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We provide additional details to supplement the main paper.
We focus on some key proofs for self-completeness, details
on mini-batch weighted sampling scheme, our proposed
posterior matching objective, pseudo-codes, experimental
parameters and additional experimental results for repro-
ducibility.

1. Theoretical framework
1.1. Proof of Lemma 1.

Lemma 1. Let p(x,z2) = pXx)p(z|x) be a
given joint distribution. The distribution q* (z)
that minimizes the Kullback-Leibler (KL) divergence
KLIp(x,2) || p(x) q (z)] is the marginal distribution p (z)
corresponding to p (z | X):

argmin KL [p (x,2) || p(x) ¢ (2)] = p (2)
a(z)

where

p(z) =Y p(x)p(z]x)

X

Proof. Consider

= x,z)lo p(,z x,z)lo p(x,2
=2 pboa)los oy - ;p( 8 b (a)
p(x)p(2)

=2 pplel0los e
fzz:p( )lgq(z)
— KLIp(2) | 4(2)] = 0 M)

The inequality in 1 results from the non-negativity of the
KL divergence. O
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1.2. Proof of Equation 4.

Lemma 2. For a fixed distribution q(z), the opti-
mal distribution p* (z | x) that minimizes the functional
Flp(z]x),q(2)]:

Fiptax),a(] = S p(op (e )l TR
+ﬁ2p p(z|x)d(xz) @
p (Z | X) q( )exp (_Bd (X,Z)) 3)

>, 4(2z)exp (—pd (x,2))

Proof. Using the method of Lagrange multipliers, we set
up the functional:

Z X Z X) 10 ﬂ
| Zp | x)log = 5
+ﬂ2p p(z|x)d(x,z)

+Zl/(x) [Zp(zhc)l]

where the v (x) is the Lagrange multiplier to constrain
p(z | x) to be a conditional probability distribution. Tak-
ing the functional derivative of 7 (p (z | x)) with respect to
p(z | x), we have:

57 LN
Tl POy TPt
+ Bp (x)d (x,2z) + v (x)

Setting the functional derivative to 0, we have:

y (2]%) L]
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Since Y, p* (z | x) = 1 and note that
constant w.r.t. z, one must have:

q(z) exp (=pd (x,2))
2., 4(2) exp (=fd(x,2))

—1— () /p(x) is

P (2] %) =

1.3. Mini-batch Weighted Sampling (MWS)

In this part, we present Mini-batch Weighted Sampling
(MWS) introduced in (Chen et al., 2018). Given the empir-
ical dataset (x1,...,xx ), we identify each data point with
a unique integer index and define p (z | n) = p(z | x,),
p(z,n) = p(z|n)p(n) = p(z|n)y and p(z) =
27]:[:1P(Z | n)p(n). Let Byy = {n1,...,np} be a mini-
batch of M indices sampled i.i.d from the discrete uniform
distribution I/ {1, N'}. The probability of a sampled mini-
batch By is p (Bar) = (1/N)™. Let r (Bys | n) denote
the probability of a sampled mini-batch that consists of
a fixed element n and other elements sampled i.i.d from
U{1,N}. Then, r (By; | n) = (1/N)M ™', As the objec-
tive is to maximize IE, ) log p (z), we can approximate its
lower bound:

Ep(z) [logp ()]
:Ep(z,n) [log En’Np(”) [p(z | n/)H

B M
1
:Ep(z,n) logE (Bm [M Z p (Z | Nom, ]]
L m=1
B B M
p(By) 1
ZEp(z,n) IOg ET(BM\n) , (BM | n) M Z p (Z ‘ nm>
L L m=1
)
- _ ) M
=E,(z,n) |10g Er(By1n) NI Z p(z | nm)H (5)
L L m=1

The inequality 4 is because the support of r is a subset of
that of p. During training, Chen et al. (2018) approximates

E,(z) logp (z) from a mini-batch of samples {n1, ..., npr}:
| M M

By logp(a) ~ 22 > (108> p (s | ny) — log (VM)
i=1 j=1

(6)

where z; is sampled from p (z | n;). Empirically, we find
that the model is easier to train when dropping p (z; | n;)
from the summation in Eq. 6. Thus, we use the following
estimator:

M

Z log > p(z | ;) —

i=1 J#i

Ep(z) logp (z log (NM)

)

1.4. Posterior matching objective

Given  two diagonal Gaussian  distributions
N (u,diag (6?)) and N (i, diag (c'?)) on the d-
dimensional space RY, we employ the following
discrepancy measure:

ZO‘J“LJ l’[/J| + Z |10gUJ IOgJ | (3

j=1

(1 s — 1) )
a; = max P L Er—.
> k=t |k — 12|

The discrepancy in Eq. 8 consists of two terms penalizing
the mismatches between the means and variances of the
two distributions. For the means, the weight o;; adds more
penalty to the dimensions where the mismatches between
means of the two distributions are larger than average.

where

1.5. Input sampling for posterior matching

To sample the set of points x’ NS (x) that should be in
the same partitioning, we consider the following procedure.
First, a perturbation magnitude s is sampled from the uni-
form distribution U (0, m) where m is a predefined maxi-
mum value. Then, a noise u is sampled from the standard
Gaussian V (0, I). Finally, x’ is sampled as x + su. Sam-
pling the perturbation magnitude s ensures the diversity of
the distance between x’ and x. The maximum value m is
set to 12/255 for Cifar-10 and 16/255 for ImageNet.

1.6. Algorithms

The pseudo-code of learning PARADISE for the supervised
and unsupervised settings are described in Alg. 1 and Alg. 2,
respectively. To compute the mini-batch approximation
of rate, the differential entropy of the Gaussian posteriors
N (,uz-, diag (03)) is computed using the following formula:

D
B (O (i ding (22))) = 3 (527 4 4+ togo

=1
where D is the dimensionality of u; and o;. Let z; be

sampled from the Gaussian posteriors A (,ui, diag (03)) ,

MWS ({ (1, ai)}iﬂil) is approximated following Eq. (7)
as:

M
1 L N
i Zlog ZN (zi | fi;,diag (67))
i=1 i
where [i1; = StopGradient (1;), 6; = StopGradient (o)
and N (ZL | i1, diag (6 ( )) is the probability density:

exp[ 150 (mniﬁﬂ
[T (V2rej)

N (| iy dig (52)) =
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For the supervised setting, feeding forward the sampled
representation to the softmax classifier is computationally
cheap, so we set K = 12 in our experiments.

2. Experiment Details

We use TensorFlow version 1.12 to implement our exper-
iments and will release the code after publication. For all
experiments, we parameterize p (z | x) as a diagonal Gaus-
sian distribution N (g (x) , diag (o7 (x))) with pg (x) and
oy (x) being outputs of a neural network with parameter
0. Two separate linear layers are applied on the top layer
of the neural network to compute g (x) and o (x). Each
element of oy (x) is bound to (0, 1) by applying the sigmoid
function to the outputs of the linear operation. For super-
vised and robust learning experiments, we modify a standard
CNN architecture by adding two separate linear layers on
the top layer for the computation of pg (x) and oy (x). In
addition, the classifier is a softmax classifier with a linear
layer applied to z sampled from N (119 (x) , diag (o3 (x)))
to compute the logits to the softmax function. At infer-
ence time, pg (x) is fed to the softmax classifier instead of
sampling z from A" (g (x) , diag (03 (x))), which we find
leading to similar results.

MNIST For the experiment on MNIST (LeCun et al.,
1998), the encoder is a neural network with two fully-
connected layers of 1,000 hidden units using the ReLU
activation function. It takes the flatten input of 784 dimen-
sions and outputs two 2-dimensional vectors uy (x) and
09 (x). The decoder has a similar architecture but in re-
verse order. It takes as inputs the 2-dimensional vector z
sampled from N (pg (x) , diag (o3 (x))), and outputs the
reconstruction vector of 784-dimensions. We use Adam
(Kingma & Ba, 2014) optimizer with the learning rate of
0.0001, the first order momentum of 0.9 and the second-
order momentum of 0.999. The batch size is set to 128. The
number of iterations is set to 50,000.

CelebA For the experiment on CelebA (Liu et al., 2015),
the architectures of the encoder and decoder follow those
in (Chen et al., 2018) except that the number of dimen-
sions of z is 64. We find that adding constraint to the code
space makes it easier to generate images from random noise.
Therefore, we bound the value of 19 (x) to the range [—1, 1]
by applying the tanh function after the linear operation, and
bound oy (x) to the range [exp (—1),exp (1)] by apply-
ing the tanh function after the linear operation to compute
log (g (x)) . The mean absolute value is used instead of
mean square error as the distortion measure to get better
image reconstruction. We use Adam (Kingma & Ba, 2014)
optimizer with the learning rate of 0.0001, the first order mo-
mentum of 0.9 and the second-order momentum of 0.999.
The rate parameter «, the batch size and the number of

iterations is set to 0.0001, 128 and 100,000 respectively.

