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Abstract

Kernel selection for kernel-based methods is pro-
hibitively expensive due to the NP-hard nature of
discrete optimization. Since gradient-based opti-
mizers are not applicable due to the lack of a dif-
ferentiable objective function, many state-of-the-
art solutions resort to heuristic search or gradient-
free optimization. These approaches, however,
require imposing restrictive assumptions on the
explorable space of structures such as limiting the
active candidate pool, thus depending heavily on
the intuition of domain experts. This paper instead
proposes DTERGENS, a novel generative search
framework that constructs and optimizes a high-
performance composite kernel expressions gener-
ator. DTERGENS does not restrict the space of
candidate kernels and is capable of obtaining flexi-
ble length expressions by jointly optimizing a gen-
erative termination criterion. We demonstrate that
our framework explores more diverse kernels and
obtains better performance than state-of-the-art
approaches on many real-world predictive tasks.

1. Introduction
At the core of most machine learning (ML) algorithms,
practitioners will often find two universally essential com-
ponents: model specification and (hyper)-parameter opti-
mization. While there has been reasonable progress on
automating the latter (Bergstra et al., 2013; Kandasamy
et al., 2015; Wang et al., 2017; Hoang et al., 2018), model
selection remains an art due to the complexity of a highly
structured space of model architectures and the lack of a
differentiable objective. In deep learning, for example, the
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space of architectures encompasses neural network design
choices such as the number of hidden layers, dimension
of each hidden layer and its activation function (Elsken
et al., 2018). For kernel-based methods such as support
vector machine (SVM) (Hearst, 1998), Gaussian processes
(GP) (Rasmussen & Williams, 2006) or sparse Gaussian pro-
cesses (Quiñonero-Candela & Rasmussen, 2005; Quiñonero-
Candela et al., 2007; Hensman et al., 2013; Gal & Turner,
2015; Low et al., 2015; Hoang et al., 2015; 2017; Yu et al.,
2019), we are interested in the space of semi-positive defi-
nite composite kernels closed under addition and multiplica-
tion. In this paper, we focus on the latter, which is important
in many learning disciplines such as active learning (Castro
et al., 2005; Krause & Guestrin, 2007; Castro, 2007; Low
et al., 2012; Cao et al., 2013; Hoang et al., 2014a;b), dis-
tributed learning (Chen et al., 2013; Gal et al., 2014; Hoang
et al., 2016; Allamraju & Chowdhary, 2017; Hoang et al.,
2019a;b) and reinforcement learning (Poupart et al., 2006;
Poupart & Vlassis, 2008; Akchurina, 2009; Ziebart et al.,
2010; Hoang & Low, 2013; Engel et al., 2013; da Motta
Salles Barreto et al., 2014; Zoph & Le, 2016).

1.1. Related works

In each example above, the space of model architecture
typically does not have a well-defined distance metric and
is therefore not amenable to popular gradient-based opti-
mization techniques such as gradient descent and coordinate
descent (Lu et al., 2018). To sidestep this issue, existing
solutions for model selection resort to either heuristic search
(Duvenaud et al., 2013; Idrissi et al., 2016) or gradient-
free optimization methods (Malkomes et al., 2016; Kan-
dasamy et al., 2018; Lu et al., 2018). These methods, how-
ever, either (a) compromise search efficiency (Idrissi et al.,
2016; Malkomes et al., 2016); or (b) restrict the space of
valid structure candidates, thus potentially leaving out high-
performing candidates (Duvenaud et al., 2013; Kandasamy
et al., 2018; Lu et al., 2018). More specifically, there are 4
lines of relevant work which are detailed below:

1. Naı̈ve random search, grid search and genetic algorithms
(Idrissi et al., 2016), despite being frequently employed
due to their ease of implementation, are generally slow to
converge, hence less practical, under complex and high-
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dimensional structure space.

2. Duvenaud et al. (2013) instead takes advantage of the
composition rule for semi-positive definite kernels to formu-
late the kernel selection problem as an informed tree search
guided by model likelihood score. This approach, however,
requires fixing a default set of model parameters during the
search and does not take into account the performance gain
from optimizing these parameters.

3. Kandasamy et al. (2018) and Malkomes et al. (2016) fac-
tor in parameter optimization for neural architecture search
and kernel search respectively through black-box Bayesian
Optimization (BO). These methods, however, must rely on
random mutation operators to navigate between structures
in a user-determined active set of candidates, hence com-
promising both the efficiency of the search (i.e., sensitive to
randomization) and limiting the valid pool of structures to
the active candidates.

