problems where qφ cannot be made to
exactly match the target posterior p(θ | x). All experiments
were done using TensorFlow Probability (Dillon et al., 2017;
Lao et al., 2020).

5.1. Synthetic Gaussian

We begin with a simple ill-conditioned zero-mean synthetic
200-dimensional multivariate-Gaussian target distribution
p(θ) = N (θ; 0,Σ). We set its covariance Σ = UΛU>,
where U is a random orthonormal matrix and Λ is a diagonal

matrix with Λd,d = 103(d−1)/200, so that the eigenvalues of
Σ vary over three orders of magnitude.

If our variational family q is multivariate Gaussian it can
exactly match p. However, we still have to make choices
about how to parameterize this family; in particular, to use
the reparameterization trick we define q via an affine change
of variables ε ∼ N (0, I); θ = g(ε) = A(φ)ε.

There are tradeoffs for the scale matrix A. A = φ is simple,
but it may lead to numerical issues if the eigenvalues of
A cross 0, and the gradient of the ELBO involves explic-
itly forming A−1 at cost O(D3). One can instead use the
matrix-logarithm parameterization A = eφ, which we will
see achieves very fast convergence, but also requires O(D3)
work per iteration. Finally, one can use a lower-triangular
parameterization A = diag(eφs ) + φL, where φs is a D-
dimensional vector and φL is a strictly lower-triangular ma-
trix; computing forward gradients in this parameterization is
cheap, since |A| =

∑
d φs,d, and computing the log-density

log qφ(θ) for “sticking-the-landing” (STL) updates (Roeder
et al., 2017) can be done with only O(D2) work using trian-
gular solves, but the geometry of the tangent field ∂g

∂φ may
not be ideal (Jankowiak & Obermeyer, 2018).

We ran BBVI with vanilla stochastic gradient descent with
the three parameterizations defined above (“linear-scale”,
“log-scale”, and “lower-triangular” respectively), and com-
pared the results with the Metropolis-adjusted Langevin
algorithm (MALA). BBVI gradients were estimated using
a minibatch of 100 samples from q. Each algorithm used a
manually tuned constant step size.

Figure 1 shows the results. We find that, as theory predicts,
BBVI with a constant step size does not converge, but BBVI
with variance-reduced STL updates can achieve geometric
convergence (since the gradient noise decays with the KL
divergence). We also see that BBVI’s performance depends
strongly on parameterization; the lower-triangular param-
eterization is significantly slower than the linear-scale pa-
rameterization, while the log-scale parameterization (with
STL updates) actually achieves superlinear convergence.
MALA’s performance is comparable to linear-scale STL
BBVI, although MALA is a bit slower because it needs
to use a smaller step size. Note that the BBVI parameter-
izations require some extra work per iteration compared
to MALA; this work is O(D2) for the lower-triangular pa-
rameterization and O(D3) for the log-scale and linear-scale
parameterizations.

5.2. The Unrealizable Setting

The synthetic experiments from section 5.1 suggest that
MCMC and BBVI can converge at similar rates in the re-
alizable setting, where the target distribution is in the vari-
ational family. In this section, we examine more realistic
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Figure 2. Bias of mean and standard deviation estimates obtained by BBVI (with and without momentum 0.9), MALA, and HMC with 10
leapfrog steps on an item-response theory model and a sparse logistic regression.

data-analysis problems where the target distribution is an
intractable posterior distribution.

We evaluate BBVI with vanilla SGD and with momentum
0.9, Metropolis-adjusted Langevin, and Hamiltonian Monte
Carlo with 10 leapfrog steps. For BBVI, we used a diagonal-
covariance Gaussian variational family parameterized by
the flow θd = µd+0.1 log(1+e10σd)εd; for positive values
of σd, this approximates θd ∼ N (µd, σd), but the scaled-
softplus transformation lets us optimize σ without worrying
about nonnegativity constraints. We estimated the gradients
for BBVI using the sticking-the-landing estimator of Roeder
et al. (2017) with a minibatch of 100 draws from q. Step
sizes were tuned manually for each algorithm. We evaluate
these methods on two Bayesian data analysis problems: an
item-response theory model and a logistic regression with
soft-sparsity priors.

