
Graph Filtration Learning – Supplementary Material

This supplementary material contains the full proof of Lemma 1 omitted in the main work and additional information to the
used datasets. It further contains details to the implementation of the models used in the experiments. For readability, all
necessary definitions and results are restated and the numbering matches the original numbering.

1. Dataset details
The following table contains a selection of statistics relevant to the datasets used in our experiments.

Datasets REDDIT-BINARY REDDIT-MULTI-5K IMDB-BINARY IMDB-MULTI PROTEINS NCI1

graphs 2000 4999 1000 1500 1113 4110
classes 2 5 2 3 2 2
∅ nodes 429.6 508.5 19.8 13.0 39.1 29.9
∅ edges 497.8 594.9 96.5 65.9 72.8 32.3
labels n/a n/a n/a n/a 3 37

2. Proof of Lemma 1

Definition 1 (Learnable vertex filter function). Let V be a vertex domain, K the set of possible simplicial complexes over V
and let

f : R×K× V→ R (θ,K, v) 7→ f(θ,K, v)

be differentiable in θ for K ∈ K, v ∈ V. Then, we call f a learnable vertex filter function with parameter θ.

Definition 2 (Barcode coordinate function). Let s : R2 → R be a differentiable function that vanishes on the diagonal of
R2. Then

V : B→ R B 7→
∑

(b,d)∈B

s(b, d)

is called barcode coordinate function.

Lemma 1. Let K be a finite simplicial complex with vertex set V = {v1, . . . , vn}, f : R × K × V → R be a learnable
vertex filter function as in Definition 1 and V a barcode coordinate function as in Definition 2. If, for θ0 ∈ R, it holds that
the pairwise vertex filter values are distinct, i.e.,

f(θ0,K, vi) 6= f(θ0,K, vj) for 1 ≤ i < j ≤ n

then the mapping
θ 7→ V

(
phfk(θ,K)

)
(1)

is differentiable at θ0.

Proof. For notational convenience, let yi = f(θ0,K, vi) = f(θ0, vi). Also, let π the sorting permutation of
(
yi(θ0)

)n
i=1

, i.e.,
yπ(1)(θ0) < yπ(2)(θ0) < · · · < yπ(n)(θ0). By assumption the pairwise filter values are distinct, thus there is a neighborhood
around θ0 such that the ordering of the filtration values is not modified by changes of θ within this neighborhood, i.e.,

∃ε > 0∀h ∈ R : |h| < ε⇒ yi(θ0 + h) 6= yj(θ0 + h) (2)

and
yπ(1)(θ0 + h) < yπ(2)(θ0 + h) < · · · < yπ(n)(θ0 + h) . (3)

Graph Filtration Learning – Supplemntary Material

This implies that a sufficiently small change, h, of θ0 does not change the induced filtrations. Formally,(
Kf
i (θ0)

)n
i=0

=
(
Kf
i (θ0 + h)

)n
i=0

with 0 ≤ i ≤ n . (4)

Importantly, this means that
µi,jk (θ0) = µi,jk (θ0 + h) for 1 ≤ i < j ≤ n . (5)

We next show that the derivative of Eq. (1) with respect to h exists. By assumption, s is differentiable and thus
s
(
f(·, vi), s(f(·, vj)

)
is differentiable. Now consider

lim
|h|→0

V(phfk(K, θ0))− V(ph
f
k(K, θ0 + h))

h

= lim
|h|→0

∑
i<j

µi,jk (θ0) · s
(
yπ(i)(θ0), yπ(j)(θ0)

)
−
∑
i<j

µi,jk (θ0 + h) · s
(
yπ(i)(θ0 + h), yπ(j)(θ0 + h)

)
h

= lim
|h|→0

∑
i<j

µi,jk (θ0) ·
[
s
(
yπ(i)(θ0), yπ(j)(θ0)

)
− s
(
yπ(i)(θ0 + h), yπ(j)(θ0 + h)

)]
h

= (by Eq. (5))

=
∑
i<j

µi,jk (θ0) · lim
|h|→0

s
(
yπ(i)(θ0), yπ(j)(θ0)

)
− s
(
yπ(i)(θ0 + h), yπ(j)(θ0 + h)

)
h

=
∑
i<j

µi,jk (θ0) · lim
|h|→0

s
(
f(θ0, vπ(i)), f(θ0, vπ(j))

)
− s
(
f(θ0 + h, vπ(i)), f(θ0 + h, vπ(j))

)
h

=
∑
i<j

µi,jk (θ0) ·
∂s
(
f(θ, vπ(i)

)
, f
(
θ, vπ(j))

)
∂θ

(θ0) .

This concludes the proof, since the derivative within the summation exists by assumption.

3. Architectural details
As mentioned in Section 5 (Experiments), we implement the learnable vertex filter function f(θ,K, vi) using a single GIN-ε
layer from (Xu et al., 2019) (with ε set as a learnable parameter). The internal architecture is as follows:

Embedding[n,64]-FC[64,64]-BatchNorm-LeakyReLU-FC(64,64).

Here, n denotes the dimension of the node attributes. For example, if initial node features are based on the degree function
and the maximum degree over all graphs is 200, then n=200+1. In other words, n is the number of embedding vectors in R64

used to represent node degrees.

The multi-layer perceptron (MLP) mapping the output of the GIN layer to a real-valued node filtration value is parameterized
as:

Embedding[64,64]-FC[64,64]-BatchNorm-LeakyReLU-FC(64,1)-Sigmoid.

As classifier, we use a simple MLP of the form

FC[300,64]-ReLU-FC[64,#classes].

Here, the input dimensionality is 300, as each barcode is represented by a 100-dimensional vector.

References
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In ICLR, 2019.

