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Abstract
We study regularization in the context of small
sample-size learning with over-parameterized neu-
ral networks. Specifically, we shift focus from
architectural properties, such as norms on the net-
work weights, to properties of the internal repre-
sentations before a linear classifier. Specifically,
we impose a topological constraint on samples
drawn from the probability measure induced in
that space. This provably leads to mass concentra-
tion effects around the representations of training
instances, i.e., a property beneficial for general-
ization. By leveraging previous work to impose
topological constraints in a neural network setting,
we provide empirical evidence (across various vi-
sion benchmarks) to support our claim for better
generalization.

1. Introduction
Learning neural network predictors for complex tasks typi-
cally requires large amounts of data. Although such models
are over-parameterized, they generalize well in practice. The
mechanisms that govern generalization in such settings are
still only partially understood (Zhang et al., 2017). Existing
generalization bounds (Bartlett et al., 2017; Neyshabur et al.,
2017; Golowich et al., 2018; Arora et al., 2018) offer deeper
insights, yet the vacuity of the bounds and their surprising
behavior in terms of sample size (Nagarajan & Kolter, 2019)
is a lasting concern.

In small sample-size regimes, achieving generalization is
considerably more challenging and, in general, requires care-
ful regularization, e.g., via various norms on the network
weights, controlling the Lipschitz constants, or adaptation
and adjustment of the training data. The latter does not exert
regularization on parts of the function implemented by the
network, but acts on the training data, e.g., by regularizing
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Figure 1. Illustration of how topological regularization affects
probability mass concentration in the internal representation space
of a neural network. Darker shading denotes regions of higher
probability mass.

its internal representations. Prominent examples include
modern augmentation techniques (Cubuk et al., 2019), or
mixing strategies (Verma et al., 2019a) to control overcon-
fident predictions. Not only do these approaches show re-
markable practical success, but, to some extent, can also be
legitimized formally, e.g., through flattening arguments in
the representation space, or through variance reduction ar-
guments, as in case of data augmentation (Dao et al., 2019).

In this work, we contribute a regularization approach that
hinges on internal representations. We consider neural
networks as a functional composition of the form

γ ◦ ϕ : X → Y = {1, . . . ,K} , (1)

where ϕ : X → Z denotes a high-capacity feature extrac-
tor which maps into an internal representation space Z . A
linear classifier γ : Z → Y then predicts one of K classes.
As customary, γ is typically of the form Az + b, followed
by the argmax operator. In our setting, we focus on the rep-
resentation space Z and, specifically, on the push-forward
probability measure induced by ϕ on Z . We then identify a
property of this measure that is beneficial to generalization.
This shifts attention away from properties of the network
and instead focuses on its utility to implement these proper-
ties during learning, e.g., by means of regularization.

Our contributions are as follows: First, we formalize the
intuition that in a neural network regime (where training
samples are fitted perfectly), generalization is linked to prob-
ability mass concentration around the training samples in
the internal representation space Z . Second, we prove that a
topological constraint on samples from the aforementioned
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push-forward measure (restricted to each class), leads to
mass concentration. Third, relying on work by Hofer et al.
(2019), we devise a regularizer to encourage the derived
topological constraint during optimization and present em-
pirical evidence across various vision benchmark datasets
to support our claims.

1.1. Related work

Prior works, most related to ours, focus on regularizing
statistics of internal representations in supervised learning
settings. As opposed to explicit regularization which aims
at restricting model capacity, e.g., by penalizing norms on
network weights, regularizing representation statistics can
be considered a less direct, data dependent, mechanism.

