Black-Box Variational Inference as Distilled Langevin Dynamics

A. Proofs for convergence of variational inference

We study convergence of A,, to A* in terms of the KL divergence from p(z) to g(z|A,,). Before proving the convergence
rates for (stochastic) variational inference, we first derive a useful bound for the KL divergence, which will be used frequently
in the proofs to follow.

Lemma 3. The KL divergence between two normal distributions p(z) and q(z|A,,) is upper bounded by their difference in
the Frobenius norm:
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A.1. Proof for “Open-Box’’ VI Convergence
Proof of Lemmall] The update rule in equation can be explicitly expressed as:
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When we take a constant step size hy = h = %, we can obtain that
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Using the result of Lemma we can obtian that

KL (p(2)]la(2IAn)
< S - A - A = Al

By Weyl’s theorem, we know that the distance from any eigenvalue of A,, to the closest eigenvalue of A* is upper bounded
by [[A,, — A*||2 < ||A,, — A*||F. Therefore, omin(Ayn) > Omin(A*) — (%)" ||Ao — A*||, resulting in the upper bound for
the spectral norm of A,, that
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A.2. Proofs for “Black-Box” VI Convergence
Proof of Theorem[1] We obtain the convergence bound in [[A* — A,, ||§, and then incur Lemma to finish the proof.

Lemma 4. For the stochastic preconditioned gradient descent algorithm described in equation if we take a step size of

- & .
h = 17 (Ajap7> Wecan obtain that when

n >

2 * 2 2 An — A* 2
4Umax(‘/~\ )d5 10g || 0 _ ||F’

VE Ve
|A, — A*||% < € with probability 1 — v.

Then by Weyl’s theorem, we know that the distance from any eigenvalue of A,, to the closest eigenvalue of A* is upper
bounded by ||A, — A*||2 < ||An, — A*|| p. Therefore, omin(An) > omin(A*) — V/€, resulting in the upper bound for the
spectral norm of A,, that
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Applying equation[20|to Lemmal[3| we upper bound the KL divergence by €:
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Choosing € = %e completes the proof that after
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number of iterations, KL (p(2)[|q(z|An)) < e. O

Proof of Lemmald] We first prove the convergence in E||A,, — A*||% then invoke the Chebychev inequality for the high
probability statement.
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Since we assumed in equationthat E [A(A; D,)] = 0, and that E || A(A; Dy) |7 <
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When we take a constant step size, hy = h, the above expression simplifies to:
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We then invoke the following Chebyshev inequality to obtain the high probability statement:
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For ||A,, — A*||% < €to hold with 1 — v probability, we need ||A,, — A*[|% < vé.

Choosing h = W, we arrive at our conclusion that ||A,, — A*||% < ¢ with probability 1 — v, when
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where the log factor can be shaved off by employing a decreasing step size. O

Tightness of the bounds We now demonstrate that the convergence upper bound in Theoremis tight up to a logarithmic
factor. We first prove that the Frobenius norm bound in Lemma instead of a spectral norm bound, is indeed necessary to
guarantee the convergence in KL divergence.

To this end, we examine an example of the posterior with the precision matrix A* = %I . If the initial distribution has the
precision matrix Ag = I, then ||Ag — A*[|2 = 3. However,
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which can be arbitrarily large as dimension d increases.

We then use the same posterior of A* = i] and take an initial value Ag so that ||[Ag — A*||% scales inclusively between
(1) and O(d). Under this mild condition, we demonstrate that the number of iterations, n, required for ||[Ag — A*||% to
decrease to [|A, — A*[|Z < 1[|[Ag — A% is n = Q(d).
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We first demonstrate that E|[|A(A; D,,)||% = Q(d) for minibatch size |D,,| = O(d). From Section we know that
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Therefore, E||A(A; D) ||% = Q(1) for |D,,| = O(d) and for |[A — A*||%2 = Q(1/d) and |A — A*||% = O(d).
We then analyze number of steps n required for [|A,, — A*||%. < 1[|A¢ — A*[|%.. In the update rule of equation ,
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Since D,, are sampled in an i.i.d. fashion and that E [A(A; D, )] = 0 from assumption
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Since E[|A(A; D,,)||% = Q(d), to have that ||A,, — A*[|% < 1||A¢ — A*||% with a constant probability, we must require
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Since h; = O (%), Vj, we need n = €(d) for convergence. O

B. Proofs for convergence of Langevin algorithm

Proof of LemmalI] Before proving Lemma we first make the assumptions explicit. We are interested in generating
samples from p(6) o< exp (—U(#)), where U (0) is L-Lipschitz smooth and m-strongly convex. We further assume, without
loss of generality, that U has a fixed point at the origin 0: VU (0) = 0.

To prove Lemma[I] we first analyze equation[3]as a discretization scheme of the Langevin diffusion of equation[4] Within
each iteration, the ULA update is effectively integrating the following dynamics:

df, = Vlog p(,)dt + v/2dW,
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We then analyze the time derivative of the KL divergence KL (¢ ||p) within each step:
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where the expectation is taken with respect to the joint distribution of §; and 6,,. For the second term in equation we
invoke Young’s inequality to bound:
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Since potential U is L-Lipschitz smooth, |[VU (6;) — VU (0,,)||> < L2||6; — 0,,]|2. Also note that we have set VU (0) = 0.
Hence
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Applying this result to equation we obtain an upper bound for %KL (g¢||p) within each iteration:
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Since function U is m-strongly convex, we obtain the following log-Sobolev inequality from the Bakry—Emery criterion (see
e.g.,|Bakry & Emery||1985)
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We prove in the Lemmabelow that Eg.,, [||9||2} < 44
Lemma 5. For step size n < % and for q,, following the update ofequation vn > 0, Egyg, [HQHQ} < %.

Plugging this bound into equation|25] we obtain:

LKL (qllp) < —m (KL (alp) — (2502 + L) a 26)
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Invoking Gronwall’s inequality, we obtain:
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This means that KL (g, ||p) is converging exponentially to the level of discretization error.
To obtain an accuracy guarantee of €, we choose a step size of ) = ;75 § and have (for € < d):
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Plugging the setting of 7 gives us the upper bound for number of iterations:
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Proof of Lemma[5] We prove Lemma [3| by induction. We first see that for the current choice of initialization,
Egrq, [||0||2} < 4 We then assume that Eg..,, {||9||2} < 4 and prove that Eg., ,, {HGHz} <4
We know that

Ont1 = 0n — VU (0n) + V2 (Wyini1) — Wan) -

To provide a bound on ||6,,+1]|, we first analyze the term: 6,, — VU (6,,). To this end, we construct a function: V() =
1116]|> — nU(6) and prove that it is (1 — mn)-Lipschitz smooth. Since function U is assumed to be m-strongly convex,
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Therefore, function V (0) = 1(|6||> — nU(6) is (1 — mn)-Lipschitz smooth and satisfy VV'(0) = 0, which means:
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We are now in a position to bound E||6,, 1 ||*:
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By the inductive hypothesis, E [||6,,[?] < 2¢. If E [[|6,,]*] > 22, then (2d — mE [||6,?])
E [[|6,]] < 4. IfE [||6,]/?] < 22 instead, then we use line[29fand that ) < + to obtain: E||f,,41 |2
4d

m*

Therefore, we have proven that for any n > 0, Egq, {||9||2} < 44 by induction.
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