Item-Response-Theory Model: This is the posterior of
a one-parameter-logistic item-response-theory (IRT) model
from the Stan (Carpenter et al., 2017) examples repository4

with a total of 501 parameters:

δ ∼ N (0.75, 1); α1:400 ∼ N (0, 1); β1:100 ∼ N (0, 1);

yi ∼ Bernoulli(σ(δ + αsi − βri)),

where yi∈{1,...,30105} indicates whether student si got ques-
tion ri correct.

Sparse Logistic Regression: This is the logistic regres-
sion model with soft-sparsity priors considered by Hoffman
et al. (2019) applied to the German credit dataset (Dua &
Graff, 2019):

β1:D ∼ N (0, 1); γ0:D ∼ Gamma(0.5, 0.5);

yn ∼ Bernoulli(σ(γ0

D∑
d=1

xndβdγd)).
(16)

4https://github.com/stan-dev/
example-models/blob/master/misc/irt/irt.
stan

The γ1:D variables act as soft masks on the regression coeffi-
cients β1:D; the Gamma(0.5, 0.5) priors assign significant
prior mass to settings of γd close to 0. We log-transform the
γ variables to eliminate the nonnegativity constraint. Errors
are reported in terms of these log-transformed variables.

To estimate the ground-truth means and standard deviations
for each model, we ran 500 HMC chains of 1000 iterations
each, discarding the first 500 samples of each chain. We
then compared these estimates to the estimates from the
BBVI and MCMC methods. To estimate the expectations
over time of the MCMC algorithms, we ran 500 indepen-
dent chains and estimated the mean and standard deviations
across chains after each update.

Figure 2 shows the evolution of the bias of estimators based
on BBVI and taking the last samples of a set of MCMC
chains as a function of number of gradient evaluations (num-
ber of iterations for BBVI and MALA, number of iterations
times number of leapfrog steps per iteration for HMC). As in
section 5.1, when estimating means BBVI without momen-
tum behaves similarly to MALA, but BBVI can use a larger
effective step size. The accelerated algorithms (BBVI with
momentum and HMC) behave almost identically early on,
only diverging once BBVI’s asymptotic bias kicks in. When
estimating standard deviations, MALA dominates BBVI,
and HMC dominates BBVI with momentum. The results
in figure 2 are consistent with the claim that the implicit
distribution governing the state of an unconverged MCMC
chain has bias competitive with an explicit VI procedure run
for the same amount of time.

Of course, bias is not the only source of error in MCMC;
we must also consider variance. Figure 3 shows the total
error of various MCMC estimator schemes for the sparse
logistic regression problem. Running a single HMC chain
and averaging samples from the last half of the chain quickly
eliminates bias, but the error is still high due to variance.
This may account for the conventional wisdom that VI is
faster than MCMC—the single-chain HMC scheme would

https://github.com/stan-dev/example-models/blob/master/misc/irt/irt.stan
https://github.com/stan-dev/example-models/blob/master/misc/irt/irt.stan
https://github.com/stan-dev/example-models/blob/master/misc/irt/irt.stan
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indeed require many iterations to average away enough
variance to match BBVI’s accuracy.

The situation is different if parallel computation is avail-
able. Averaging 100 independent chains brings the variance
down to the point that total error is initially dominated by
bias, which decays quickly. Either the traditional scheme
of discarding the first halves of the 100 chains or the more
radical approach of using only the last sample outperforms
BBVI with momentum. Note that the BBVI scheme com-
putes a minibatch of 100 gradients of the target density per
step (which reduces the variance of its gradient estimates,
and thereby lets it take larger steps), so the comparison
is fair—the wallclock time per gradient evaluation of the
BBVI algorithm and the 100-chain MCMC algorithms is
nearly identical on a Pascal Titan X GPU.

6. Discussion
We have seen that gradient-based MCMC and VI algorithms
implicitly follow the same gradient flow, and that this causes
them to exhibit similar transient behavior. This suggests that
VI’s main advantage over MCMC is its ability to provide
low-variance estimates, rather than an ability to converge
to its asymptotic bias quickly. This advantage evaporates
when one can cheaply run many parallel MCMC chains, e.g.,
on modern commodity GPUs. As such parallel hardware
gets cheaper, we predict that MCMC will become attractive
relative to VI for more and more problems.

