
Supplementary Material:

Topologically Densified Distributions

In this supplementary material, we provide (1) all proofs (in §S1 to §S5) which were omitted in the
main document, as well as (2) full architectural details, hyper-parameters and optimization settings
(in §S6). Results which are restated from the main manuscript have the same numbering, while
Definitions, Lemmas, etc., which are only present in the supplementary material have their labels
suffixed by an “S”. Additionally, restatements are given in purple.

S1. Generalization – Proof of Lemma 1
Recall that for h : X → Y and X ∼ P , and a given labeling function c : supp(P )→ Y , we define
the generalization error as

E
X∼P

[1h,c(X)] .

where

1h,c(x) =

{
0, h(x) = c(x),

1, else .

We will now prove the following result of the main manuscript.

Lemma 1. For any class k ∈ [K], let Ck = ϕ
(
c−1
(
{k}
))

be its internal representation and
Dk = γ−1

(
{k}
)

be its decision region in Z w.r.t. γ. If, for ε > 0 ,

∀k : 1−Qk(Dk) ≤ ε , (3)

then
E

X∼P
[1γ◦ϕ,c(X)] ≤ Kε .

To prove this lemma, we first introduce an auxiliary indicator function in order to deal with possible
label overlaps the mapping ϕ can impose in Z .

Definition S1. Let h′ : Z → Y and cϕ(z) = c
(
ϕ−1

(
{z}
)
∩ supp(P )

)
⊆ Y . Then, we define

1ϕh′,c(z) =

{
0, |cϕ(z)| = 1 and h′(z) ∈ cϕ(z),

1, else .

Setting h′ = γ, this auxiliary indicator function, 1ϕγ,c, vanishes if and only if all x ∈ X which
are mapped to an internal representation z ∈ Z have the same label c(x). In other words, we
pessimistically assume that internal representation where this is not the case are falsely classified.
Thus, the auxiliary indicator function composed with ϕ, 1ϕγ,c ◦ ϕ, has to be greater or equal than the
original 1γ◦ϕ,c. We formalize this insight next.

Lemma S1. It holds that
1γ◦ϕ,c ≤ 1ϕγ,c ◦ ϕ

Proof. Let x ∈ X . It is sufficient to show that

1ϕγ,c ◦ ϕ(x) = 0⇒ 1γ◦ϕ,c(x) = 0 .

Thus, let 1ϕγ,c ◦ ϕ(x) = 0. Then, by definition
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(i) |c
(
ϕ−1

(
{ϕ(x)}

))
| = 1 and,

(ii) γ(ϕ(x)) ∈ c
(
ϕ−1

(
{ϕ(x)}

))
.

By (i) there is some y ∈ Y such that c
(
ϕ−1

(
{ϕ(x)}

))
= {y} and thus c(x) = y. With this, and

(ii), we get γ ◦ ϕ(x) = y and thus γ ◦ ϕ(x) = c(x). Therefore, 1γ◦ϕ,c(x) = 0 which concludes the
proof.

We now have all necessary tools to prove a slightly more general version of Lemma 1 from the main
manuscript.

Lemma S2. Let for any class k ∈ {1, . . . ,K}, Ck = ϕ
(
c−1
(
{k}
))

be its internal representation
and Dk = γ−1

(
{k}
)

its decision region in Z . If

∀k : 1−Qk(Dk) ≤ εk ,

then

E
X∼P

[1γ◦ϕ,c(X)] ≤
K∑
k=1

εk .