The intended objective of regularizing representation statis-
tics vary across the literature. Glorot et al. (2011), for in-
stance, encourage sparsity via an l1 norm penalty. Cogswell
et al. (2016) aim for redundancy minimization by penaliz-
ing the covariance matrix of representations. Choi & Rhee
(2019) later extended this idea to perform class-wise regu-
larization, i.e., a concept similar to (Behlarbi et al., 2017)
where pairwise distances between representations of a class
are minimized. In an effort to potentially replace batch
normalization, Littwin & Wolf (2018) propose to control
variations, across mini-batches, of each neuron’s variance
(before activation). This is shown to be beneficial in terms
of reducing the number of modes in the output distribution
of neurons. Liao et al. (2016) follow a different strategy and
instead cluster representations to achieve parsimony, but at
the cost of having to set the number of clusters (which can
be difficult in small-sample size regimes). Motivated by the
relation between the generalization error and the natural gra-
dient (Roux et al., 2017), Joo et al. (2020) recently proposed
to match the distribution of representations to a standard
Gaussian, via the sliced Wasserstein distance. Yet, to the
best of our knowledge, all mentioned regularization ap-
proaches in the realm of controlling internal representations,
either only empirically demonstrate better generalization,
or show a loose connection to the latter. In contrast, we
establish a direct (provable) connection between a property
encouraged by our regularizer and the associated beneficial
effects on generalization.

Our technical contribution resides on the intersection of ma-
chine learning and algebraic topology (persistent homology
in particular). Driven by various intents, several works have
recently adopted concepts from algebraic topology. Rieck
et al. (2019), for instance, study topological aspects of neu-
ral networks, represented as graphs, to guide architecture
selection, Guss & Salakhutdinov (2018) aim to quantify
dataset complexity. On the more theoretical side, Bian-
chini & Scarselli (2014) study the functional complexity of
neural networks. Notably, these works passively use ideas

from topology for post-hoc analysis of neural networks.
More recently, various works have presented progress along
the lines of actively controlling topological aspects. Chen
et al. (2019) regularize decision boundaries of classifiers,
Hofer et al. (2019) optimize connectivity of internal repre-
sentations of autoencoders, and Rieck et al. (2019) match
topological characteristics of input data to the topological
characteristics of representations learned by an autoencoder.
Technically, we rely on these advances to eventually im-
plement a regularizer, yet our primary objective is to study
the connection between generalization and the topological
properties of the probability measure induced by a neural
network’s feature extractor ϕ.

1.2. Notation & Learning setup

In the context of Eq. (1), we refer to X , Y , Z as the sample,
label and internal representation space. We assume that Z
is equipped with a metric d and Y = [K] = {1, . . . ,K}.
By P , we denote a probability measure on X and by Q the
push-forward measure, induced by the measurable function
ϕ : X → Z , on the Borel σ-algebra Σ defined by d on Z;
Qb denotes the product measure of Q. B(z, r) refers to the
closed (metric) ball of radius r > 0 around z ∈ Z .

Our learning setup is to assume a deterministic relationship1

between y ∈ Y and x ∈ X . This relationship is determined
by c : supp(P )→ Y , where supp(P ) refers to the support
of P . We assume a training sample S, consisting of pairs
(x1, y1), . . . , (xm, ym) is the result of m i.i.d. draws of
X ∼ P , labeled via yi = c(xi). By Sx|k we denote the data
instances, xi, of class k. For a classifier h : X → Y and
X ∼ P , we define the generalization error as

E
X∼P

[1h,c(X)] ,

where

1h,c(x) =

{
0, h(x) = c(x),

1, else .

For brevity, proofs are deferred to the suppl. material.

2. Topologically densified distributions
To build up intuition, consider X ∼ P and ϕ(X) = Z. As
Z ∼ Q and the linear classifier γ operates on the internal
representations yielded by ϕ, we can ask two questions: (I)
Which properties of Q are beneficial for generalization, and
(II) how can we impose these properties?

Increasing the probability that ϕ maps a sample of class k
into the correct decision region (induced by γ) improves gen-
eralization. In Lemma 1 we will link this fact to a condition
depending on Q.

1i.e., an arguably realistic setup (Kolchinsky et al., 2019) for
many practical problems.
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Figure 2. Illustration of 0-dimensional Vietoris-Rips persistent homology. Starting from a point set M = {z1, . . . , z4}, we iteratively
construct a graph by sweeping r ∈ [0,∞). While increasing r, we add an edge between zi 6= zj if ‖zi − zj‖2 = r and track the merging
of connected components as we successively add edges. The times (aka death-times) of those merging events are stored in the (multi-)set
†(M), typically called a persistence barcode (as all connected components appear at r = 0, we omit the birth times).