One question is how these results apply to highly non-
convex and multimodal potentials like those considered by

Ma et al. (2019b). One might expect VI to track gradient-
based MCMC methods, since both perform first-order opti-
mization on the space of probability. But some parametric
variational families may handle multimodality better; for
example, a variational mixture distribution (Jaakkola & Jor-
dan, 1998; Graves, 2016) might more accurately weight sep-
arated modes than many independent MALA chains would.
Analyzing these parametric families as ways of projecting
Fokker-Planck gradient flows might inspire new MCMC or
VI procedures.
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A. Proofs for convergence of variational inference
We study convergence of Λn to Λ∗ in terms of the KL divergence from p(z) to q(z|Λn). Before proving the convergence
rates for (stochastic) variational inference, we first derive a useful bound for the KL divergence, which will be used frequently
in the proofs to follow.

Lemma 2. The KL divergence between two normal distributions p(z) and q(z|Λn) is upper bounded by their difference in
the Frobenius norm:

KL (p(z)‖q(z|Λn))

≤ 1

2
‖ (Λ∗)

−1 ‖2 · ‖ (Λn)
−1 ‖2 · ‖Λ∗ − Λn‖2F .

Proof of Lemma 2

KL (p(z)‖q(z|Λn))

=
1

2

(
− log

|Λn|
|Λ∗|

+ tr((Λ∗)
−1

Λn)− d
)

=
1

2

(
− log

∣∣∣(Λ∗)−1
Λn

∣∣∣+ tr
(

(Λ∗)
−1

Λn − I
))

Since
log
∣∣∣(Λ∗)−1

Λn

∣∣∣ ≥ tr
(
I − Λ−1

n Λ∗
)
,

KL (p(z)‖q(z|Λn))

≤ 1

2
tr
(

(Λ∗)
−1

Λn + Λ−1
n Λ∗ − 2I

)
=

1

2
tr
((

(Λ∗)
−1

(Λn − Λ∗)
)

+
(
Λ−1
n (Λ∗ − Λn)

))
=

1

2
tr
((

Λ−1
n − (Λ∗)

−1
)

(Λ∗ − Λn)
)

≤ 1

2

∥∥∥Λ−1
n − (Λ∗)

−1
∥∥∥
F
· ‖Λ∗ − Λn‖F

≤ 1

2
‖ (Λ∗)

−1 ‖2 · ‖ (Λn)
−1 ‖2 · ‖Λ∗ − Λn‖2F .

A.1. Proof for “Open-Box” VI Convergence

Proof of Lemma 1 The update rule in equation 13 can be explicitly expressed as:

Λn = Λn−1 − hn−1 g(Λn−1)

= Λn−1 −
hn−1

2
(Λn−1 − Λ∗) .

When we take a constant step size hk = h = 1
2 , we can obtain that

Λn =

(
1

2

)n
Λ0 +

(
1−

(
1

2

)n)
Λ∗.

Therefore,

‖Λn − Λ∗‖F =

(
1

2

)n
‖Λ0 − Λ∗‖F
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Using the result of Lemma 2, we can obtian that

KL (p(z)‖q(z|Λn))

≤ 1

2
‖ (Λ∗)

−1 ‖2 · ‖ (Λn)
−1 ‖2 · ‖Λ∗ − Λn‖2F .

By Weyl’s theorem, we know that the distance from any eigenvalue of Λn to the closest eigenvalue of Λ∗ is upper bounded
by ‖Λn − Λ∗‖2 ≤ ‖Λn − Λ∗‖F . Therefore, σmin(Λn) ≥ σmin(Λ∗)−

(
1
2

)n ‖Λ0 − Λ∗‖F , resulting in the upper bound for
the spectral norm of Λn that

‖ (Λn)
−1 ‖2 ≤

1

σmin(Λ∗)−
(

1
2

)n ‖Λ0 − Λ∗‖F
.

Therefore, for any

n ≥ log2

2

σmin(Λ∗)

‖Λ0 − Λ∗‖F
ε

,

KL (p(z)‖q(z|Λn)) ≤ ε, for any ε ≤ 1.

A.2. Proofs for “Black-Box” VI Convergence

Proof of Theorem 1 We obtain the convergence bound in ‖Λ∗ − Λn‖2F and then incur Lemma 2 to finish the proof.

