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Abstract
We propose a novel gradient-based tractable ap-
proach for the Blahut-Arimoto (BA) algorithm to
compute the rate-distortion function where the BA
algorithm is fully parameterized. This results in a
rich and flexible framework to learn a new class of
stochastic encoders, termed PArameterized RAte-
DIstortion Stochastic Encoder (PARADISE). The
framework can be applied to a wide range of set-
tings from semi-supervised, multi-task to super-
vised and robust learning. We show that the train-
ing objective of PARADISE can be seen as a form
of regularization that helps improve generaliza-
tion. With an emphasis on robust learning we
further develop a novel posterior matching objec-
tive to encourage smoothness on the loss function
and show that PARADISE can significantly im-
prove interpretability as well as robustness to ad-
versarial attacks on the CIFAR-10 and ImageNet
datasets. In particular, on the CIFAR-10 dataset,
our model reduces standard and adversarial er-
ror rates in comparison to the state-of-the-art by
50% and 41%, respectively without the expensive
computational cost of adversarial training.

1. Introduction
The main objective of representation learning is to learn
good representation that can be used for downstream tasks.
From this standpoint, rate-distortion theory offers an attrac-
tive approach for representation learning where the good-
ness of a representation can be measured by an appropri-
ately defined distortion function. Rate distortion theory
is however often applied in machine learning in the form
of the Information Bottleneck (IB) method (Tishby et al.,
2000), which measures goodness of a representation by the
mutual information with a relevance variable. Given the
input random variable X and a relevance random variable

1Department of DSAI, Faculty of Information Technology,
Monash University, Australia. Correspondence to: Quan Hoang
<qhoang.ai@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Y , the objective is to compress X into a representation
Z that captures as much information about Y as possible
while retaining as little information about X as possible.
Mathematically speaking, the IB objective finds the optimal
encoding q (z|x) by minimizing the functional:

L [q (z|x)] = I (Z;X)− βI (Z;Y ) (1)

where β is the Lagrange multiplier. Unfortunately, the itera-
tive algorithm proposed in (Tishby et al., 2000) to optimize
the IB objective was intractable and therefore infeasible to
apply in practice. Recently, Alemi et al. (2016) proposed
Deep Variational Information Bottleneck (DVIB), a varia-
tional approximation to the IB objective by using variational
lower-bound and upper-bound of mutual information, and
claimed that DVIB improves robustness to adversarial at-
tacks. However, DVIB is just an instance of gradient obfus-
cation (Athalye et al., 2018) as latter shown in Sec. 3.3, thus
giving a false sense of robustness. Furthermore, by defining
“goodness” of the representation as the mutual information
with another variable, the Information Bottleneck method
significantly limits the flexibility and potential applications
of the rate distortion theory.

In this paper, we revisit the Blahut-Arimoto algorithm
(Blahut, 1972; Arimoto, 1972) and make a simple mod-
ification to make it feasible to numerically compute the
rate-distortion function with gradient-based optimization.
The result is an elegant and flexible framework for repre-
sentation learning that can be applied to a wide range of
settings from unsupervised, semi-supervised, multi-task to
supervised and robust learning. The key component in our
framework is a parameterized stochastic encoder that we
term PArameterized RAte-DIstortion Stochastic Encoder or
PARADISE. We investigate the behavior of the algorithm
on the MNIST (LeCun et al., 1998) and CelebA (Liu et al.,
2015) datasets. For supervised learning, we demonstrate
that the derived objective can be seen as a form of regulariza-
tion that helps improve generalization. For robust learning,
we show that introducing inductive bias to the learning of
PARADISE can significantly improve interpretability as
well as robustness to adversarial attacks on the Cifar-10
(Krizhevsky et al., 2009) and ImageNet (Russakovsky et al.,
2015) datasets. In particular, on the CIFAR-10 data set,
our model reduces standard and adversarial error rates in
comparison to the state-of-the-art (Qin et al., 2019) by 50%
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and 41%, respectively without the expensive computational
cost of adversarial training.

In short, our main contributions are: (i) a novel gradient-
based tractable approach for the Blahut-Arimoto (BA) al-
gorithm to compute the rate-distortion function where the
BA algorithm is fully parameterized; (ii) a new class of
stochastic encoders, termed PArameterized RAte- DIstor-
tion Stochastic Encoder (PARADISE), that can be applied
to a wide range of settings from semi-supervised, multi-task
to supervised and robust learning; (iii) a novel posterior
matching objective for robust learning; (iv) a comprehen-
sive evaluation of PARADISE for supervised and robust
learning; and (v) a new state-of-the-art result for adversarial
accuracy against untargeted white-box attack for Cifar-10,
reducing state-of-the-art adversarial errors by 41%.