Proof. For brevity, let Ĉk = c−1
(
{k}
)

and write 1γ◦ϕ instead of 1γ◦ϕ,c. Then, we get

E
X∼P

[1γ◦ϕ(x)] =

∫
X

1γ◦ϕ(x)dP (x)

=

∫
supp(P )

1γ◦ϕ(x)dP (x)

≤
∫

supp(P )

1ϕγ ◦ϕ(x)dP (x) (by Lemma S1)

=

∫
ϕ(supp(P ))

1ϕγ (z)dQ(z) (change of variables)

=

K∑
k=1

∫
ϕ (supp(P )) ∩Dk︸ ︷︷ ︸

D∩
k

1ϕγ (z)dQ(z) . (as D1, . . . , DK partition Z)

For 1 ≤ k ≤ K, let D∩k = ϕ (supp(P )) ∩Dk and consider each summation term separately. First,
we can re-write D∩k as

D∩k =

D∩k \ K⋃
i=1
i 6=k

Ci

 ∪
D∩k ∩ K⋃

i=1
i6=k

Ci

 .

Second, consider

z ∈ D∩k \
K⋃
i=1
i 6=k

Ci .

Then, z ∈ Dk and thus γ(z) = k (by definition of Dk). Further, we have c
(
ϕ−1

(
{z}
)
∩ supp(P )

)
=

{k} and thus, by Definition S1,
1ϕγ (z) = 0 . (S1)
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With this, considering each summation term yields∫
D∩k

1ϕγ (z)dQ(z) =

∫
D∩k \

K⋃
i=1
i 6=k

Ci

1ϕγ (z)dQ(z) +

∫
D∩k ∩

K⋃
i=1
i 6=k

Ci

1ϕγ (z)dQ(z)

=

∫
D∩k ∩

K⋃
i=1
i 6=k

Ci

1ϕγ (z)dQ(z) (by Eq. (S1))

=

∫
K⋃
i=1
i 6=k

(Ci∩D∩k )

1ϕγ (z)dQ(z)

≤ Q

 K⋃
i=1
i6=k

(Ci ∩D∩k )

 (as 1ϕγ ≤ 1)

≤ Q

 K⋃
i=1
i6=k

(Ci ∩Dk)

 (as Ci ⊂ ϕ(supp(P )))

≤
K∑
i=1
i 6=k

Q (Ci ∩Dk)

In order to obtain the final result, we use the fact that the decision regions Dk are disjoint and cover
the representation space, i.e. Z =

⊔K
k=1Dk. Thus for any 1 ≤ i ≤ K,

Q(Ci) =

K∑
k=1

Q (Ci ∩Dk) . (S2)

Consequently, changing the summation order allows to simplify the bound from above to

E
X∼P

[1γ◦ϕ(x)] ≤
K∑
k=1

K∑
i=1
i 6=k

Q (Ci ∩Dk) =

K∑
i=1

K∑
k=1
k 6=i

Q (Ci ∩Dk)

=

K∑
i=1

(Q(Ci)−Q(Ci ∩Di)) (by Eq. (S2))

=

K∑
i=1

Q(Ci)

(
1− Q(Ci ∩Di)

Q(Ci)

)

=

K∑
i=1

Q(Ci) (1−Qi(Di)) (∗)

≤
K∑
i=1

Q(Ci)εi (∗∗)

≤
K∑
i=1

εi ,

where (∗) follows from the definition of the class-specific probability mass in Eq. (2) and (∗∗) holds
by the assumption of the lemma.
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Proof of Lemma 1. By setting εk = ε > 0 in Lemma S2 we get the desired result.

S2. A sufficient condition on not-β-connectivity
Definition S2. Let (Z, d) be a metric space and ∅ 6= A,B ⊂ Z . We define the set margin between A
and B as

m(A,B) = inf
a∈A,b∈B

d(a, b) .

The following lemma formalizes the intuition that z1, . . . , zb cannot be β-connected if the zi are
distributed among two sets which are separated by a sufficiently large set margin.

Lemma S3. Let (Z, d) be a metric space and z = (z1, . . . , zb) ∈ Zb. Define, for l ∈ N and
A,B ⊂ Z , the index sets

IA,z = {i ∈ [b] : zi ∈ A},
IB,z = {i ∈ [b] : zi ∈ B}, and

IC,z = {i ∈ [b] : zi ∈ (A ∪B){} ,

where [b] = {1, . . . , b} and (A ∪B){ denotes the set complement of (A ∪B).