Lemma 3. For the stochastic preconditioned gradient descent algorithm described in equation 15, if we take a step size of
h = ε̃

4σ2
max(Λ∗)dδ2 , we can obtain that when

n ≥ 4σ2
max(Λ∗)dδ2

νε̃
log

2 ‖Λ0 − Λ∗‖2F
νε̃

,

‖Λn − Λ∗‖2F ≤ ε̃, with probability 1− ν.

Then by Weyl’s theorem, we know that the distance from any eigenvalue of Λn to the closest eigenvalue of Λ∗ is upper
bounded by ‖Λn − Λ∗‖2 ≤ ‖Λn − Λ∗‖F . Therefore, σmin(Λn) ≥ σmin(Λ∗) −

√
ε̃, resulting in the upper bound for the

spectral norm of Λn that

‖ (Λn)
−1 ‖2 ≤

1

σmin(Λ∗)−
√
ε̃
. (17)

Applying equation 17 to Lemma 2, we upper bound the KL divergence by ε̃:

KL (p(z)‖q(z|Λn)) ≤ 1

2σmin(Λ∗)

ε̃

σmin(Λ∗)−
√
ε̃
.

Choosing ε̃ =
σ2
min(Λ∗)

2 ε completes the proof that after

n ≥ 8
σ2

max(Λ∗)δ2

νσ2
min(Λ∗)

d

ε
· log

4 ‖Λ0 − Λ∗‖2F
νσ2

min(Λ∗)ε
= Õ

(
σ2

max(Λ∗)δ2

σ2
min(Λ∗)

d

ε

)
.

number of iterations, KL (p(z)‖q(z|Λn)) ≤ ε.

Proof of Lemma 3 We first prove the convergence in E‖Λn − Λ∗‖2F then invoke the Chebychev inequality for the high
probability statement.
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Since we assumed in equation 14 that E [∆(Λ;Dn)] = 0, and that E ‖∆(Λ;Dn)‖2F ≤ σ2
max(Λ∗)dδ2, for any n,

E‖Λn − Λ∗‖2F
= E ‖Λn−1 − Λ∗ − hn−1ĝ(Λ)‖2F

= E
∥∥∥∥(1− hn−1

2

)
(Λn−1 − Λ∗) + hn−1∆(Λn−1;Dn−1)

∥∥∥∥2

F

=

(
1− hn−1

2

)2

E ‖Λn−1 − Λ∗‖2F + 2hn−1

(
1− hn−1

2

)
E 〈Λn−1 − Λ∗,∆(Λn−1;Dn−1)〉F + h2

n−1E‖∆(Λn−1;Dn−1)‖2F

=

(
1− hn−1

2

)2

E ‖Λn−1 − Λ∗‖2F + h2
n−1E‖∆(Λn−1;Dn−1)‖2F

≤
(

1− hn−1

2

)
E ‖Λn−1 − Λ∗‖2F + h2

n−1E‖∆(Λn−1;Dn−1)‖2F

≤
n−1∏
i=0

(
1− hi

2

)
E ‖Λ0 − Λ∗‖2F +

n−1∑
j=0

h2
j

 n−1∏
i=j+1

(
1− hi

2

)E‖∆(Λj−1;Dj−1)‖2F

≤
n−1∏
i=0

(
1− hi

2

)
E ‖Λ0 − Λ∗‖2F +

n−1∑
j=0

h2
j

n−1∏
i=j+1

(
1− hi

2

)
σ2

max(Λ∗)dδ2.

When we take a constant step size, hk = h, the above expression simplifies to:

E‖Λn − Λ∗‖2F ≤
(

1− hi
2

)n
E ‖Λ0 − Λ∗‖2F + 2h

((
1− hi

2

)
−
(

1− hi
2

)n)
σ2

max(Λ∗)dδ2

≤
(

1− hi
2

)n
E ‖Λ0 − Λ∗‖2F + 2hσ2

max(Λ∗)dδ2. (18)

We then invoke the following Chebyshev inequality to obtain the high probability statement:

P
(
‖Λn − Λ∗‖2F ≥ ε̃

)
≤ 1

ε̃
E‖Λn − Λ∗‖2F .

For ‖Λn − Λ∗‖2F ≤ ε̃ to hold with 1− ν probability, we need ‖Λn − Λ∗‖2F ≤ νε̃.