At first, we introduce a way to measure class-specific proba-
bility mass. To this end, we define the restriction of Q (i.e.,
the push-forward of P via ϕ) to class k as

Qk : Σ→ [0, 1] Σ 3 σ 7→ Q(σ ∩ Ck)

Q(Ck)
, (2)

where Ck = ϕ(c−1({k})) is the representation of class k
in Z . In the optimal case, the probability mass of the k-th
decision region, measured via Qk, tends towards one. The
following lemma formalizes this notion by establishing a
direct link between Qk and the generalization error.

Lemma 1. For any class k ∈ [K], let Ck = ϕ
(
c−1
(
{k}
))

be its internal representation and Dk = γ−1
(
{k}
)

be its
decision region in Z w.r.t. γ. If, for ε > 0 ,

∀k : 1−Qk(Dk) ≤ ε , (3)

then
E

X∼P
[1γ◦ϕ,c(X)] ≤ Kε .

While Lemma 1 partially answers Question (I) by yielding
a property beneficial for generalization, it remains to find a
mechanism to impose it.

ϕ

c−1({2})

c−1({1})

D1 D2

Q1(R) ≤ ε

R
D1 ∩ C1

C2

C1 = (D1 ∩ C1) ∪ R

Figure 3. Eq. (3) of Lemma 1 controls how much probability mass
of Ck is concentrated in Dk w.r.t. Qk (only illustrated for k = 1
here). The smaller ε gets, the less mass is present in R, i.e., the
region where errors on unseen data (of class k = 1) occur.

Inspired by recent work of Zhang et al. (2017), we con-
tinue by assuming γ ◦ ϕ to be powerful enough to fit any

given training set S of size m. Specifically, we assume that
for zi = ϕ(xi) with c(xi) = k, there exists r > 0 with
B(zi, r) ⊂ Dk. This is equivalent to a margin assumption
on the training instances in Z . With this in mind, increasing
Qk(B(zi, r)) is beneficial for generalization, as it can only
increase Qk(Dk). Our strategy hinges on this idea.

2.1. Topological densification

We show that a certain topological constraint on Qk will
provably lead to probability mass concentration. More pre-
cisely, given a reference set M ⊆ Z and its ε-extension

Mε =
⋃
z∈M

B(z, ε), ε > 0 , (4)

the topological constraint provides a non-trivial lower bound
on Qk(Mε) in terms of Qk(M). Informally, we say that Qk
is topologically densified around M .

Our main arguments rely on the probability of an i.i.d. draw
from Qbk (i.e., the product measure) to be connected. The
latter is a topological property which can be computed using
tools from algebraic topology. In particular, we quantify
connectivity via 0-dimensional (Vietoris Rips) persistent
homology, visually illustrated in Fig. 2. For a thorough tech-
nical introduction, we refer the reader to, e.g., (Edelsbrunner
& Harer, 2010) or (Boissonnat et al., 2018).

Definition 1. Let β > 0. A set M ⊆ Z is β-connected iff
all 0-dimensional death-times of its Vietoris-Rips persistent
homology are in the open interval (0, β).

As all information captured by 0-dimensional Vietoris-Rips
persistent homology (Robins, 2000) is encoded in the mini-
mum spanning tree (MST) on M (w.r.t. metric d), we can
equivalently formulate Definition 1 in terms of the edges in
the MST. In particular, we can say that each edge in the MST
of M has edge length less than β. However, the topological
perspective is preferable, as we can rely on previous work
(Hofer et al., 2019) which shows how to backpropagate gra-
dients through the persistent homology computation. This
property is needed to implement a regularizer (see §2.4).
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To capture β-connectedness of a sample, we define the
indicator function cβb : Zb → {0, 1} as

cβb (z1, . . . , zb) = 1⇔ {z1, . . . , zb} is β-connected .

We now consider the probability of b-sized i.i.d. draws from
Qk, see Eq. (2), to be β-connected.

Definition 2. Let β > 0, cβ ∈ [0, 1], and b ∈ N. We call
Qk (b, cβ)-connected if

Qbk({cβb = 1}) ≥ cβ .

To underpin the relevance of this (probabilistic) connectivity
property w.r.t. probability mass concentration, we sketch the
key insights that lead to the main results of the paper.

Connectedness yields mass concentration. For sake of ar-
gument, assume Qk to be (b, cβ)-connected. Now, consider
a reference set M ⊆ Z together with two sets

N = M{
β and O = Mβ \M ,

where M{
β denotes the set complement. These three sets are

illustrated below on a toy example.