If
m(A,B) ≥ l · β and |IA,z|, |IB,z| ≥ 1 and |IC,z| ≤ l − 1

then
cβb (z) = 0 ,

i.e., z is not β-connected.

Proof. We prove this by way of contradiction. For brevity, let cβb = c. Consider z = (z1, . . . , zb) as
above and assume c(z) = 1. Let, w.l.o.g., z1 ∈ A and zb ∈ B. Then, there is a path of distinct nodes

z1 ↔ · · · ↔ zb

connecting z1 and zb with line segments of length < β. However, by assumption m(A,B) ≥ β, and
thus there is a sub-path

zi1 ↔ zi2 ↔ · · · ↔ zim

such that zi1 ∈ A, zim ∈ B and zi2 , . . . , zim−1 ∈ (A ∪B){. Thus, we get

d(zi1 , zim) ≤ d(zi1 , zi2) + · · ·+ d(zim−1
, zim) < (m− 1) · β .

By construction, zi2 , . . . , zim−1
∈ C and thus {i2, . . . , im−1} ⊆ IC,z. Hence, m−2 ≤ |IC,z| ≤ l−1.

Therefore, (m− 1) · β ≤ l · β, leading to

d(zi1 , zim) < l · β .

This directly contradicts m(A,B) ≥ l · β.

S3. Concentration results
Lemma S4. Let (Z, d) be a metric space and Σ the corresponding Borel σ-algebra. Further, let
b ∈ N, β > 0 and Q be a (b, cβ)-connected probability measure (cf. Definition 2) on (Z,Σ). For
l ∈ N and A,B ∈ Σ, such that m(A,B) ≥ l · β, the following inequality holds

1− cβ ≥
∑

(n1,n2,n3)∈I(b,l)

b!

n1!n2!n3!
·Q(A)n1Q(B)n2(1−Q(A)−Q(B))n3 ,

where the index set I(b, l) is given as

I(b, l) = { (n1, n2, n3) ∈ {0, . . . , b}3 : n1 + n2 + n3 = b, 1 ≤ n1, 1 ≤ n2, n3 ≤ l − 1 } . (S3)
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Proof. Let C = (A ∪ B){. The proof is structured in three parts: First, we construct an auxiliary
random variable that captures the scattering of b-sized samples across A, B and C. This allows
us to express probabilities for different scattering configurations. Second, we describe scattering
configurations where β-connectivity cannot be satisfied. Finally, by combining both previous parts, we
derive the claimed inequality.

Part I. First, define the categorical function

f : Z → {1, 2, 3}, f(z) =


1, z ∈ A,
2, z ∈ B,
3, z ∈ C = (A ∪B){ .

For a random variable Z ∼ Q, we now consider the random variable f ◦ Z with

Q({f ◦ Z = 1}) = Q(A)

Q({f ◦ Z = 2}) = Q(B)

Q({f ◦ Z = 3}) = Q(C) .

By drawing b-times i.i.d. from f ◦ Z and counting the occurrences of 1, 2, 3, we get a multinomially
distributed random variable, K. This means that, for

{K = (n1, n2, n3)}

where n1 + n2 + n3 = b, it holds that

Qb ({K = (n1, n2, n3)}) =
b!

n1!n2!n3!
·Q(A)n1Q(B)n2(1−Q(A)−Q(B))n3 .

Part II. Similar to Lemma S3, we define

IA,z = {i ∈ I : zi ∈ A},
IB,z = {i ∈ I : zi ∈ B}, and

IC,z = {i ∈ I : zi ∈ (A ∪B){} .

Then, by construction, it holds that{
K = (n1, n2, n3)

}
=
{
z ∈ Zb :

(
|IA,z|, |IB,z|, |IC,z|

)
= (n1, n2, n3)

}
.