2. Theoretical Framework
Rate distortion. We start with some key results in rate-
distortion theory used in this work.1 This theory was de-
veloped by (Shannon, 1948) in the context of transmitting
information over noisy channels. Given an input (message)
sequence xn = (x1,x2, ...,xn) where xi is drawn i.i.d.
from a source distribution p (x), x ∈ X , a communication
channel receives the input sequence and outputs a sequence
zn = (z1, z2, ..., zn), zi ∈ Z. The sequence zn is com-
monly referred to as the codeword, reconstruction or repre-
sentation. In this work, we call zn representation sequence
and each element zi representation to avoid confusion. To
measure the quality of the output representation, a distortion
measure (or function) is defined as a mapping from the set
of input-representation pairs to the set of non-negative real
numbers:

d : X × Z → R+

Given the distortion measure d(x, z), the distortion between
sequences xn and zn is:

d (xn, zn) =
1

n

n∑
i=1

d (xi, zi)

The rate-distortion function R (D) is a mapping from the
distortion budget D to the minimum rate of the communica-
tion channel for which the expected distortion stays within
the budget as n goes to infinity. Rate can be interpreted as
the average number of bits per representation required to
specify each representation sequence without confusion. An
important result in rate-distortion theory is that for bounded
distortion function d (x, z), the rate-distortion function is
equal to the information rate-distortion function R(I) (D)2:

R(I) (D) = min
p(z|x):

∑
(x,z) p(x)p(z|x)d(x,z)≤D

I (X;Z) (2)

1Interested readers are encouraged to find more details in
(Cover & Thomas, 2012)(ch 10).

2For the sake of simplicity, we slightly abuse the symbol
∑

to
denote the integration for both continuous and discrete cases.

where the minimization is over all conditional distribution
p (z | x) for which the expected distortion over the joint
distribution p (x, z) = p (x) p (z | x) stays within the dis-
tortion budget D. For the rest of the paper, we will use
R (D) to denote both the canonical and information rate
distortion function.

There is nice intuition as to why the average number of
bits per transmission required is the mutual information
I (X;Z). The conditional distribution p (z | x) induces a
soft partitioning of X . The average volume of the elements
of X mapped to the same representation is 2H(X|Z) where
H (X | Z) is the conditional entropy of X given Z. Since
the volume of X is 2H(X), the average cardinality of the
partitioning of X is 2H(X)/2H(X|Z) = 2I(X;Z).

To compute the rate-distortion function, the Blahut-Arimoto
algorithm (Blahut, 1972; Arimoto, 1972) makes use of the
following lemma:

Lemma 1. Let p (x, z) = p (x) p (z | x) be a
given joint distribution. The distribution q? (z)
that minimizes the Kullback-Leibler (KL) divergence
KL [p (x, z) ‖ p (x) q (z)] is the marginal distribution p (z)
corresponding to p (z | x):

q?(z) = argmin
q(z)

KL [p (x, z) ‖ p (x) q (z)] = p (z)

where p (z) =
∑

x p (x) p (z | x).

Proof. See Sec. 1 of the supplementary material.

Lemma 1 turns the problem of computing the rate-distortion
function in Eq. (2) into a double minimization problem:

R (D) = min
q(z)

min
p(z|x):Ed(x,z)≤D

∑
x,z

p (x, z) log
p (x, z)

p (x) q (z)

By introducing the Lagrange multiplier β for the distortion
constraint, computing the rate-distortion function becomes
minimizing the following functional:

F [p (z | x) , q (z)] =
∑
x,z

p (x) p (z | x) log p (x) p (z | x)
p (x) q (z)

+ β
∑
x,z

p (x) p (z | x) d (x, z) (3)

The Blahut-Arimoto algorithm applies the process of alter-
nating minimization: for a fixed conditional distribution
pt (z | x), the optimal distribution qt (z), by Lemma 1, is
the marginal distribution pt (z) =

∑
x p (x) p

t (z | x); for
a fixed qt (z), the optimal distribution pt+1 (z | x) can be
found analytically as3:

3For self-completeless, see Lemma 2 and the proof in the sup-
plementary material.
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pt+1 (z | x) = qt (z) exp (−βd (x, z))∑
z q

t (z) exp (−βd (x, z))
(4)

The algorithm results in a non-increasing sequence
F
(
p0, q0

)
≥ F

(
p1, q0

)
≥ F

(
p1, q1

)
≥ ... and strictly

decreasing unless reaching the limit point

p? (z | x) = p? (z) exp (−βd (x, z))∑
z p

? (z) exp (−βd (x, z))

Parameterised Rate Distortion. Theorem 6 in (Blahut,
1972) shows that this limit point satisfies the necessary
and sufficient conditions to achieve the equality in Eq. (2).
However, computing the analytical solution in Eq. (4) is
intractable in practice. Therefore, we introduce a relax-
ation to the Blahut-Arimoto algorithm where rather than
trying to find the optimal, but intractable, pt+1 (z | x) in
Eq (4), we seek for the next tractable pt+1 (z | x) such that
F (pt, qt) ≥ F

(
pt+1, qt

)
by taking a gradient step in the

direction of p(z | x). With suitable choice of learning rate,
this still results in a bounded and non-increasing sequence
F (p, q) and converges to the optimal solution.