Cifar-10 and ImageNet For supervised learning, we con-
duct experiment on the Cifar-10 data set using the pre-
activation ResNet (He et al., 2016b) with different number
of layers, including 20, 32, 56 and 110 (He et al., 2016a).
The number of dimensions for z is 64. For robust learning
experiment, we apply use the base wide ResNet WRN-28-10
architecture (Zagoruyko & Komodakis, 2016) for Cifar-10
and the pre-activation ResNet with 34 layers for ImageNet
(He et al., 2016a). The number of dimensions of for z is
128 for WRN-28-10 on Cifar-10 and 512 for ResNet-34
on ImageNet. Data pre-processing, hyper-parameters and
learning schedule strictly follow those for standard model
(Zagoruyko & Komodakis, 2016; He et al., 2016a). For
ImageNet, however, we reduce learning rate by 10 times at
epoch 90 in addition to the reduction at epoch 30 and 60
as in (He et al., 2016b). To select the rate parameter «, an
heuristic is employed where starting with a value such as
0.001, we train a model for a few epochs to observe the rate
on the train and validation sets. We keep dividing a by 10
until there is no sign of overfitting on the rate. « is set to
0.0001 for Cifar-10 and 0.00001 for ImageNet.

For robust learning experiments, we train PARADISE-PM
and DVIB-PM on Cifar-10 with parameter search over a €
{le —4,1e — 5} and y € {10, 25,50}. The best ~y is 25 for
both models while the best v is 1e — 4 for PARADISE-PM
and le — 5 for DVIB-PM. On ImageNet, « is set to le — 5
for PARADISE-PM and + is searched over {50, 100,200} .
The best ~ is 100.

Adversarial attacks We evaluate adversarial robustness
using strong PGD-based untargeted attack, random targeted
attack and multi-targeted attack (Madry et al., 2017; Gowal
et al., 2019). We employ the loss function and optimization
settings for PGD attacks from (Qin et al., 2019). The loss
functions are summarized in Table 1. For attacks on Cifar-
10, we use Adam optimizer (Kingma & Ba, 2014) with
the update on the adversarial perturbation of the form § <+
Proje (6 + nAdam (Vsl (x + 4,y))) where Proj. (§) =
argmin ||§ — &|| . For multi-targeted attack, the learning

€€l oo <e
rate 7 is set to 0.1 and the number of steps is 200. For

untargeted and random-targeted attacks, we use the learning
rate schedule of 7 = 0.1 for the first 100 steps, then 0.01
for the next 50 steps and 0.001 for the last 50 steps. For
untargeted attack on each single image, we use 20 different
random initializations for perturbations to craft 20 attacks
and consider the attacks successful if any of them can cause
the model to predict incorrectly. For ImageNet, we craft
attacks on 2,000 random validation images, including 2
images for each class, and use only one random initialization
for the perturbation due to time constraint.
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Algorithm 1 Alternative training of using stochastic gradient descent.

for number of training iterations

* Sample a minibatch of M data-label pairs {(x;,y;)}

* Feed forward the minibatch to the encoder to compute the parameters (1, ;)

# ek 1 N (0,1) fori € [1, M),k € [1, K]

* gk = p; + oy

* Feed forward z} to the softmax classifer to get the conditional distribution p, (y | zf)
M . M

* rate i= — 7 Y21 HL (N (ui,diag (07))) = MWS ({(i, o)},

. . M K

* distortion 1= — 57 Dy Don_q l0g pg (vi | 2F)

* L .= distortion 4+ o x rate

* Update 0 and ¢ by descending along the gradients VoL and VL.
endfor

M
i=1

Algorithm 2 Alternative training of using stochastic gradient descent.
for number of training iterations
* Sample a minibatch of M data points (x1,Xs, ..., Xas)
* Feed forward the minibatch to the encoder to compute the parameters (u;, o;)
% ¢; 1S N (0,1) for i € [1, M]
*2i = i + €0y
* Feed forward z; to the decoder to get the reconstruction X;
*rate := — - Som0 H (N (i, diag (02))) — MWS ({(ui, oi)}ij\il)
. . M 512
* distortion 1= — 37 >0 % — %[5
* L .= distortion 4+ o X rate
* Update 6 and ¢ by descending along the gradients VoL and VL.
endfor

Table 1: The loss functions for different attacks we use for evaluation of adversarial robustness. f. (x) represents the
logit corresponding to the class ¢ € [1,C]. t and r denote the ground-truth and a random class, respectively. s denotes
the class with highest logit value excluding the logit corresponding to the correct class ¢. For random-targeted attack, r is
chosen randomly (and is different from ¢) at the beginning of the optimization. For multi-targeted attack, we maximize
fi(x+9) = fi (x+0) forall i € [1,C] and consider the attack successful if any of the attacks on each target class i causes
the classifier to predict a class different from ¢. The evaluation metric for random-targeted attack is attack success rate - the
percentage of times an attacker successfully causes the model to predict a target class 7. Lower attack success rate is better.