Now let (n1, n2, n3) ∈ I(b, l) and consider z ∈ {K = (n1, n2, n3)}. By definition of I(b, l), we get

1 ≤ |IA,z|, 1 ≤ |IB,z|, and |IC,z| ≤ l − 1 .

Remember that, by assumption, m(A,B) ≥ l · β and thus, by Lemma S3, z ∈ {c = 0}, i.e., the points
z1, . . . , zb are not β-connected. This yields the following implication:

(n1, n2, n3) ∈ I(b, l)⇒ {K = (n1, n2, n3)} ⊆ {c = 0} .

Part III. Combining the results of Part I and II, we obtain the following inequality:

1− cβ = Qb({c = 0})

≥ Qb

 ⋃
(n1,n2,n3)
∈I(b,l)

{K = (n1, n2, n3)}


=

∑
(n1,n2,n3)
∈I(b,l)

Qb
(
{K = (n1, n2, n3)}

)

=
∑

(n1,n2,n3)
∈I(b,l)

b!

n1!n2!n3!
·Q(A)n1Q(B)n2(1−Q(A)−Q(B))n3 .
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With Lemma S4 in mind, we can restate the definition of the polynomial Ψ from the main manuscript.

Definition 3. Let b, l ∈ N and p, q ∈ [0, 1]. For p ≤ q, we define the polynomial

Ψ(p, q ; b, l) =
∑

(u,v,w)
∈I(b,l)

b!

u! v! w!
pu(1− q)v(q − p)w ,

where the index set I(b, l) is given by

I(b, l) = { (u, v, w) ∈ N3
0 :

u+ v + w = b ∧ u, v ≥ 1 ∧ w ≤ l − 1 } .

While all previous results in this supplementary material are stated for a probability measure Q on Z ,
the results equally transfer to Qk, i.e., the restriction of probability measure Q to a particular class k,
which is the specific setting considered in the main part of the manuscript.

Theorem 1. Let b, l ∈ N and let Qk be (b, cβ)-connected. Then, for all reference sets M ∈ Σ and

p = Qk(M), q = Qk(Ml·β)

it holds that
1− cβ ≥ Ψ

(
p, q ; b, l

)
. (5)

Proof. The proof relies on Lemma S4 with

A = M and B = (Ml·β){ .

For Qk as Q, we get

1− cβ ≥
∑

(n1,n2,n3)
∈I(b,l)

b!

n1!n2!n3!
·Q(A)n1Q(B)n2(1−Q(A)−Q(B))n3

=
∑

(n1,n2,n3)
∈I(b,l)

b!

n1!n2!n3!
·Q(M)n1

(
1−Q(Ml·β)

)n2
(
1−Q(M)− (1−Q(Ml·β))

)n3

=
∑

(n1,n2,n3)
∈I(b,l)

b!

n1!n2!n3!
·Q(M)n1

(
1−Q(Ml·β)

)n2
(
Q(Ml·β)−Q(M)

)n3

=
∑

(u,v,w)
∈I(b,l)

b!

u!v!w!
· pu(1− q)v(q − p)w ,

where, in the last equality, we have set p = Q(M), q = Q(Ml·β) and renamed the indices.
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S4. Properties of Ψ
In the main manuscript, we list three important properties of Ψ. These are:

(1) Ψ is monotonically increasing in p,
(2) Ψ is monotonically decreasing in q, and
(3) Ψ is monotonically increasing in l and Ψ vanishes for q = 1.

While the latter trivially follows from Definition 3, as (1− q) = (1− 1) = 0 is always present with
non-zero exponent, properties (1) and (2) need more careful (tedious) consideration. The monotonicity
in l results from the fact that increasing l increases the size of I(b, l) and thus more non-negative terms
are present in the summation in Ψ (see Definition 3) . We start by providing two beneficial ways of
re-writing the index set, I(·, ·), which is used to define Ψ.