To realize this solution, we rewrite the functional objective
F over p(z | x) and q(z) in Eq. (3) with a single θ which
parameterizes the conditional distribution pθ (z | x) and at-
tains the optimal q∗θ(z) =

∑
x pθ (z | x) p(x). This results

in a new parameterized objective w.r.t θ:

L (θ) =
∑
x,z

p (x) pθ (z | x) d (x, z)

+ α
∑
x,z

p (x) pθ (z | x) log
p (x) pθ (z | x)
p (x) q∗θ(z)

(5)

where q∗θ(z) =
∑

x p (x) pθ (z | x) is the optimal ag-
gregate posterior solution. We can now learn θ as fol-
lows.4 At time t, the current solution θt parameterizes
the conditional distribution pt (z | x) and we take one gra-
dient step of L (θ) to obtain pθt+1 (z | x) where qt(z) =
StopGradient [

∑
x p (x) pθt (z | x)] is fixed. Here, we use

the notation StopGradient [·] to emphasize that qt (z) ←
pt (z) =

∑
x p (x) pθt (z | x), and we keep qt (z) constant

when updating pt+1 (z | x) in a similar spirit to the BA
algorithm.

The second term in Eq. (5) represents the mutual informa-
tion and in alignment with rate-distortion theory we name it
rate and denote byR (θ). For convenience, the objective in
Eq. (5) applies the weight α to the rate term instead of β to
the distortion term. Assuming the function family pθ (z | x)
is rich, optimizing Eq. (5) can learn the parameterized en-
coder pθ? (z | x) that well approximates the rate-distortion
function in Eq (2). Therefore, we name it PArameterized
RAte-DIstortion Stochastic Encoder (PARADISE).

4Please see the algorithm pseudo codes in the supplementary
material for additional details.

In the context of deep learning, the distortion function is
rarely fixed but desirable to be learned. For example, d (x, z)
can be the mean squared error between x the reconstruc-
tion x̂ of x from z using a decoder; or d (x, z) can be the
cross entropy loss of a softmax classifier using z to predict
the label y associated with x. If the distortion measure is
parameterized by dφ (x, z), the parameter θ and φ can be
learned through joint optimization similar to the EM pro-
cedure. Further decomposing the rate R (θ) results in the
following joint objective function:

L (θ, φ) = Epθ(x,z)dφ (x, z)

− α
∑
x

p (x)H [pθ (z | x)]

− α
∑
x

p (x)
∑
z

pθ (z | x) log q∗θ(z) (6)

where H (·) is the differential entropy. We call the first term
in Eq. (6) the expected distortion and denote it as D (θ, φ).
The objective L (θ, φ) minimizes the expected distortion
while maximizing entropy and encouraging the encoder
pθ (z | x) to map x to the representation z of high score
log q∗θ(z).

The entropy term in L (θ, φ) can be analytically computed
for certain parameterization choices of pθ (z | x) while the
score term is more challenging. If the search space of the
marginal q (z) is limited to a prior distribution such as the
standard Gaussian distribution N (0, I) , the rateR (θ) be-
comes

∑
x p (x)KL (pθ (z | x) ‖ q (z)), which is exactly

the regularization term used in β-VAE (Higgins et al., 2017)
and DVIB (Alemi et al., 2016). Alternatively, we can
avoid using a fixed prior q (z) by approximating the score
log q∗θ(z) using Mini-batch Weighted Sampling (MWS) pro-
posed in (Chen et al., 2018) (see the supplementary material
for details). For a batch size of B and the dimensionality of
D for the representation z, the time complexity of approxi-
mating the score is O

(
B2D

)
. This cost is small compared

to the total cost of the forward and backpropagation passes,
especially when the network architecture is deep and wide.

Intuitively, the encoder pθ (z | x), when parameterized as
diagonal Gaussian, maps each x to an ellipse. The entropy
term in the objective L (θ, φ) (Eq. 6) encourages the ellipses
to be as big as possible while the score term pulls the ellipses
together. In the mean time, the encoder pθ (z | x) must
satisfy the distortion constraint. This can be achieved when
points x(s) that are, as implied by the distortion measure,
similar are mapped to close neighborhoods in the z-space.