N =M{
β

O =Mβ \M

β
M

Apparently, M,N and O partition Z . For an i.i.d. sample,
z1, . . . , zb, from Qk, we can study how distributing the zi
among M , N , and O impacts β-connectedness. In particu-
lar, let ]M , ]N , ]O be the number of zi’s which fall within
M , N , and O respectively, i.e.,

]M = |{zi} ∩M |, ]N = |{zi} ∩N |, ]O = |{zi} ∩O| .

Observation 1: If the membership assignment is such that

]M ≥ 1 and ]N ≥ 1, but ]O = 0 ,

then z1, . . . , zb cannot be β-connected. This is easy to see,
as for zM ∈ M and zN ∈ N , we get d(zM , zN ) ≥ β and
there are simply no zi’s in O (see illustration above).

Observation 2: The probability of

(]M , ]N , ]O) ∈ {0, . . . , b}3

is given by a Trinomial distribution with parametersQk(M),
Qk(O) and Qk(N) = 1−Qk(M)−Qk(O).

As it holds thatQk(O) = Qk(Mβ)−Qk(M) andQk(N) =
1 − Qk(Mβ), the probability of a b-sample not being β-
connected can be expressed in terms of

p = Qk(M) and q = Qk(Mβ) .

The key aspect of this construction is that we describe events
where z1, . . . , zb cannot be β-connected, i.e.,

E = {(zi) ∈ Zb : ]M ≥ 1, ]N ≥ 1, ]O = 0}

and cβb (E) = {0}. As we will see, based on the Trinomial
distribution, one can derive a polynomial Ψ expressing the
probability of E, i.e.,

Qk(E) = Ψ(p, q) .

Consequently, as cβ is defined to be the probability of a
b-sample to be β-connected and E describes events where
b-samples are not β-connected, it holds that

1− cβ ≥ Qk(E) = Ψ(p, q) .

We will see, by properties of Ψ, that this relationship allows
us to lower bound q = Qk(Mβ), if p = Qk(M) is known.
In other words, if M covers a certain mass, then we can
infer the minimal mass which has to be covered by Mβ .
Our main result – presented in Theorem 1 – is slightly more
general, as it not only considers the β-extension of M , but
the l · β-extension for l ∈ N. In this more general case, the
polynomial Ψ takes the form as in Definition 3 below.

Definition 3. Let b, l ∈ N and p, q ∈ [0, 1]. For p ≤ q, we
define the polynomial

Ψ(p, q ; b, l) =
∑

(u,v,w)
∈I(b,l)

b!

u! v! w!
pu(1− q)v(q − p)w ,

where the index set I(b, l) is given by

I(b, l) = { (u, v, w) ∈ N3
0 :

u+ v + w = b ∧ u, v ≥ 1 ∧ w ≤ l − 1 } .

The most important properties of Ψ are: (1) Ψ is mono-
tonically increasing in p (and l); (2) Ψ is monotonically
decreasing in q and (3) Ψ vanishes for q = 1.

Theorem 1. Let b, l ∈ N and let Qk be (b, cβ)-connected.
Then, for all reference sets M ∈ Σ and

p = Qk(M), q = Qk(Ml·β)

it holds that
1− cβ ≥ Ψ

(
p, q ; b, l

)
. (5)
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2.2. Ramifications of Theorem 1

By properties (1) – (3) of Ψ, Theorem 1 allows us to lower-
bound the mass increase caused by extending (see Eq. (4))
a reference set M by l · β. Recall that this is beneficial for
generalization, if M is constructed from representations (in
Z) of correctly classified training instances.

In detail, assume that the mass of the reference set M , p =
Qk(M), is fixed and let q = Qk(Ml·β) be the mass of the
l · β extension. Then, by Theorem 1,

q ∈
{
q ∈ [p, 1] : 1− cβ ≥ Ψ(p, q ; b, l)

}
= A , (6)

and thus A is non-empty. Now let Rb,cβ (p, l) = minA
identify the smallest mass in the l · β-extension for which
the inequality in Eq. (5) holds. As Ψ is monotonically
decreasing, Rb,cβ (p, l) is monotonically increasing in cβ .
This will motivate our regularization goal of increasing cβ .