Attack Name Loss Function Evaluation Metric
Random-Targeted maxXsep(x,c) fr (X +0) — fi (x +0) Attack Success Rate
Untargeted maxsep(x,e) fs (X +0) — fi (x+0) Adversarial Accuracy

Multi-Targeted MaXseB(x,c) MaXiec[1,0] fi (X +0) — fr (x +0)  Adversarial Accuracy
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Table 2: Test accuracy (in %) on Cifar-10. To compute
test accuracy, we take the average results of models trained
using 10 different random seeds.

RN-20 RN-32 RN-56 RN-110
Standard 91.20 92.16 92.81 93.22
PARADISE 91.56 92.51 92.95 93.48

Table 3: Test accuracy (in %) on ImageNet.

Top-1 Top-5
Standard 72.54  90.73
PARADISE 71.73 90.27

3. Additional experiment results
3.1. CelebA

To generate random images using PARADISE, we first sam-
ple random noise z from a multivariate Gaussian distribution
fit to the empirical aggregate posterior of unseen samples.
The sampled noise z is fed to the decoder to generate a face
image. Then, we perform a series of reconstructions. The
idea is to explore what each neighborhood of z represents.
Fig. 1 shows that this series of reconstructions result in im-
ages of similar-looking faces with transformation such as
smile, face orientation and shape, eyeglasses, gender, beard
and hair style. Interestingly, we also observe linearization
of these semantic transformations (Fig. 2). For instance,
adding the difference between the z-vector of a smiling face
and that of a neutral face to the z-vector of another person’s
neutral face generates the smiling face of that person.

3.2. Supervised experiments

The result for Cifar-10 is reported in Tab. 2. For all settings,
we train models using 10 random seeds and take the average
test accuracy, except for ImageNet due to limited resources.
PARADISE improves test accuracy about 0.3% across archi-
tectures. On ImageNet, however, top-1 and top-5 accuracy
drops about 0.8% and 0.5%, respectively (Tab. 3). We make
a mild conclusion that the rate R () term in the objective
function of PARADISE acts as a regularizer that can be use-
ful in certain settings but did not help for ImageNet where
the base ResNet-34 model shows little sign of overfitting.

3.3. Robust Learning

Gradient obfuscation in Deep Variational Information
Bottleneck (DVIB) (Alemi et al., 2016). Alemi et al. (2016)
claims that Deep Variational Information Bottleneck can im-
prove adversarial robustness. However, the DVIB was eval-
uated only on white-box attacks. For a well-behaved model,
the accuracy on white-box attacks should be lower than that
of black-box attacks because white-box attackers has access

Table 4: Adversarial accuracy (in %) of DVIB with dif-
ferent values of the rate parameter « on Cifar-10. o = 0
corresponds to the standard model.

« Natural FGSM Black-box
le—3 95.71 55.45 36.64
le—4 95.72 43.50 35.18

0 95.77 32.29 30.07

to more information. However, Athalye et al. (2018) pointed
out that many of previously proposed defense methods re-
lied on gradient obfuscation, which makes white-box attacks
weaker but does not really improve adversarial robustness.
To test DVIB, we train the DVIB model on Cifar-10 us-
ing the wide ResNet WRN-28-10 architecture (Zagoruyko
& Komodakis, 2016) and consider two simple black-box
attacks, FGSM (Goodfellow et al., 2014) and R+FGSM
(Tramer et al., 2017), crafted using a naturally trained model
on the Cifar-10 dataset, and take the min accuracy as an
upper-bound of black-box accuracy. We trained DVIB using
the the rate parameter « € {le — 2,1e — 3,1e — 4}. The
model got numerical error at & = le — 2. Tab. 4 shows that
DVIB achieves significantly higher accuracy on white-box
FGSM attacks than on the black-box attacks. The issue is
more serious with the higher value of a. The black-box
accuracy is just slightly better than the standard model.