Choosing h = νε̃
4σ2

max(Λ∗)dδ2 , we arrive at our conclusion that ‖Λn − Λ∗‖2F ≤ ε̃ with probability 1− ν, when

n ≥ 4σ2
max(Λ∗)dδ2

νε̃
log

2 ‖Λ0 − Λ∗‖2F
νε̃

,

where the log factor can be shaved off by employing a decreasing step size.

Tightness of the bounds We now demonstrate that the convergence upper bound in Theorem 1 is tight up to a logarithmic
factor. We first prove that the Frobenius norm bound in Lemma 3, instead of a spectral norm bound, is indeed necessary to
guarantee the convergence in KL divergence.

To this end, we examine an example of the posterior with the precision matrix Λ∗ = 1
4I . If the initial distribution has the

precision matrix Λ0 = I , then ‖Λ0 − Λ∗‖2 = 3
4 . However,

KL (p(z)‖q(z|Λ0))

=
1

2

(
− log

|Λ0|
|Λ∗|

+ tr((Λ∗)
−1

Λ0)− d
)
≥ d,

which can be arbitrarily large as dimension d increases.

We then use the same posterior of Λ∗ = 1
4I and take an initial value Λ0 so that ‖Λ0 − Λ∗‖2F scales inclusively between

Ω(1) and O(d). Under this mild condition, we demonstrate that the number of iterations, n, required for ‖Λ0 − Λ∗‖2F to
decrease to ‖Λn − Λ∗‖2F ≤ 1

2‖Λ0 − Λ∗‖2F is n = Ω(d).
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We first demonstrate that E‖∆(Λ;Dn)‖2F = Ω(d) for minibatch size |Dn| = O(d). From Section 4.3, we know that

E‖∆(Λ;Dn)‖2F

=
1

|Dn|
Ez∼q

[
‖v (Λ; z)− Eẑ∼q [v (Λ; ẑ)]‖2F

]
=

1

2|Dn|
(tr(Λ− Λ∗))

2 − 1

4|Dn|
‖Λ− Λ∗‖2F

+
1

|Dn|

(
1

8

∥∥I − Λ∗Λ−1
∥∥2

F
+

1

16
(KL (q(z|Λ)‖p(z)))2

)
·
(

(tr(Λ))
2

+ tr
(
Λ2
))
.

Since
‖Λ− Λ∗‖F ≤ ‖Λ‖2 · ‖I − Λ−1Λ∗‖F ,

we employ Weyl’s theorem and obtain that

‖I − Λ−1Λ∗‖F ≥
‖Λ− Λ∗‖F
σmax(Λ)

≥ ‖Λ− Λ∗‖F
σmax(Λ∗) + ‖Λ− Λ∗‖F

= Ω(1).

Therefore, E‖∆(Λ;Dn)‖2F = Ω(1) for |Dn| = O(d) and for ‖Λ− Λ∗‖2F = Ω(1/d) and ‖Λ− Λ∗‖2F = O(d).

We then analyze number of steps n required for ‖Λn − Λ∗‖2F ≤ 1
2‖Λ0 − Λ∗‖2F . In the update rule of equation 15,

Λn = Λn−1 − hn−1ĝ(Λn−1)

= Λn−1 −
hn−1

2
(Λn−1 − Λ∗) + hn−1∆(Λn−1;Dn−1).

Hence

Λn − Λ∗ =

(
1− hn−1

2

)
(Λn−1 − Λ∗) + hn−1∆(Λn−1;Dn−1)

=

n−1∏
i=0

(
1− hi

2

)
(Λ0 − Λ∗) +

n−1∑
j=0

hj

n−1∏
i=j+1

(
1− hi

2

)
∆(Λj ;Dj).

Since Dn are sampled in an i.i.d. fashion and that E [∆(Λ;Dn)] = 0 from assumption 14,

E‖Λn − Λ∗‖2F =

n−1∏
i=0

(
1− hi

2

)2

E‖Λ0 − Λ∗‖2F +

n−1∑
j=0

h2
j

n−1∏
i=j+1

(
1− hi

2

)2

E‖∆(Λj ;Dj)‖2F .