Posterior matching for robust learning. In practical de-
ployment, the encoder pθ (z | x) often has to deal with “out-
of-distribution” inputs. Recall that pθ (z | x) induces a soft
partitioning of X , and rate minimization is intuitively equiv-
alent to minimizing the cardinality of the partitioning. For
some tasks, we may have prior knowledge of what an effi-
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cient partitioning should be. For example, one might expect
that images that are pixel-wise close to each other should be
mapped to similar representation because human are invari-
ant to tiny changes in pixel values. Let S (x) be a sampling
process that draws data points that are considered similar
to x based on our prior knowledge. We can introduce in-
ductive bias to the rate minimization procedure by adding a
posterior matching (PM) term:

PM (θ,S) = Ep(x)Ex′,x′′ iid∼S(x)
D (pθ (z | x′) , pθ (z | x′′))

where D (·, ·) is a discrepancy measure between the pos-
teriors. Overall, the robust learning objective function for
PARADISE with posterior matching (PARADISE-PM) is:

LPM (θ, φ) = D (θ, φ) + αR (θ) + γPM (θ,S) (7)

There are two main considerations when applying this frame-
work. Firstly, an appropriate distortion measure needs to be
chosen according to the downstream tasks. Rate-distortion
theory requires the distortion function to be bounded, but we
empirically we found that this condition can be relaxed, es-
pecially when the distortion function is also jointly learned.
Therefore, users have great flexibility in defining the dis-
tortion measure. Sec. 3.1 will demonstrate how different
distortion measures result in different representation. An
interesting scenario is when an encoder is trained using mul-
tiple distortion functions, which can be useful for multi-task
learning or semi-supervised learning. Fully investigating
this direction is, however, out of scope of this paper and left
for future work. Sec. 3 instead focuses on applications of
the proposed framework to supervised and robust learning.

The second consideration is the inductive biases to be in-
cluded in the learning. The sampling process S (x) can be
designed depending on the task and the prior knowledge.
For example, when x is an image, S (x) can be defined
using appropriate transformations such as cropping, rota-
tion or pixel perturbations. Sec. 3.3 will demonstrate that
introducing such inductive bias can significantly improve
the learned model’s robustness to adversarial attacks.

3. Experimental Results
We demonstrate several aspects of our proposed model in
Sec. 3.1. Then, we report the results on supervised learning
setting in Sec. 3.2. Our major results on robust learning are
presented in Sec. 3.3. And finally, for additional details and
to encourage reproducibility, the supplementary material
contains more extensive information on the experiments as
well as additional results. We will also release our source
codes in public domain.

3.1. Model Behavior

Here, we conduct experiments to investigate the behaviors
of the proposed algorithm. We first describe how we ap-
ply PARADISE to the supervised and unsupervised setting

in our experiment. Recall that the objective function of
PARADISE is:

L (θ, φ) = D (θ, φ) + αR (θ) (8)

where R (θ) is the rate defined in Sec. 2 and D (θ, φ) =
Epθ(x,z)dφ (x, z) is the expected distortion. For the un-
supervised setting, we define dφ (x, z) = ‖x− gφ (z)‖22
or the reconstruction error of x using a decoder gφ.
When x comes with a label y ∈ [1, C], we define
dφ (x, z) = − log pφ (y | z) where pφ (y | z) is the con-
ditional probability corresponding to a softmax classifier
cφ. We parameterize p (z | x) as a Gaussian distribution
N
(
µθ (x) , diag

(
σ2
θ (x)

))
with µθ and σθ being the Neu-

ral Network with parameter θ. Both θ and φ are learned
jointly using gradient descent and the reparameterization
trick similar to VAE (Kingma & Welling, 2013). Pseudo-
code of the learning algorithms are described in Sec. 1.6 of
the supplementary material.

We conduct experiment on MNIST both in both supervised
and unsupervised settings to see the impact of the distortion
function and the parameter α. For ease of visualization, the
dimensionality of z is set to 2. Details about the architecture
and hyperparameters are in Sec. 2 of the supplementary
material. Fig. 1 plots the posterior pθ (z | x) as Gaussian
ellipse representing the 95% confidence region for 2, 000
images from the test set. We observe that z must retain
adequate information about x to reconstruct well. Therefore,
a smaller value of α is necessary, and the size of the learned
posteriors as well as the level of overlapping among them
is much less for the unsupervised setting. The impact of α
is observed in both settings, with higher value of α leading
to larger ellipses, greater level of overlapping and higher
distortion loss. In both cases, harder examples are mapped
to smaller posteriors near the center. Finally, when the
distortion is based on class label, the posteriors form clusters
well separated by color. In the unsupervised case, however,
there is significant level of overlapping among class 3, 5,
and 8, and between 4 and 9. This reflects the fact that these
numbers, often having large blocks of similar pixel values,
are considered similar when the distortion is based on the
mean squared error (MSE) of reconstruction.

To further investigate the latent space of PARADISE in
a more complicated data set, we train PARADISE on the
CelebA data set using MSE as the distortion measure. Due
to limited space, details about the architecture, hyperparam-
eters and visualization are presented in Sec. 2 and 3 of the
supplementary material. After training PARADISE, we fit a
multivariate Gaussian distribution to the aggregate posterior
of the unseen samples. Then, random z(s) are sampled to
generate face images, from which a series of reconstructions
are made. The idea is to explore what each neighborhood of
z represents. Fig. 2 shows this serial reconstructions result
in images of similar-looking faces with transformations such
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Figure 1: Visualization of the posterior p (z | x) as Gaussian
ellipse representing the 95% confidence region for 2, 000
images from the test set. Top: unsupervised setting where
the objective is to reconstruct x; bottom: supervised setting
where the objective is to predict the class associated with x.

as smile, orientation, pose, face shape, eyeglasses, gender,
beard and hair style. Interestingly, we also observe lineariza-
tion of these semantic transformations. For example, Fig. 3
shows that adding the difference between the z-vector of
a smiling face and that of a neutral face to the z-vector of
another person’s neutral face generates the smiling face of
that person.