Sufficient condition for mass concentration. Note that
q ≥ Rb,cβ (p, l) ≥ p and thus, mass concentration is guar-
anteed as long as Rb,cβ (p, l) > p. Otherwise, the mass in
the l · β-extension of M may not be greater than the mass
in M . In fact,Rb,cβ (p, l) > p only holds if

1− cβ < Ψ(p, p ; b, l) = 1− pb − (1− p)b . (7)

The behavior of Eq. (7) is specifically relevant in the region
where p is close to 0, as requiring a large mass in M would
be detrimental. Notably, as we can see in Fig. 4, which
shows Eq. (7) as a function of p = Qk(M), already small
values of p reach the critical threshold of 1− cβ .

b = 8

b = 16

b = 32

0.0 0.2 0.4 0.6 0.8 1.0

1− cβ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.01

p
0.0

0.05

0.25

0.20

0.15

0.10

Mass in reference set (p)

Figure 4. Illustration of when 1− pb − (1− p)b > 1− cβ holds,
i.e., when mass concentration effects start to occur. The zoomed-in
view shows the relevant region near 0.

Quantification of mass concentration. To understand how
the minimal mass in Ml·β is boosted by the mass of the
reference setM , we visualize (in Fig. 5) the minimial values
for q = Ml·β as a function of p = Qk(M), i.e., the mass of
the reference set M . Similar to Fig. 4, as p approaches 0
(or 1), the mass concentration effect is rendered negligible.

0.0

0.2

0.4

0.6

0.8

1.0

R8,cβ (p, 1)

0.0 0.4 0.6 0.8 1.00.2

R8,cβ (p, 2)

Mass in reference set (p)

l = 1

l = 7

...

Figure 5. Illustration ofRb,cβ (p, l), i.e., the lower bound on q =
Qk(Ml·β), plotted as a function of the mass p = Qk(M) of the
reference set M (for b = 8 and different l).

However, already a small mass in M is sufficient for strong
mass concentration in Ml·β .

Next, we discuss the role of cβ , i.e., the probability of a b-
sized sample from Qk to be β-connected. Fig. 6 illustrates,
for different choices of l, where 1−cβ ≥ Ψ(p, q ; b, l) holds,
as a function of q with p = 0.1 fixed. Most importantly,
as cβ is increased, the minimal mass in a particular l · β
extension of M , characterized byRb,cβ (p, l), shifts towards
larger values.

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

q

Ψ(0.1, q ; 8, 1)

mass-increase

1− cβ

0.1

R8,β(0.1, 1)

l = 1

l = 7

...

Figure 6. Illustration of Ψ for p = 0.1, b = 8 and different l ∈ N.
Points at which 1− cβ = Ψ(p, q ; b, l) holds are marked by dots.

Overall, Theorem 1 and the analysis presented above pro-
vide a possible answer to Question (II) stated at the begin-
ning of §2. In particular, a mechanism to increase Qk(Dk)
in Eq. (3) is to encourage Qk to be (b, cβ)-connected. We
conclude with the following summary:

If a measure is (b, cβ)-connected, then mass attracts mass;
the higher cβ , the stronger the effect.

2.3. Limitations

As the mass, p, of the reference set M is typically unknown,
all results are relative (w.r.t. p), not absolute. This warrants
a discussion of potential limitations in a learning context.
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Specifically, when learning from samples, an arguably nat-
ural choice for a class-specific reference set is to consider
the union of balls around the representations of the training
samples, yielding (for r > 0)

M (k) =
⋃

z∈ϕ(Sx|k)

B(z, r) . (8)

Now, lets assume that Qk is (b, cβ)-connected and the lin-
ear classifier γ attains zero error on ϕ(Sx|k). Two issues
suppress good generalization:

First, the derived mass concentration is only beneficial if, for
a given l ∈ N, the reference set M (k) is located sufficiently
far away from the decision boundary of class k, i.e.,

M
(k)
l·β ⊂ Dk = γ−1

(
{k}
)
. (9)

In practice, we can, to some extent, induce such a configura-
tion by selecting a loss function which yields a large margin
in Z . In that case, at least a Rb,cβ (Qk(M (k)), l) propor-
tion of class k is correctly classified by γ. A violation of
Eq. (9) would mean that mass is still concentrated, but the
l · β-extension might reach across the k-th decision region.