Since E‖∆(Λ;Dn)‖2F = Ω(d), to have that ‖Λn − Λ∗‖2F ≤ 1
2‖Λ0 − Λ∗‖2F with a constant probability, we must require

n−1∑
j=0

h2
j

n−1∏
i=j+1

(
1− hi

2

)2

= O
(

1

d

)
,

which implies that hj = O
(

1
d

)
, ∀j = 0, · · · , n− 1. On the other hand, to achieve ‖Λn − Λ∗‖F ≤ 1

2‖Λ0 − Λ∗‖F , we also
need

n−1∏
i=0

(
1− hi

2

)
‖Λ0 − Λ∗‖F ≤

1

2
‖Λ0 − Λ∗‖F ,

which implies that
n−1∑
i=0

hi ≥
n−1∑
i=0

((
1− hi

2

)−1

− 1

)

≥
n−1∑
i=0

log

((
1− hi

2

)−1
)

≥ log
‖Λ0 − Λ∗‖F
‖Λn − Λ∗‖F

= log(2).



Black-Box Variational Inference as Distilled Langevin Dynamics

Since hj = O
(

1
d

)
, ∀j, we need n = Ω(d) for convergence.

B. Proofs for convergence of Langevin algorithm
Proof of Lemma 1 Before proving Lemma 1, we first make the assumptions explicit. We are interested in generating
samples from p(θ) ∝ exp (−U(θ)), where U(θ) is L-Lipschitz smooth and m-strongly convex. We further assume, without
loss of generality, that U has a fixed point at the origin 0: ∇U(0) = 0.

To prove Lemma 1, we first analyze equation 3 as a discretization scheme of the Langevin diffusion of equation 4. Within
each iteration, the ULA update 3 is effectively integrating the following dynamics:

dθt = ∇ log p(θn)dt+
√

2dWt

= ∇ log p(θt)dt+
√

2dWt + (∇ log p(θn)−∇ log p(θt)) dt,
(19)

for t ∈ [nη, (n+ 1)η].

We then analyze the time derivative of the KL divergence KL (qt‖p) within each step:

d

dt
KL (qt‖p) = −E

〈
∇ log

qt(θt)

p(θt)
,∇ log

qt(θt)

p(θt)
+ (∇ log p(θn)−∇ log p(θt))

〉
= −E

∥∥∥∥∇ log
qt(θt)

p(θt)

∥∥∥∥2

+ E
〈
∇ log

qt(θt)

p(θt)
,∇ log p(θt)−∇ log p(θn)

〉
,

(20)

where the expectation is taken with respect to the joint distribution of θt and θn. For the second term in equation 20, we
invoke Young’s inequality to bound:

E
〈
∇ log

qt(θt)

p(θt)
,∇ log p(θt)−∇ log p(θn)

〉
≤ 1

2
E
∥∥∥∥∇ log

qt(θt)

p(θt)

∥∥∥∥2

+
1

2
E ‖∇ log p(θt)−∇ log p(θn)‖2

=
1

2
E
∥∥∥∥∇ log

qt(θt)

p(θt)

∥∥∥∥2

+
1

2
E ‖∇U(θt)−∇U(θn)‖2 .

Since potential U is L-Lipschitz smooth, ‖∇U(θt)−∇U(θn)‖2 ≤ L2‖θt − θn‖2. Also note that we have set∇U(0) = 0.
Hence

1

2
E ‖∇U(θt)−∇U(θn)‖2 ≤ L2

2
E‖θt − θn‖2

=
L2

2
E
∥∥∥−(t− ηn)∇U(θn) +

√
2 (Wt −Wηn)

∥∥∥2

=
L2(t− ηn)2

2
Eθ∼qn

[
‖∇U(θ)‖2

]
+ L2d(t− ηn)

≤ L4η2

2
Eθ∼qn

[
‖θ‖2

]
+ L2dη

Applying this result to equation 20, we obtain an upper bound for d
dtKL (qt‖p) within each iteration:

d

dt
KL (qt‖p) ≤ −

1

2
E
∥∥∥∥∇ log

qt(θt)

p(θt)

∥∥∥∥2

+
L4η2

2
Eθ∼qn

[
‖θ‖2

]
+ L2dη. (21)

Since function U is m-strongly convex, we obtain the following log-Sobolev inequality from the Bakry–Emery criterion (see
e.g., Bakry & Emery, 1985)

Eθ∼qt

[∥∥∥∥∇ log
qt(θ)

p(θ)

∥∥∥∥2
]
≥ 2mKL (qt‖p) .