4. Lu et al. (2018) uses Variational Autoencoder (VAE)
(Kingma & Welling, 2013) to learn an embedding of the
composite kernel structures space onto a continuous latent
representation space. Employing BO on this latent space
helps to circumvent the need to navigate between discrete
structures. Its decoder, however, is limited to generating
composite kernels with upper-bounded dimensions. While
setting this upper bound to be arbitrarily large can alleviate
this problem, VAE would then require a prohibitively large
training set to learn an accurate embedding.

1.2. Our contributions

To overcome these shortcomings, our framework reformu-
lates the structure discrete optimization problem as an opti-
mization task over the parameter space of a latent generative
process (Section 3.1), which takes the form of an open-
ended structure generator guided by a data-driven termina-
tion policy (Section 3.2). This allows us to employ BO on
a well-behaved embedding space of generative parameters,
thus bypassing both the need to select an initial set of active
candidates (Kandasamy et al., 2018; Malkomes et al., 2016)
and to rely on heuristic operators to navigate between dis-
crete structures (Kandasamy et al., 2018; Malkomes et al.,
2016; Idrissi et al., 2016).

Furthermore, unlike other embedding-based approaches
such as Lu et al. (2018) which imposes restrictive assump-
tion on the space of interest, our approach adds flexibility
and expressiveness through embedding kernels with a recur-
sive generative process. Specifically, our latent embedding
maps to a subspace of kernel expressions (i.e., all possible
expressions on an infinite generative trajectory characterized
by its generative parameters) instead of a single expression
(Lu et al., 2018). Distillation of high-performing kernels
from this subspace is guided by a stochastic termination

policy which determines the best stopping point on the tra-
jectory. This enables exploration of arbitrarily complex
expressions and, to the best of our knowledge, makes our
framework the first kernel selection method that places no
structural restriction on the search space.

We further show that both the generative parameters and the
termination policy can be optimized in tandem by exploiting
their dynamic in the generative component. In particular,
with respect to a fixed policy, we devise a dynamic BO
algorithm for optimizing generative parameters that is capa-
ble of adapting to the constant policy updates (Section 3.3).
Alternately, given each sample trajectory collected by the
BO step, we devise a non-myopic update for the policy
distribution via modelling the dynamic between these two
components (Section 3.4). Together, this workflow is de-
scribed as the Dynamic TERmination GENerative Search
(DTERGENS) algorithm for composite kernel selection
(Algorithm 1), which delivers our main contribution.

Last but not least, we demonstrate that our method is able
to produce complex kernels which significantly improve
predictive performance of multiple predictive tasks over
state-of-the-art structure search methods. Our results show
a wider range of structures being explored by DTERGENS
and more rapid rates of improvement as compared to other
methods. Finally, we show that DTERGENS is also able
to recover known well-performing kernels on artificially
designed predictive tasks (Section 4).

2. Background and Notations
2.1. Kernels and Composite Kernels

Many kernel-based models such as Gaussian processes
(Rasmussen & Williams, 2006) and SVM (Cortes & Vap-
nik, 1995) employ the notion of a covariance function
k(x,x′) = cov(g(x), g(x′)) to define the similarity be-
tween latent function values given corresponding inputs.
The covariance matrix evaluated over two finite sets of ob-
servations τ = [x1,x2 . . .xn] and τ ′ = [x′1,x

′
2 . . .x

′
m] is

further denoted by Kττ ′ whose (i, j)-entry stores the value
of k(xi,x

′
j) for all i ∈ [n] and j ∈ [m]. For convenience,

we use the shorthand Kτ for Kττ ′ when τ ≡ τ ′.

As formalized in Duvenaud et al. (2013), a composite kernel
is the result of applying summation and multiplication (re-
cursively) on a finite set of base kernels, which includes the
common squared exponential (kSE), periodic (kPER), linear
(kLIN), and rational quadratic (kRQ) kernels. The entire
space of such composite kernels can therefore be succinctly
characterized by the following kernel composing rules:

1. Every base kernel k ∈ KB , {kPER, kLIN, kRQ, kSE} is
a valid kernel.

2. A valid kernel k can be created by adding existing valid
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kernels, k(x,x′) = k1(x,x′) + k2(x,x′).