Lemma S5. Let b, l ∈ N and define

g(x) = max{1, b− x− l + 1} .

This yields the following re-write of the index set as follows:

I(b, l) =
{

(n1, n2, n3) ∈ {0, . . . , b}3 : n1 + n2 + n3 = b, 1 ≤ n1, 1 ≤ n2, n3 ≤ l − 1
}

=

b−1⋃
n1=1

{(n1, n2, b− n1 − n2) : g(n1) ≤ n2 ≤ b− n1}

=

b−1⋃
n2=1

{(n1, n2, b− n1 − n2) : g(n2) ≤ n1 ≤ b− n2}

(S4)

Proof. We only show the first equality as the second is analogous with switched roles of n1 and n2.

Part I (⊆): Let (k, i, j) ∈ I(b, l), i.e., (k, i, j) ∈ {0, . . . , b}3 such that

(1) k + i+ j = b,

(2) 1 ≤ k,
(3) 1 ≤ i , and
(4) j ≤ l − 1 .

From (1) it follows that j = b− k − i.
From (4) we get

b− k − i 1)
= j

(4)
≤ l − 1⇔ b− k − l + 1 ≤ i .

Combining this with (3), we conclude

g(k) = max{1, b− k − l + 1} ≤ i .

From (1), we see that i ≤ b− k, as i+ j = b− k and j > 0. This means

(k, i, j) ∈ {(k, n2, b− k − n2) : g(k) ≤ n2 ≤ b− k} . (S5)

Finally, (1), (2), and (3) yield 1 ≤ k ≤ b− 1 and therefore

(k, i, j) ∈
b−1⋃
n1=1

{(n1, n2, b− n1 − n2) : g(n1) ≤ n2 ≤ b− k} (S6)

which concludes the “⊆” part.
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Part II (⊇): Let 1 ≤ n1 ≤ b− 1 and consider

(k, i, j) ∈ {(n1, n2, b− n1 − n2) : g(n1) ≤ n2 ≤ b− k} . (S7)

Then, k + i+ j = b and 1 ≤ k, 1 ≤ i.
For the last condition, i.e., j ≤ l − 1, consider

j = b− k − i ≤ b− k − g(k) .

We next distinguish the two possible outcomes of g(k):

Case 1: g(k) = b− k − l + 1: Then, we get

j ≤ b− k − g(k)

= b− k − (b− k − l + 1)

= l − 1 .

Case 2: g(k) = 1: Then, by definition of g(k), we get

b− k − l + 1 ≤ 1

⇔ b− k ≤ l
⇔ b− k − 1 ≤ l − 1

and therefore

j ≤ b− k − g(k)

= b− k − 1

≤ l − 1 .

We now use the results of Lemma S5 to re-arrange the sum in the definition of Ψ.

Corollary S1. For g(x) = max{1, b− x− l + 1}, it holds that

Ψ(p, q ; b, l) =

b−1∑
n1=1

b−n1∑
n2=g(n1)

b!

n1!n2!(b− n1 − n2)!
pn1(1− q)n2(q − p)b−n1−n2 (S8)

and

Ψ(p, q ; b, l) =

b−1∑
n2=1

b−n2∑
n1=g(n2)

b!

n1!n2!(b− n1 − n2)!
pn1(1− q)n2(q − p)b−n1−n2 . (S9)

In the following lemma we will prove the claimed monotonicity properties of Ψ by (i) using the
previously derived rearrangements of the summation and (ii) considering the corresponding derivatives.