Therefore,

d

dt
KL (qt‖p) ≤ −mKL (qt‖p) +

L4η2

2
Eθ∼qn

[
‖θ‖2

]
+ L2dη. (22)
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We prove in the Lemma 4 below that Eθ∼qn
[
‖θ‖2

]
≤ 4d

m .

Lemma 4. For step size η ≤ 1
L , and for qn following the update of equation 3, ∀n > 0, Eθ∼qn

[
‖θ‖2

]
≤ 4d

m .

Plugging this bound into equation 22, we obtain:

d

dt
KL (qt‖p) ≤ −m

(
KL (qt‖p)−

(
2
L4

m2
η2 +

L2

m
η

)
d

)
. (23)

Invoking Grönwall’s inequality, we obtain:

KL (qn‖p) ≤ e−mηKL (qn−1‖p) +

(
2
L4

m2
η2 +

L2

m
η

)
d

≤ e−mηnKL (q0‖p) +

(
2
L4

m2
η2 +

L2

m
η

)
d.

(24)

This means that KL (qn‖p) is converging exponentially to the level of discretization error.

To obtain an accuracy guarantee of ε, we choose a step size of η = m
4L2

ε
d and have (for ε ≤ d):

KL (qn‖p) ≤ e−mηnKL (q0‖p) +
ε

2
. (25)

When n ≥ 1
mη log 2KL(q0‖p)

ε , e−mηnKL (q0‖p) ≤ ε
2 , and therefore KL (qn‖p) ≤ ε.

Plugging the setting of η gives us the upper bound for number of iterations:

n = 4
L2

m2

d

ε
log

2KL (q0‖p)
ε

= Õ
(
L2

m2

d

ε

)
.

Proof of Lemma 4 We prove Lemma 2 by induction. We first see that for the current choice of initialization,
Eθ∼q0

[
‖θ‖2

]
≤ d

m . We then assume that Eθ∼qn
[
‖θ‖2

]
≤ d

m and prove that Eθ∼qn+1

[
‖θ‖2

]
≤ d

m .

We know that
θn+1 = θn − η∇U(θn) +

√
2
(
Wη(n+1) −Wηn

)
.

To provide a bound on ‖θn+1‖, we first analyze the term: θn − η∇U(θn). To this end, we construct a function: V (θ) =
1
2‖θ‖

2 − ηU(θ) and prove that it is (1−mη)-Lipschitz smooth. Since function U is assumed to be m-strongly convex,

〈∇V (θ)−∇V (ϑ), θ − ϑ〉 = 〈(θ − ϑ)− η (∇U(θ)− U(ϑ)) , θ − ϑ〉
= ‖θ − ϑ‖2 − η 〈(∇U(θ)− U(ϑ)) , θ − ϑ〉
≤ (1−mη)‖θ − ϑ‖2.

Therefore, function V (θ) = 1
2‖θ‖

2 − ηU(θ) is (1−mη)-Lipschitz smooth and satisfy∇V (0) = 0, which means:

‖θn − η∇U(θn)‖ = ‖∇V (θn)‖ ≤ (1−mη)‖θn‖.

We are now in a position to bound E‖θn+1‖2:

E
[
‖θn+1‖2

]
= E

[∥∥∥θn − η∇U(θn) +
√

2
(
Wη(n+1) −Wηn

)∥∥∥2
]

= E
[
‖θn − η∇U(θn)‖2

]
+ 2ηd

≤ (1−mη)E
[
‖θn‖2

]
+ 2ηd (26)

= E
[
‖θn‖2

]
+ η

(
2d−mE

[
‖θn‖2

])
. (27)
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By the inductive hypothesis, E
[
‖θn‖2

]
≤ 4d

m . If E
[
‖θn‖2

]
≥ 2d

m , then
(
2d−mE

[
‖θn‖2

])
≤ 0, E

[
‖θn+1‖2

]
≤

E
[
‖θn‖2

]
≤ 4d

m . If E
[
‖θn‖2

]
≤ 2d

m instead, then we use line 26 and that η ≤ 1
L to obtain: E‖θn+1‖2 ≤

(
1− m

L

)
2d
m + 2d

L ≤
4d
m .

Therefore, we have proven that for any n > 0, Eθ∼qn
[
‖θ‖2

]
≤ 4d

m by induction.
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