3. A valid kernel k can be created by multiplying existing
valid kernels, k(x,x′) = k1(x,x′)× k2(x,x′).

For ease of notation, we generally drop the input argument
and instead use the shorthand k = k1 + k2 and k = k1× k2

when referring to these composing rules. Let KC denote
the space of composite kernels defined above, any valid
composite kernel k ∈ KC can then be expressed as a sum-
of-product of base kernels in KB (Duvenaud et al., 2013).
That is, for any composite kernel k, there exists a finite
collection of base kernels kuv ∈ KB for which,

k(x,x′) =

m∑
u=1

[
nu∏
v=1

kuv(x,x
′)

]
(1)

where m denotes the number of product terms in the ex-
pression and nu denotes the number of base kernels in the
uth product term. To generate kernel expressions of this
form, we design a system of nested recurrent neural net-
works (RNN) that recursively grows the sum-of-product
expression by appending new base kernel units to it until a
termination condition is reached (Section 3.2), upon which
the system returns a single terminal expression. For com-
pleteness, we will refer to any kernel expression produced
by this generator prior to the terminal state as an intermedi-
ate kernel expression. That is, the composite kernel k′ is an
intermediate expression with respect to k or k′ ⊆K k iff

k′(x,x′) =

m′∑
u=1

 n′
u∏

v=1

kuv(x,x
′)

 (2)

for some m′ ≤ m and n′u ≤ nu and the terminal expression
k defined in Eq. (1) above1.

2.2. Bayesian Optimization

Many optimization problems in ML are black-box optimiza-
tion tasks of the form arg maxx F (x) where we neither
have (or do not want to compute for complexity reason) an
analytical expression for the derivative F ′(x) nor its deriva-
tives. As such, problems of this class are not amenable
to gradient-based optimization techniques. Evaluation of
the objective function is also restricted to sampling some
(possibly) noisy response at a point x and is typically expen-
sive, hence making grid search and evolutionary algorithms
highly impractical (Mockus et al., 1978).

Bayesian optimization (BO) is a sequential approach de-
signed to optimize such black-box functions without an
analytical/tractable derivative. The BO algorithm first pre-
scribes a prior Bayesian belief (which is usually modeled

1The order of base kernels given by subscript uv is not arbitrary
as it reflects the sequential nature of the generator.

using GP (Rasmussen & Williams, 2006) across existing
BO literature) for the black-box objective function, i.e.
F (x) ∼ GP(µ(x), k(x,x′)) where µ and σ are respec-
tively the prior GP mean and covariance functions. Using
this probabilistic model, the BO algorithm then construct
an acquisition function α(x;µ, k) which leverages the ex-
pected outcome distribution and its uncertainty (with re-
spect to the current belief) to guide exploration of the input
space. Specifically, every BO iteration selects a new input
candidate to be queried for response via maximizing this
acquisition function. That is,

xt+1 = arg maxx α
(
x;µt, kt

)
(3)

where µt and kt parameterize the current GP posterior (of
iteration t) and the collected response F (xt+1) will be used
to update this belief. A popular acquisition function is the
upper confidence bound (UCB) (Srinivas et al., 2010):

αt(x) = µt(x) + βt
√
k(x,x) (4)

where t denotes the current iteration of the algorithm and
the parameter βt balances the trade-off between exploitation
(of candidates with high expected outcome) and exploration
(of candidates with high uncertainty). Interested readers are
referred to the BO literature for other choices of acquisition
functions (Snoek et al., 2012; Hoang et al., 2018; Wang &
Jegelka, 2017; Hernández-Lobato et al., 2014)

3. Automated Kernel Selection
In this section, we describe the technical components and
workflow of our proposed method (see Fig. 1). First, sec-
tion 3.1 reformulates the kernel selection objective as a
hyper-parameter optimization task for a kernel synthesis
routine, which is amenable to Bayesian Optimization (BO).

Section 3.2 outlines the design of an open-ended kernel gen-
erator G(θ), which employs two nested RNNs Gp(θp) and
Gs(θs) parameterized by θ = (θp, θs) to synthesize com-
posite kernels via the generative grammar defined in Eq. (1).
The role of G(θp) and G(θs) is to expand the current kernel
expression at each step via addition/multiplication. As such,
given an instantiation of generative parameter θ, G(θ) syn-
thesizes an infinitely growing expression via sequentially
adding base kernel units to the existing structure.

To avoid generating an infinitely long kernel, G(θ) is further
augmented with a stochastic decision making process, which
we refer to as termination policy π. The terminal expression
(i.e., stopping point of this procedure) is obtained when π
decides to stop the generating process (Section 3.2).

The remaining of this section discusses our optimization
framework in two sequential steps: (1) a BO variant that
optimizes for θ while accounting for the constantly updating



Optimizing Dynamic Structures with Bayesian Generative Search

GENERATOR Gθ

π

k F (k)

POLICYUPDATE
BAYESOPT

Figure 1. The generic workflow of DTERGENS. Given policy
π, we employ BO to obtain generative weight candidate θ (Sec-
tion 3.3). Using the observed generative trajectory, we alternately
update the policy distribution (Section 3.4).

belief of π (Section 3.3); and (2) an optimization routine
for the posterior p(π | θ) given the kernel samples collected
from the BO step (Section 3.4).