Lemma S6. Let b, l ∈ N and p0, q0 ∈ (0, 1) arbitrary but fixed. Then, it holds that

(1) Ψ(·, q0 ; b, l) is monotonically increasing on [0, q0]

and
(2) Ψ(p0, · ; b, l) is monotonically decreasing on [p0, 1] .
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Proof. Ad (1). For brevity, we write q instead of q0. First, we leverage Corollary S1, Eq. (S9), and
re-arrange the sum:

Ψ(p, q ; b, l) =

b−1∑
n2=1

b−n2∑
n1=g(n2)

b!

n1!n2!(b− n1 − n2)!
pn1(1− q)n2(q − p)b−n1−n2

=

b−1∑
n2=1

(1− q)n2

b−n2∑
n1=g(n2)

b!

n1!n2!(b− n1 − n2)!
pn1(q − p)b−n1−n2

︸ ︷︷ ︸
=An2

(p)

.

For studying the monotonicity properties of Ψ(·, q ; b, l), it is sufficient to consider An2
, for 1 ≤ n2 ≤

b− 1.

We define two auxiliary functions

an1
(p) =

b!

n1!n2!(b− n1 − n2)!
pn1(q − p)b−n1−n2 ,

cn1
(p) =

b!

n1!n2!(b− n1 − n2)!
pn1(b− n1 − n2)(q − p)b−n1−n2−1 .

Note that An2
(p) =

∑b−n2

n1=g(n2)
an1

(p) and that

cn1(p) =

{
b!

n1!n2!(b−n1−n2−1)!p
n1(q − p)b−n1−n2−1 ≥ 0, 0 ≤ n1 < b− n2

0, n1 = b− n2
,

because by assumption 0 ≤ p ≤ q ≤ 1. As we will show below,

∂an1(p)

∂p
= cn1−1(p)− cn1(p).

Hence,

∂An2
(p)

∂p
=

b−n2∑
n1=g(n2)

(cn1−1(p)− cn1
(p)) = cg(n2)−1(p)− cb−n2

(p) = cg(n2)−1(p) ≥ 0.

Consequently, An2
is monotonically increasing and thus, so is Ψ(·, q ; b, l).

It remains to calculate the derivative ∂an1
(p)

∂p :

∂an1
(p)

∂p
=

b!

n1!n2!(b− n1 − n2)!
·
[
n1p

n1−1(q − p)b−n1−n2 − pn1(b− n1 − n2)(q − p)b−n1−n2−1
]

=
b!

n1!n2!(b− n1 − n2)!
· n1pn1−1(q − p)b−n1−n2

− b!

n1!n2!(b− n1 − n2)!
· pn1(b− n1 − n2)(q − p)b−n1−n2−1

=
b!

(n1 − 1)!n2!(b− n1 − n2)!
· pn1−1(q − p)b−n1−n2

− b!

n1!n2!(b− n1 − n2)!
· pn1(b− n1 − n2)(q − p)b−n1−n2−1

= cn1−1(p)− cn1(p)

Ad 2). The proof is rather similar to the first part. Nevertheless, we will exercise it for completeness.
For brevity, we will write p instead of p0. Again we start by leveraging Corollary S1, but, this time,
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use Eq. (S8), and re-arrange the sum,

Ψ(p, q ; b, l) =

b−1∑
n1=1

b−n1∑
n2=g(n1)

b

n1!n2!(b− n1 − n2)!
pn1(1− q)n2(q − p)b−n1−n2

=

b−1∑
n1=1

pn1

b−n1∑
n2=g(n1)

b

n1!n2!(b− n1 − n2)!
(1− q)n2(q − p)b−n1−n2

︸ ︷︷ ︸
An1

(q)

For studying the monotonicity properties of Ψ(p, · ; b, l) it is sufficient to consider An1
, for 1 ≤ n1 ≤

b− 1.

Again, we define two auxiliary functions

an2(q) =
b!

n1!n2!(b− n1 − n2)!
(1− q)n2(q − p)b−n1−n2 ,

cn2(q) =
b!

n1!n2!(b− n1 − n2)!
(1− q)n2(b− n1 − n2)(q − p)b−n1−n2−1.