Second, the sample Sx|k has to be good in the sense that
p = Qk(M (k)) is sufficiently large (as noted earlier, see
Fig. 4). This is somewhat related to the notion of represen-
tativeness of a training set, i.e., a topic well studied in works
on learnability.

Overall, given that Qk is (b, cβ)-connected, mass concen-
tration effects provably occur; yet, advantages only come to
light under the conditions outlined above. It is thus worth
designing a regularization strategy to encourage (b, cβ)-
connectedness during optimization. We describe such a
strategy next.

2.4. Regularization

To encourage (b, cβ)-connectedness ofQk, it is obvious that
we have to consider multiple training instances of each class
jointly. To be practical, we integrate this requirement into
the prevalent setting of learning with mini-batches.

Our integration strategy is simple and, in fact, similar ap-
proaches (in a different context) have been investigated in
prior work (see Hoffer et al., 2019). In detail, we construct
each mini-batch, B, as a collection of n sub-batches, i.e.,
B = (B1, . . . ,Bn). Each sub-batch consists of b samples
from the same class, thus the resulting mini-batch B is built
from n · b samples. Our regularizer is formulated as a loss
term that penalizes deviations from a β-connected arrange-
ment of the zi in each sub-batch Bj . To realize this, we
leverage a recent approach from Hofer et al. (2019) which
introduces a differentiable penalty on lifetimes of connected
components (w.r.t. Vietoris-Rips persistent homology).

Formally, let †(Bi) contain the death-times (see Fig. 2) com-
puted for sub-batch Bi. Then, given the hyper-parameter
β > 0, we set the connectivity penalty for mini-batch B as

L(B) =

n∑
i=1

∑
d∈†(Bi)

|d− β| . (10)

Notably, this is the same term as in (Hofer et al., 2019),
however, motivated by a different objective.

Admittedly, to encourage (b, cβ)-connectivity of Qk, it
would suffice to use a less restrictive variant and only penal-
ize lifetimes greater than β. However, we have empirically
observed that Eq. (10) is more effective. This would imply
that it is beneficial to prevent lifetimes from collapsing and,
as a result, prevent Qk to become overly dense. Currently,
we can not formally explain this effect, but hypothesize
that – to some extent – preventing lifetimes from collapsing
preserves variance in the gradients, i.e., a property useful
during SGD’s drift phase (Shwartz-Ziv & Tishby, 2017).

3. Experiments
For our experiments2, we draw on a setup common to many
works in semi-supervised learning (Laine & Aila, 2017;
Oliver et al., 2018; Verma et al., 2019b), both in terms of
dataset selection and network architecture. As small sample-
size experiments are typically presented as baselines in
these works, we believe this to be an arguable choice. In
particular, we present experiments on three (10 class) vision
benchmark datasets: MNIST, SVHN and CIFAR10. For
MNIST and SVHN, we limit training data to 250 instances,
on CIFAR10 to 500 (and 1,000), respectively.

Architecture & Optimization. For CIFAR10 and SVHN
we use the CNN-13 architecture of (Laine & Aila, 2017)
which already includes dropout regularization (Srivastava
et al., 2014). Only on MNIST we rely on a simpler CNN ar-
chitecture with four convolutional blocks and max-pooling
(w/o dropout). Both architectures have a final linear clas-
sifier γ : R128 → RK , use batch normalization (Ioffe
& Szegedy, 2015), and fit our network decomposition of
Eq. (1). Optimization is done by SGD with momentum (0.9)
over 310 epochs with cross-entropy loss and cosine learn-
ing rate annealing (Loshchilov & Hutter, 2017) (without
restarts). As all experiments use weight decay, it is impor-
tant to note that batch normalization combined with weight
decay only exerts regularization on the classifier γ. In fact,
several works have shown that the combination of batch
normalization and weight decay mainly affects the effective
learning rate (van Laarhoven, 2017; Zhang et al., 2019).