3.1. Reformulating Kernel Selection

We consider a learning scenario for some kernel-based pre-
dictive model ξ with respect to some arbitrary dataset τ and
training protocol φ (i.e., train-test split, parameter optimiza-
tion technique, training budget and other model-specific
parameters). Let Ω = {ξ, τ, φ} denote these configurations
and FΩ(k) denote the performance measure of the predic-
tive scenario (i.e., predictive accuracy) characterized by Ω
for some kernel k ∈ KC . The kernel selection problem can
then be formally described as

k∗ = arg maxk∈KC
FΩ(k) (5)

Optimizing over the discrete domain of kernel expressions
is, however, intractable as previously motivated (Section 1).
To work around this, we model k as the output of a gen-
erative process G(θ, π) (whose design will be detailed in
Section 3.2) conditioned on parameter θ and termination
policy π. Proposition 1 subsequently suggests, under the
expressiveness assumption that any valid composite kernel
can be generated (given a certain choice of θ and π), the
original discrete kernel selection objective can be cast as an
equivalent optimization problem on the domain of θ and π.

Proposition 1 (Objective Reformulation). For some arbi-
trary composite kernel generative processG : Θ×Π→ KC ,
if ∀ k ∈ KC , ∃ θ, π ∈ Θ×Π such that G(θ, π) = k, then:

max
k∈KC

FΩ(k) ≡ max
θ∈Θ

max
π∈Π

FΩ ◦G(θ, π) (6)

Proof. Let (θ∗, π∗) = arg max FΩ ◦ G(θ, π). Suppose
there exists k such that FΩ(k) > FΩ ◦ G(θ∗, π∗). By the
above expressiveness assumption, there also exists (θ′, π′)
such that k = G(θ′, π′), which implies the contradiction
FΩ ◦G(θ′, π′) > maxθ maxπ FΩ ◦G(θ, π).

Remark 1. Essentially, the reformulation above reveals a
latent generative process whose parameters are related to the
model predictive accuracy in a possibly more well-behaved
manner. We hypothesize that, as manifestations of this latent
process, kernel expressions only contain truncated informa-
tion which makes direct optimization on the kernel space
difficult. On the other hand, modelling the relationship be-
tween predictive accuracy and these generative parameters
allow recovery of such latent information which in turn
enable efficient search.

To further exploit the intrinsic relationship between π and
θ, our framework optimizes each with respect to the other
instead of jointly searching for these variables with BO
(which does not factor in the designed interaction of π and
θ). Explicitly, given fixed π, θ is optimized using a modified
BO routine which takes into account this dynamic via the
posterior p(π | θ) (Section 3.3). Alternately, given new
observations sampled from each BO iteration, the policy
posterior p(π | θ) can be obtained via MLE (Section 3.4).
The outline of this workflow is illustrated in Fig. 1 and
detailed in Algorithm 1. To lay the groundwork for our al-
gorithmic development, we discuss the design of our kernel
generator G(θ, π) next (see Fig. 2).

3.2. Open-ended Composite Kernel Generator

Composite kernel expressions (Section 2.1) naturally
manifest as tree structures with multiple secondary branches
(i.e., each represents a product of base kernel units)
connected via one primary skeleton (i.e., represents the sum
of these product terms). To generate such structures, we
construct G (Fig. 2) by concatenating two nested recurrent
neural networks (RNN) Gp(θp) and Gs(θs) parameterized
by θ = [θp, θs]

2. Termination of these RNN units is
determined by respectively querying policies π = [πp, πs]
at every generative step. We describe the components of G
as follow:

Primary Unit Gp(θp): Given a constant primer input x0 ∈
Rdp (e.g., x0 = 1), Gp(θp) generates a sequence of subse-
quent feedback inputs x1,x2 . . . ⊆ Rdp and corresponding
outputs x0

1,x
0
2 . . . ⊆ Rds . The latter is passed on as inputs

to Gs(θs). At every generative state xt and corresponding
intermediate kernel expression kxt (composing all base units
so far), Gp either: (a) with probability πp(kxt), terminates
the generative process and returns a terminal expression; or
(b) with probability 1−πp(kxt), invokesGs(θs) to generate
a new secondary branch.