3.2. Supervised Learning

For the experiments in this and the next subsection, we apply
the framework for supervised setting as described in the
experiment on MNIST in Sec. 3.1. We conduct experiment
on the Cifar-10 data set using the pre-activation ResNet (He
et al., 2016b) with different number of layers, including 20,
32, 56 and 110 (He et al., 2016a). For the ImageNet data set,
we try only the pre-activation ResNet with 34 layers, due to
limited computational resources. For all settings, we train
models using 10 random seeds and take the average test
accuracy, except for ImageNet due to limited resources. For
Cifar-10, PARADISE consistently improve test accuracy
about 0.3% across architectures (see Tab. 1). On ImageNet,
however, top-1 and top-5 accuracy drops about 0.8% and
0.5%, respectively (see Tab. 2). We make a mild conclusion
that the rate R (θ) acts as a regularizer that can be useful
in certain settings but did not help for ImageNet where the
base ResNet-34 model shows little sign of overfitting.

Figure 2: CelebA image generation. Images in column 1
are generated from random noise. Images in columns 2
to 5 are successive reconstructions of the previous column.
In each rows, one can observe similar-looking faces with
transformations such as smile, face orientation and shape,
gender and hairstyle.

Figure 3: Examples of semantic transformation represented
by linear operation in the latent space. In each sub-figure,
the difference between the z-vector corresponding to the
images on the right and left in the first row is added to the
left images of the other rows to generate the right images.
The captions describe the transformation observed.

(a) Smile. (b) Gender, Beard.



Parameterized Rate-Distortion-based Stochastic Encoder

Table 1: Test accuracy (in %) on Cifar-10. To compute
test accuracy, we take the average results of models trained
using 10 different random seeds.

RN-20 RN-32 RN-56 RN-110
Standard 91.20 92.16 92.81 93.22

PARADISE 91.56 92.51 92.95 93.48

Table 2: Test accuracy (in %) on ImageNet.

Top-1 Top-5
Standard 72.54 90.73

PARADISE 71.73 90.27

3.3. Robust Learning

The main focus of this section is on improving robustness to
adversarial examples, which are carefully perturbed samples
that cause AI models to misclassify although the perturba-
tion is not perceptible to humans. The perturbation can be
any kind of transformation such as changing pixel value,
translating or rotating images. It is challenging to mathemat-
ically define perceptibility of perturbation to humans. Most
research so far has focused on attacks within a neighbor-
hood of the data point B (x, ε) = {x′ : ‖x′ − x‖∞ ≤ ε}.
Attacks can be targeted, e.g. causing the model to predict a
random target class, or untargeted, e.g. simply causing the
model to misclassify. In terms of method, attacks can be
white-box, where the attacker has full access to the model
architecture and parameters, or black-box, which does not
have such information and often exploits tranferability of
white-box attacks (Liu et al., 2016; Tramèr et al., 2017b).

Alemi et al. (2016) claims that Deep Variational Information
Bottleneck can improve adversarial robustness. However,
the DVIB was evaluated only on white-box attacks. Our
investigation (Sec. 3.3, supplementary material) shows that
the DVIB model trained on Cifar-10 achieves significantly
lower accuracy on black-box attacks than on the white-box
FGSM attacks (Goodfellow et al., 2014), a sign of gradient
obfuscation (Athalye et al., 2018). The issue is more serious
with the higher value of α (equivalent to the β parameter
in (Alemi et al., 2016)). Under stronger attacks, DVIB’s
adversarial accuracy degrades to 0.00% as shown in Tab. 3.

We argue that an inductive bias must be introduced to
the learning for the encoder pθ (z | x) to handle out-of-
distribution inputs well. Therefore, we investigate PAR-
ADISE with posterior matching (PARADISE-PM). The ro-
bust learning objective from Sec. 2 is:

LPM (θ, φ) = D (θ, φ) + αR (θ) + γPM (θ,S) (9)

where S (x) is a sampling process to sample points x′ that is
similar to x based on our prior knowledge, and PM (θ,S)

is the posterior matching objective:

PM (θ,S) = Ep(x)Ex′,x′′ iid∼S(x)
D (pθ (z | x′) , pθ (z | x′′))

where D (·, ·) is a discrepancy measure such as the Frechet
distance (Dowson & Landau, 1982). We, however, found
a simple discrepancy measure based on L1 is effective in
practice. The sampling process S (x) can be flexibly defined
using appropriate transformations such as cropping, rotation
or pixel perturbations. In this work, we consider only pixel
perturbations. Details about the discrepancy measure and
S (x) are described in Sec. 1 of the supplementary material.