The weighting of our regularization term is set such that

2PyTorch source code is available at https://
github.com/c-hofer/topologically_densified_
distributions

https://github.com/c-hofer/topologically_densified_distributions
https://github.com/c-hofer/topologically_densified_distributions
https://github.com/c-hofer/topologically_densified_distributions
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the range of the loss from Eq. (10) is comparable, in range,
to the cross-entropy loss. We choose a sub-batch size of
b = 16 and draw n = 8 sub-batches (see §2.4); this amounts
to a total batch size of 128. While, empirically, this setting
facilitates stable optimization (w.r.t. batch norm statistics),
we acknowledge that further theoretical insights could lead
to a more informed choice. Additional parameter details are
provided when relevant (and full details can be found in the
supplementary material).

First, in §3.1, we investigate to which extent the (b, cβ)-
connectivity property (imposed during optimization), trans-
lates to unseen data. In §3.2, we study the effect of β and
whether this parameter can be reliably cross-validated on a
small validation set. Finally, in §3.3, we compare to related
work on regularizing statistics of internal representations.

3.1. Evaluating (b, cβ)-connectivity

For a fixed b, we study how well β-connectivity is achieved
during optimization, as we vary β. In accordance with
Definition 1, we measure β-connectivity via the lifetimes in
the 0-dimensional persistence barcodes, computed over 500
random sub-batches (chosen from training/testing data).

Qualitatively, in Fig. 7 we see that increasing β not only
translates to an increase of lifetimes in the internal repre-
sentations of training instances, but equally translates to
an increase in lifetimes on sub-batches of the testing data.
While we observe a slight offset in the lifetime average
(training vs. testing), and an increase in variance, these ef-
fects are largely constant across β. This suggests the effect
of regularization is qualitatively invariant to the choice of β.
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Figure 7. Lifetime distribution computed over 500 random sub-
batches (of size 16) from (CIFAR10/SVHN) training and testing
data, as a function of β ∈ [0.1, 1.9] (set during optimization).

3.2. Selection of β

Using Eq. (10) as a loss term requires to set β a-priori.
However, this choice can be crucial, as it assigns a notion
of scale to Z and thus interacts with the linear classifier. In
particular, β is interweaved with the Lipschitz constant of γ
which is affected by weight decay.

While, at the moment, we do not have sufficient theoretical
insights into the interaction between weight decay on γ and
the choice of β, we argue that β can still be cross-validated
(a common practice for most hyper-parameters). Yet, in
small sample-size regimes, having a large labeled validation
set is unrealistic. Thus, we study the behavior of cross-
validating β, when the validation set is of size equal to the
training corpus. To this end, Fig. 8 shows the testing error
on CIFAR10 (using 500 training samples) and SVHN (using
250 training samples), over a range of β. Additionally, we
overlay the variation in the error on the held-out validation
sets. As we can see, the latter closely tracks the testing
error as β is increased from 0.1 to 1.9. This indicates that
choosing β through cross-validation can be done effectively.
Fig. 8 additionally reveals that the testing error behaves
smoothly around the optimal choice of β.
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Figure 8. Testing error (purple; averaged over 10 runs) over vari-
ous choices of β ∈ [0.1, 1.9]. The shaded region shows the vari-
ation in the testing error on small-validation sets. This indicates
that the choice of β can be cross-validated effectively.

3.3. Comparison to the state-of-the-art

Finally, we present a comparison to different state-of-the-
art regularizers. Specifically, we evaluate against works
that regularize statistics of internal representations (right
before the linear classifier). This includes the DeCov loss of
Cogswell et al. (2016), as well as its class-wise extensions
(cw-CR and cw-VR), proposed in Choi & Rhee (2019). As
a representative of an alternative approach, we provide re-
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Regularization MNIST-250 SVHN-250 CIFAR10-500 CIFAR10-1k

Vanilla 7.1± 1.0 30.1± 2.9 39.4± 1.5 29.5± 0.8

+ Jac.-Reg. (Hoffman et al., 2019) 6.2± 0.8 33.1± 2.8 39.7± 2.0 29.8± 1.2
+ DeCov (Cogswell et al., 2016) 6.5± 1.1 28.9± 2.2 38.2± 1.5 29.0± 0.6
+ VR (Choi & Rhee, 2019) 6.1± 0.5 28.2± 2.4 38.6± 1.4 29.3± 0.7
+ cw-CR (Choi & Rhee, 2019) 7.0± 0.6 28.8± 2.9 39.0± 1.9 29.1± 0.7
+ cw-VR (Choi & Rhee, 2019) 6.2± 0.8 28.4± 2.5 38.5± 1.6 29.0± 0.7