Angles between gradients of different models. Fig. 3
plots the histogram of angles between the gradient of the
standard model and that of PARADISE-PM w.r.t. the same
input image. The angles are computed for are computed
for 2,000 random images from the ImageNet validation
set, consisting 2 images for each class. The visualization
demonstrates that the gradient direction of the two models
are orthogonal to each other, which is consistent with the
observation in Liu et al. (2016).

Loss surface visualization. We visualize of the loss surface
and decision boundary of PARADISE-PM and the standard
model when moving an input image along the signed gradi-
ent (adversarial) direction and another random Rademacher
vector orthogonal to the signed gradient in Fig. 4 for some
ImageNet validation images and in Fig. 5 for some Cifar-10
test images. Compared to the standard model on ImageNet,
PARADISE-PM has smoother loss surface that is virtually
constant along random direction, and has a simpler decision
boundary. On Cifar-10, PARADISE-PM’s loss surface is al-
most locally constant around the input data, which explains
its adversarial robustness.

Targeted attacks. Fig. 6 compares successful targeted at-
tacks with perturbation size of € = 16/255 on PARADISE-
PM and those on the standard model. Successful attacks on
PARADISE-PM significantly change the original images to
look like the target, while the perturbations by successful
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Figure 1: CelebA image generation. Images in column 1 are generated from random noise. Images in columns 2 to 10 are
successive reconstructions of the previous column. The series of reconstruction help visualize what each neighborhood of z
represents. In each rows, one can observe similar-looking faces with transformations such as smile, face orientation and
shape, eyeglasses, gender and hairstyle.

=4 |
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Figure 2: Examples of semantic transformation represented by linear operation in the latent space. In each of the sub-figure,
the difference between the z-vector corresponding to the images on the right and left in the first row is added to the left
images of the other rows to generate the right images. The captions describe the semantic transformation observed.

(a) Smile. (b) Gender, Beard. (c) Hair, round face. (d) Sunglasses.

attacks on the standard model are imperceptible to human.
Figure 3: Histogram of angles between the gradient of the

standard model and that of PARADISE-PM w.r.t. the same
input image. The angles are computed for 2,000 random im-
ages from the ImageNet validation set, consisting 2 images
for each class. Most of the angles are around 90 degrees.
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Figure 4: Comparison of the loss surface and decision
boundary of PARADISE-PM and the standard model for Im-
ageNet validation images. In each sub-figure, the top images
plots generated by moving the input along the signed gradi-
ent (adversarial) direction and another random Rademacher
vector orthogonal to the signed gradient; the bottom images
plot the corresponding decision boundary; green represents
the ground-truth class. PARADISE-PM has smoother loss
surface that is virtually constant along random direction,
and has a simpler decision boundary.

Input Image

Standard PARADISE-PM

2 0
Adv

Input Image
INgE

Standard PARADISE-PM

2 0
Adv

Input Image

i Standard

Figure 5: Comparison of the loss surface and decision
boundary of PARADISE-PM and the standard model for
Cifar-10 test images. In each sub-figure, the top images
plots generated by moving the input along the signed gradi-
ent (adversarial) direction and another random Rademacher
vector orthogonal to the signed gradient; the bottom images
plot the corresponding decision boundary; green represents
the ground-truth class. PARADISE-PM’s loss surface is
almost locally constant around the input data.




Parameterized Rate-Distortion-based Stochastic Encoder

Figure 7: Visualizations of the loss gradient w.r.t. input
pixels. The gradients are clipped within £3 standard devia-
tions of their mean and rescale to the range [0, 1]. In each
sub-figure, the top plots visualize gradients in RGB mode;
Figure 6: Comparison of successful targeted attacks (¢ = i the bottom plots, gradients are summed across the RGB
16/255). Left: the original input; middle: the attack on the channels and visualized in gray scale.
standard model; right: the attack on PARADISE-PM. Suc-
cessful attacks on PARADISE-PM makes add perturbation
that looks like the target class to the input images.

PARADISE-PM

Input Standard

Standard: porcupine PARADISE-PM: porcupine

Input: macaque

Input: harvester Standard: notebook PARADISE-PM: notebook
ll L] ll L]
- - o
FEE R
Standard: cliff_dwelling PARADISE-PM: cliff dwelling
I R t s =

e = e

Input: Eskimo_dog Standard: magnetic_compass ~ PARADISE-PM: magnetic_compass

Standard PARADISE-PM
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