Note that An1(q) =
∑b−n1

n2=g(n1)
an2(q) and that

cn1
(q) =

{
b!

n1!n2!(b−n1−n2−1)! (1− q)
n2(q − p)b−n1−n2−1 ≥ 0, 0 ≤ n2 < b− n1

0, n2 = b− n1
,

because by assumption 0 ≤ p ≤ q ≤ 1.

As we will show below,
∂an2

(q)

∂q
= cn2(q)− cn2−1(q).

Hence,

∂An1(q)

∂q
=

b−n1∑
n2=g(n1)

(cn2
(q)− cn2−1(q)) = cb−n1

(q)− cg(n1)−1(q) = −cg(n1)−1(q) ≤ 0.

Consequently, An1 is monotonically decreasing and thus, so is Ψ(p, ·, ; b, l).

It remains to calculate the derivative ∂an2 (q)

∂q :

∂an2

∂q
(q) = − b!

n1!n2!(b− n1 − n2)!
n2(1− q)n2−1(q − p)b−n1−n2

+
b!

n1!n2!(b− n1 − n2)!
(1− q)n2(b− n1 − n2)(q − p)b−n1−n2−1

= − b!

n1!(n2 − 1)!(b− n1 − n2)!
(1− q)n2−1(q − p)b−n1−n2

+
b!

n1!n2!(b− n1 − n2)!
(1− q)n2(b− n1 − n2)(q − p)b−n1−n2−1

= −cn2−1 + cn2

S5. Monotonicity properties ofR
Definition S3.

Rb,cβ (p, l) = min
q

{
q ∈ [p, 1] : 1− cβ ≥ Ψ(p, q ; b, l)

}
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Lemma S7. Rb,cβ (p, l) is

(1) monotonically increasing in p, and

(2) monotonically increasing in l .

Proof. Ad (1). Let p, p̂ ∈ [0, 1] with p < p̂.
First, assumeRb,cβ (p, l) ∈ [p, p̂]. Then, by definition,Rb,cβ (p̂, l) ∈ [p̂, 1] and thus

Rb,cβ (p, l) ≤ Rb,cβ (p̂, l) .

Second, assumeRb,cβ (p, l) /∈ [p, p̂], i.e.,Rb,cβ (p, l) ∈ [p̂, 1]. Let

A = {q ∈ [p̂, 1] : 1− cβ ≥ Ψ(p, q ; b, l)}

and
B = {q ∈ [p̂, 1] : 1− cβ ≥ Ψ(p̂, q ; b, l)} .

By Lemma S6, Ψ is monotonically increasing in p and thus

Ψ(p̂, q ; b, l) ≥ Ψ(p, q ; b, l) for q ∈ [p̂, 1] .

This implies B ⊆ A and therefore

Rb,cβ (p, l) = minA ≤ minB = Rb,cβ (p̂, l) .

Ad 2). Let l < l̂. It follows from the definition of I , see Definition 3, that I(b, l) ⊆ I(b, l̂). As all
addends in the sum defining Ψ are positive, the claim follows.

S6. Experimental details
For reproducibility, we provide full architectural details, optimization settings and hyper-parameters.

S6.1. Architecture

On SVHN and CIFAR10, we use the CNN-13 architecture of (Laine & Aila, 2017, Table 5), without
the Gaussian noise input layer. The configuration is provided in Table S1 below (essentially reproduced
from the original paper). BN denotes 2D batch normalization (Ioffe & Szegedy, 2015), LReLU denotes
leaky ReLU activation with α = 0.1.