The PM objective resembles the idea of logit matching pro-
posed in (Kannan et al., 2018), which has been shown to
learn a bumpier, depressed loss landscape that make it harder
to attack but is still highly vulnerable (Engstrom et al., 2018).
Our visual investigation, presented later, however shows that
PARDADISE-PM has a smooth and highly linear loss sur-
face. In addition, we emphasize that although PARADISE
is stochastic, we make the model deterministic at inference
time by feeding forward the mean of pθ (z | x) to the classi-
fier, thus eliminating the possibility of gradient obfuscation
due to the sampling operation.

For Cifar-10, we use the base wide ResNet WRN-28-10
architecture (Zagoruyko & Komodakis, 2016). To evaluate
adversarial robustness, we craft strong untargeted and multi-
targeted attacks (Gowal et al., 2019) following (Qin et al.,
2019). Experiment details are presented in Sec. 2 of the sup-
plementary material. We train DVIB and PARADISE with
posterior matching and compare with the state-of-the-art
baselines collected from (Qin et al., 2019), including ADV
(Madry et al., 2017), TRADES (Zhang et al., 2019b) and
LLR (Qin et al., 2019). It should be noted that these base-
lines are trained with 10-step PGD adversarial examples,
thus costing about 11× training time of a standard model.
Our method only requires doubling the batch size for poste-
rior matching. Tab. 3 compares the adversarial accuracy on
Cifar-10 under the two attacks with the perturbation size ε of
8/255. It can be observed that the PM objective significantly
improves robustness of DVIB from 0.00% to 70.71%. Both
DVIB-PM and PARADISE-PM outperform the baselines by
a huge margin, reducing over 41% adversarial errors. Com-
pared to DVIB-PM, PARADISE-PM achieves about 0.5%
higher adversarial accuracy. Furthermore, both DVIB-PM
and PARADISE-PM reduce about 50% errors on natural
images in comparison to the baselines. Some recent work
posits that there is a natural trade-off between standard accu-
racy and robustness to adversarial examples (Tsipras et al.,
2018; Zhang et al., 2019b; Ilyas et al., 2019). Our result
confirms this position but suggests that robustness can be
achieved with a much smaller drop in standard accuracy.

To evaluate our proposed method on large-scale problems,
we conduct experiment on the ImageNet data set. Defense
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Table 3: Adversarial accuracy in (%) on Cifar-10 for per-
turbation size of 8/255. Baselines include ADV (Madry
et al., 2017), TRADES (Zhang et al., 2019b), LLR (Qin
et al., 2019) and DVIB (Alemi et al., 2016).

Natural Untargeted Multi-Targeted
ADV 85.11 53.96 48.79
TRADES 87.40 50.46 49.48
LLR 86.83 52.99 51.13
DVIB 95.72 0.00 0.00
DVIB-PM 93.53 71.54 70.71
PARADISE-PM 93.77 72.04 71.17

Table 4: Top-1 accuracy (in %) on white-box attacks crafted
on 2,000 ImageNet validation images using 200 PGD steps.
DENOISE refers to the ResNet 152 with denoising blocks
trained with 30-step PGD attacks in Xie et al. (2019).

Model Natural ε = 2 ε = 4 ε = 16
ResNet34 72.54 0.00 0.00 0.00
DENOISE 69.70 − 38.90 7.50
PARADISE-PM 61.57 34.90 16.80 0.60

methods have so far been shown to be unsuccessful on Im-
ageNet. PGD training often incurs a significant drop in
accuracy, e.g. 15% to 30% depending on the perturbation
size used during training while adding enormous compu-
tation burden and achieving limited success. For example,
Xie et al. (2019) trains a variant of ResNet-152 against
30-step PGD attacks using 128 GPUs with batch size of
4,096 and achieves the top-1 accuracy of just 7.5% on untar-
geted attacks with ε = 16/255 (Qin et al., 2019). Even for
ε = 2/255, Uesato et al. (2018) broke three defense meth-
ods, degrading top-1 accuracy on untargeted attacks below
1%. In this work, we simply train a humble ResNet-34, as
allowed by available resources, to evaluate the potential of
the proposed method.

We did not manage to train DVIB-PM on ImageNet despite
trying various values of α and γ so we only report the results
for PARADISE-PM. Tab. 4 shows top-1 accuracy on white-
box attacks for different perturbation sizes. PARADISE-
PM significantly improves top-1 accuracy for ε = 2, 4
from 0% of the base model to 34.90% and 16.80%, re-
spectively. However, the top-1 accuracy degrades to 0.60%
for ε = 16/255. Although not comparable, results for
the ResNet-152 with denoising blocks trained with 30-step
PGD adversarial examples in (Xie et al., 2019) is included
in Tab. 4 for reference.