+ Sub-batches 7.1± 0.5 27.5± 2.6 38.3± 3.0 28.9± 0.4
+ Sub-batches + Top.-Reg. (Ours) 5.6± 0.7 22.5± 2.0 36.5± 1.2 28.5± 0.6

+ Sub-batches + Top.-Reg. (Ours) ‡ 5.9± 0.3 23.3± 1.1 36.8± 0.3 28.8± 0.3

Table 1. Comparison to state-of-the-art regularizers added to Vanilla training which includes batch normalization, dropout (0.5; except for
MNIST) and weight decay. Reported is the lowest achievable test error [%] (± std. deviation) over a hyper-parameter grid, averaged over
10 cross-validation runs. Numbers attached to the dataset names indicates the number of training instances used. The last row (‡) lists the
results of our approach when β is cross-validated (and all other hyper-parameters are fixed) as described in §3.3.

sults when penalizing the network Jacobian, as proposed in
(Sokolić et al., 2017; Hoffman et al., 2019). For these com-
parison experiments, we empirically found a batch size of
32 to produce the best results. To account for the difference
in the update steps of SGD w.r.t. to our approach (caused
by the sub-batch construction), we adjusted the number of
epochs accordingly. All approaches are evaluated on the
same training/testing splits and achieve zero training error.

To establish a strong baseline, we decided to conduct an
extensive hyper-parameter search over a grid of (1) initial
learning rate, (2) weight decay and (3) weighting of the
regularization terms. For each grid point, we run 10 cross-
validation runs, average, and then pick the lowest achievable
error on the test set. This establishes an lower bound on the
error if hyper-parameters were chosen via a validation set.
Table 1 lists the corresponding results.

To test our regularizer against these lower bounds, we fix all
hyper-parameters and cross-validate β, as discussed in §3.2.
Notably, topological regularization consistently exhibits the
lowest error, even when compared to the optimistic per-
formance estimate of the other regularizers. This strongly
supports our claim that mass concentration is beneficial.

4. Discussion
As emphasized earlier, our theoretical results are relative in
nature, in particular, relative to a reference set M , naturally
determined by the representations of the training samples.

In §2, we linked mass concentration to generalization and
showed that mass in the β-extension of M increases, as
the probability cβ , i.e., the probability of a b-sized sample
from Qk to be β-connected, increases. Results in Table 1
empirically support this. However, can mass concentration
be directly observed? While it is challenging to measure
this, we can perform a proxy experiment. In detail, we select

two models trained with equal β and define the reference
sets (per class) via balls of radius r > 0, see Eq. (8), around
500 randomly selected training samples. By successively
increasing r and counting test samples that occur in B(zi, r)
and B(zi, r+ β), resp., we obtain estimates of p = Qk(M)
and q = Qk(Mβ). As β-connectivity is not strictly en-
forced, but used for regularization, we have to account for
the lifetime shift seen in Fig. 9. Hence, to estimate p and q,
we use β = 1.4, which is higher than the sought-for β = 0.8
during training. Fig. 9 (left) shows the mass estimates for
two CIFAR10 models, trained on 500 and 1,000 samples,
respectively.
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Figure 9. (Left) Estimated mass in the reference set M vs. the
estimated mass in Mβ , shown for β = 1.4; (Right) Estimated
probability of a b-sized sample to be β-connected. All estimations
are computed on testing data.

As we can see – especially for small (estimated) mass in
the reference set – the mass concentration effect is much
stronger for the model trained with 1,000 samples. The
underlying reason is that using more samples improves how
(b, cβ)-connectivity transfers to testing data. Estimates for
cβ across both models confirm the latter, see Fig. 9 (right).
This strongly indicates that mass concentration is not only a
theoretical result, but is indeed observed on real data.

Overall, the presented analysis suggests that studying and
controlling topological properties of representations is
promising. Yet, we have only started to scratch at the surface
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of how topological aspects influence generalization. We ar-
gue that further (formal) understanding of these connections
could offer novel insights into the generalization puzzle.
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