BN LReLU

Input 32× 32 RGB image

Conv (2D) Filters: 128; Kernel: 3x3; Pad: 1 X X
Conv (2D) Filters: 128; Kernel: 3x3; Pad: 1 X X
Conv (2D) Filters: 128; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -
Dropout (0.5)
Conv (2D) Filters: 256; Kernel: 3x3; Pad: 1 X X
Conv (2D) Filters: 256; Kernel: 3x3; Pad: 1 X X
Conv (2D) Filters: 256; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -
Dropout (0.5)
Conv (2D) Filters: 512; Kernel: 3x3; Pad: 0 X X
Conv (2D) Filters: 256; Kernel: 1x1; Pad: 0 X X
Conv (2D) Filters: 128; Kernel: 1x1; Pad: 0 X X
AvgPool (2D) Window: 6x6, Stride: 2, Pad: 0 - -

Vectorize to z ∈ R128 (this is where the topological regularizer operates)

FullyConn. 128 -> 10 - -

Table S1. CNN-13 architecture. The network part up to the vectorization operation constitutes ϕ.
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On MNIST, we use a simpler CNN architecture, listed in Table S2.

BN LReLU

Input 28× 28 grayscale image

Conv (2D) Filters: 8; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -
Conv (2D) Filters: 32; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -
Conv (2D) Filters: 64; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -
Conv (2D) Filters: 128; Kernel: 3x3; Pad: 1 X X
MaxPool (2D) Window: 2x2, Stride: 2, Pad: 0 - -

Vectorize to z ∈ R128 (this is where the topological regularizer operates)

FullyConn. 128 -> 10 - -

Table S2. MNIST CNN architecture.

S6.2. Optimization & Augmentation

For optimization, we use SGD with momentum (set to 0.9). As customary in the literature (see e.g.,
Verma et al., 2019b), training images for CIFAR10 and SVHN are augmented by (1) zero-padding
images by 2 pixel on each side, followed by random cropping of a 32 × 32 region and (2) random
horizontal flipping (with probability 0.5). On MNIST, no augmentation is applied. All images are
further normalized by subtracting the mean and dividing by the standard deviation. Importantly, these
statistics are computed for each cross-validation split separately (from the training instances), as this is
the only practical choice in a small sample-size regime.

S6.3. Hyper-parameter settings

Except for the last row, Table 1 lists the best achievable error for different regularization approaches
over a hyper-parameter grid to establish a lower bound on the obtainable error.

Across all experiments, weight decay on ϕ is fixed to 1e−3. Due to the use of batch normalization,
this primarily affects the effective learning rate (see van Laarhoven, 2017; Zhang et al., 2019). On
MNIST, we fix the initial learning rate to 0.1. On SVHN and CIFAR10, we additionally experimented
with an initial learning rate of 0.3 and 0.5 and include these in our hyper-parameter grid. The learning
rate is annealed following the cosine learning rate annealing proposed in (Loshchilov & Hutter, 2017).

Regularization. The hyper-parameter grid is constructed as follows: weight decay on γ is varied in
{1e−3, 5e−4, 1e−4}. For Jacobian regularization (Hoffman et al., 2019), the weighting of the regular-
ization term is varied in {1e−3, 0.05, 0.01, 0.1}. For DeCov (Cogswell et al., 2016), VR and cw-CR/VR
(Choi & Rhee, 2019), weighting of the regularization term is varied in {1e−4, 1e−3, 0.01, 0.1}. All
these different choices are evaluated over 10 cross-validation runs with exactly the same training/testing
split configuration.

Topological regularization. To evaluate the sub-batch construction in combination with our proposed
topological regularizer, the initial learning rate on MNIST is fixed to 0.1 and 0.5 for SVHN and
CIFAR10. With topological regularization enabled, this always produced stable results. Importantly,
weight decay for γ is fixed to to 0.001, except for the CIFAR10-1k experiment, where we set it to
5e−4. The lowest achievable error is thus only selected by varying β in [0.1, 1.9].

To obtain the last row of Table 1, we no longer sweep over β, but select β via cross-validation over
held-out validation sets of size 250 on SVHN and MNIST, and 500/1,000 on CIFAR10, respectively.

The full, PyTorch-compatible, source code will be made publicly available at https://github.
com/c-hofer/topologically_densified_distributions.

https://github.com/c-hofer/topologically_densified_distributions
https://github.com/c-hofer/topologically_densified_distributions