Why did not PARADISE-PM repeat its success on Ima-
geNet? Model capacity is a possible reason. Fig. 4 plots
train cross entropy (in red) and PM loss (in blue) over
epochs. The PM loss on ImageNet did not decrease during
the training and is more than 10 times higher than that on

Figure 4: Train cross entropy (red) and posterior matching
loss (blue) over epochs. Posterior matching loss is multi-
plied by 1, 000 for visibility.

(a) Cifar-10 (b) ImageNet

Table 5: Top-1 black-box accuracy (in %) on 2,000 Ima-
geNet validation images for different perturbation size ε.

Model ε = 2 ε = 4 ε = 8 ε = 16
Standard 51.95 41.15 31.95 23.45
PARADISE-PM 60.85 60.35 59.05 49.20

Cifar-10. In our experiment, we observe that low PM loss
is highly indicative of adversarial robustness. On Cifar-10,
70% of the reduction in the PM loss occurs after epoch 96
when the train cross entropy approaches zero, and train accu-
racy reaches almost 100%. The ImageNet model, however,
incurs high cross entropy loss throughout the training. Previ-
ous work showed that model capacity plays a crucial role for
adversarial robustness (Kurakin et al., 2016; Madry et al.,
2017). We hypothesize that PARADISE-PM would perform
much better when applied to a more powerful architecture.

PARADISE-PM is much more robust to black-box attacks.
We use attacks from (Goodfellow et al., 2014; Kurakin et al.,
2016; Madry et al., 2017; Tramèr et al., 2017a), including
FGSM, R+FGSM, Step-Rand, Iter-Rand, and PGD-Rand,
to craft adversarial examples and report the min accuracy.
Tab. 5 shows the accuracy on black-box attacks for differ-
ent perturbation sizes. For ε = 16/255, PARADISE-PM
improves the standard model’s black-box accuracy from
23.45% to 49.20%, which is just about 12% drop from
PARADISE-PM’s accuracy on natural images.

PARADISE-PM’s robustness can be explained by Fig. 5,
which visualizes the loss surface and decision boundary of
PARADISE-PM and the standard model when moving an
input image along the signed gradient (adversarial) direc-
tion and another random Rademacher vector orthogonal to
the signed gradient. The loss surface of PARADISE-PM
is much smoother than that of the standard model. Along
the random orthogonal direction, the loss is virtually con-
stant, and the class prediction does not change. The standard
model however shows bumpy loss surface and changes pre-
diction decision even along the random direction. More
examples presented in Sec. 3 of the supplementary mate-
rial shows the same pattern that PARADISE-PM is virtu-
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Table 6: Attacker success rate (in %, lower is better) on
2,000 ImageNet validation images.

Model ε = 2 ε = 4 ε = 8 ε = 16
Standard 95.35 99.20 99.95 100
PARADISE-PM 0.30 3.55 41.20 90.45

Figure 5: Comparison of the loss surface and decision
boundary of PARADISE-PM and the standard model.
Top: loss plots generated by moving the input along the
signed gradient (adversarial) direction and another random
Rademacher vector orthogonal to the signed gradient. Bot-
tom: the corresponding decision boundary; green represents
the ground-truth class.

ally constant along random directions, highly linear along
the adversarial direction, and has a much simpler decision
boundary. Previous work observed that gradients of differ-
ent models w.r.t the same input are orthogonal (Liu et al.,
2016). Our investigation (Sec. 3, supplementary material)
confirms this observation. Therefore, it is not surprising
that PARADISE-PM, being virtually constant along random
orthogonal directions, is robust to black-box attacks.

PARADISE-PM’s simpler decision boundary also makes
it harder for targeted attacks on PARADISE-PM. Tab. 6
reports the attacker success rate - the percentage of times
an attacker successfully causes the model to predict a target
class. Lower success rate is better. The success rate on
the standard model reaches 95.35% for ε = 2 and exceeds
99% for ε = 4. The success rate on PARADISE-PM is
only 3.55% for ε = 4. PARADISE-PM is still vulnerable to
targeted attacks for ε = 16, but Fig. 6 shows that the attack
on PARADISE-PM significantly changes the image of the
baby to make him look like a leopard while the targeted
attack on the standard model makes little change.

Overall, PARADISE-PM significantly improves adversar-
ial robustness to black-box and targeted attacks but is still
vulnerable to white-box attacks. Increasing model capacity
as well as introducing adversarial examples during training

Figure 6: Comparison of successful targeted attacks (ε =
16/255). Left: the original input; middle: the attack on the
standard model; right: the attack on PARADISE-PM. More
examples are shown in Sec. 3 of the supplementary material.

Figure 7: Visualization of the loss gradient w.r.t. input pixels.
The gradients are clipped within ±3 standard deviations of
their mean and rescale to the range [0, 1] and visualized in
RGB mode.

might help optimize the PM loss better. Moreover, some re-
cent work has focused on improving speed while achieving
similar performance to PGD-adversarial training (Shafahi
et al., 2019; Zhang et al., 2019a; Qin et al., 2019). In par-
ticular, Qin et al. (2019) introduces a regularization term to
encourage the loss surface more linear and smooth around
data points so that the inner maximization takes fewer steps
to find hard adversarial examples, thus achieving a 5× speed
up for adversarial training on ImageNet. The visual inves-
tigation in this section shows that the loss surface of the
PARADISE-PM is smooth and highly linear around the data
points. Therefore, it can significantly improve efficiency of
adversarial training, and combining the two approaches is a
promising direction.

Lastly, Fig. 7 visualizes the loss gradient w.r.t to the input
pixels to help investigate the input features that strongly
affect the model’s prediction. We observe that PARADISE-
PM attention is significantly more aligned with human while
the standard model’s gradients look noisy and exhibit no
coherent patterns. Similar behavior has been observed in
PGD-trained models (Tsipras et al., 2018). More examples
are presented in Sec. 3 of the supplementary material.

4. Related Work
Our work is closely related to the Information Bottleneck
method (Tishby et al., 2000) which measures goodness of a
representation through mutual information with another vari-
able. We, however, define goodness of a representation in a
more straightforward manner by using a distortion function
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that directly evaluates the performance on downstream tasks.
Furthermore, the algorithm proposed in (Tishby et al., 2000)
follows the iterative procedure of the Blahut -Arimoto algo-
rithm, which is infeasible to apply in practice. Our simple
yet nontrivial modification of the Blahut-Arimoto algorithm
makes it possible to compute the rate-distortion function
with gradient-based optimization.

Deep Variational Information Bottleneck (DVIB) (Alemi
et al., 2016) is a practical realization of the Information
Bottleneck method. Sec. 2 shows that the objective function
of DVIB can be recovered within our framework when the
the search space of the marginal q (z) is fixed. Alemi et al.
(2016) claims that DVIB can improve robustness to adver-
sarial attacks, but we show that DVIB is just an instance
of gradient obfuscation (Athalye et al., 2018). We further
demonstrate that introducing inductive bias to the learning
can tremendously improve its robustness.

Wang et al. (2009) proposes a rate-distortion approach for
semi-supervised learning by applying the information con-
straint objective to unlabeled data while computing distor-
tion loss on labeled data. A straightforward application
of the PARADISE framework to semi-supervised yields
a slightly different formulation where the distortion is de-
fined as the supervised loss approximated on the available
labeled data, while the rate-minimization objective is op-
timized on both labeled and unlabeled data. We can also
employ self-supervised objectives as the distortion measure.
Semi-supervised learning however is not the focus of the
experiments in this work and left for future work.

In the Adversarial Machine Learning literature, many de-
fense methods have been proposed since the discovery of ad-
versarial example phenomenon (Biggio et al., 2013; Szegedy
et al., 2013) but Uesato et al. (2018); Athalye et al. (2018)
proved that most did not actually improve adversarial robust-
ness. One of the few reliable defense methods is adversarial
training where a model is trained on adversarial examples
crafted during the training through a few projected-gradient
descent (PGD) steps of inner-maximization (Madry et al.,
2017). However, three major drawbacks of PGD adversarial
training are: i) using k inner-maximization steps adds ap-
proximately k times training time or requires a large number
of GPUs for training; ii) adversarial training often causes a
huge drop in standard accuracy; iii) PGD adversarial train-
ing still does not scale to ImageNet. PARADISE-PM adds
virtually no additional cost to standard training except for
doubling the batch size, experiences a much smaller drop
standard accuracy and has a smooth, highly linear loss sur-
face which may require fewer PGD steps to find good ad-
versarial examples. Therefore, combining PARADISE-PM
with adversarial training is a promising direction.

5. Discussion and Conclusion

We have presented an efficient and elegant framework for
representation learning based on rate-distortion theory with
extensive experimental evaluation to demonstrate its mer-
its. The resulting model is a new class stochastic encoders
whose key versatility lies in the great freedom in defining
the distortion function. A particular interesting scenario
is learning representation using multiple distortion func-
tions, which is directly relevant to multi-task learning and
semi-supervised learning. PARADISE might also extend
to multiple data sources by computing the rate-distortion
function for a product source (Shannon, 1959).

Under the PARADISE framework, one can introduce in-
ductive bias to explicitly influence the partitioning of the
input space. The idea of posterior matching is simple yet
extremely effective for adversarial robustness. Combining
PARADISE-PM with adversarial training is a promising di-
rection to tackle the Adversarial Machine Learning problem
at large scale.

In this work, we considered only robustness to pixel per-
turbation, but posterior matching can be applied to other
kinds of transformation. Furthermore, robustness is not
limited to adversarial attacks. Many AI systems today are
quite sensitive. For example, the text recognizer in an OCR
pipeline may output differently because of updates on the
text detector causing changes in the cropped inputs to the
text recognizer. The idea of posterior matching can help to
deal with such nuisance.
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