Secondary Unit Gs(θs): Given some input x0
t produced

2While LSTM and GRU can be used in place of the RNN cell
we employed, both alternatives are more suited to model time
series data (due to their forget mechanism) whereas the selection
of the base kernel units tend not to exhibit temporal properties.
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Gs(θs)
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Figure 2. Schematic of the open-ended kernel structure genera-
tor with nested recurrent neural network components Gs(θs) and
Gp(θp). In each component, states move forward with a prob-
ability drawn from the corresponding termination policy. The
termination states at each branch (xntt ) and the primary skeleton
(xm) are stochastically determined by termination policy π.

by Gp(θp), Gs(θs) generates a sequence of feedback inputs
x1
t ,x

2
t . . . ⊂ Rds and the corresponding one-hot encoding

of base kernels kit ∈ KB (obtained via softmax activation).
At every generative state xit and corresponding intermedi-
ate kernel expression kxit (composing all base units so far),
Gs(θs) either: (a) with probability πs(kxit), terminates the
immediate branch and invokes Gp(θp); or (b) with proba-
bility 1 − πs(kxit), generates a new base kernel unit ki+1

t

and appends it to the current product term (i.e., secondary
branch).

Termination Policy π: Let τ = {x1,x2 . . .xn} be the set
of training inputs specified by the black-box model and
Kτ , [k(xi,xj)]ij be the corresponding covariance matrix
given some kernel function k(x,x′). We respectively obtain
the primary and secondary termination probability given
corresponding policy parameters wp and ws as below:

πs(k;ws, τ) = σ
(
w>s Kτws

)
πp(k;wp, τ) = σ

(
w>p Kτwp

)
(7)

where σ(t) , 1/(1 + exp(−t)) denotes the sigmoid func-
tion. These data-driven parameterizations imply that termi-
nation decisions are task-specific and not arbitrarily obtained
as an universal rule. We note that under these parameter-
izations, the notations p(πp|θ) and p(πs|θ) are implicitly
equivalent to p(wp|θ) and p(ws|θ).

On top of being task-specific, termination decisions also

Algorithm 1 DTERGENS - Kernel Selection
1: Input: FΩ, nBO, γ = {nw, nε, n`, λp, λs}
2: G ← CREATEGENERATOR
3: ηp, ηs ← INITIALIZEPOLICY
4: for t = 1 to nBO do
5: θt ← argmaxθ facq(θ)
6: SAMPLE πp ∼ p(πp | θtp)
7: SAMPLE πs ∼ p(πs | θts)
8: kt ← G(θt, πp, πs)
9: k∗ ← argmaxk ⊆Kkt FΩ(k)

10: POLICYUPDATE(k∗, θt, γ)
11: BAYESIANUPDATE

(
θt,FΩ(θt), p(πp|θtp), p(πs|θts)

)
12: end for

need to be sensitive to generative weights θ. This is be-
cause one intermediate expression can turn into different
terminal expressions under different generative trajectories
(dictated by θ). To avoid imposing myopic policies, we
adopt the Bayesian approach and model the dynamic be-
tween π and θ via the conditional distributions p(ws|θs; ηs)
and p(wp|θ; ηp) parameterized by ηs and ηp, respectively –
see Section 3.4 for a detailed description of (ηs, ηp).

We then leverage these dynamics to construct a dynamic BO
algorithm (for optimizing generative weight θ) that accounts
for policy updates (Section 3.3). Alternately, we use the
generative trajectories obtained from this BO algorithm to
update these distributions, thus allowing us to learn the dy-
namics between θ and π as we optimize for θ (Section 3.4).

Remark 2. To avoid O(n2) computation of kD for each
candidate K, we approximate the above parameterization
with a kernel evaluated on a subset τ(S) of S randomly
sampled data points. Particularly:

σ(w>s Kτws) ' σ(w′
>
s Kτ(S)w

′
s)

σ(w>p Kτwp) ' σ(w′
>
p Kτ(S)w

′
p) (8)

where w′s and w′p have reduced dimension to match that of
Kτ(S). This allows us to evaluate the termination decisions
in O(S2) without suffering heavy performance trade-off, as
empirically shown in Section 4.

3.3. Generative Parameter Optimization

In this section, we detail our BO algorithm to optimize
generative weight θ. Formally, given termination policies
π = [πp, πs] respectively distributed by posteriors p(πp | θ)
and p(πs | θ), our objective can be formally described as:

θ∗ = arg maxθ gπ(θ) ≡ arg maxθ FΩ ◦G(θ, π) (9)

where the predictive accuracy function FΩ and the generator
G have been previously defined (Section 3.1).
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We adopt the standard practice of BO (Snoek et al.,
2012) and impose a Gaussian Process (GP) (Rasmussen
& Williams, 2006) prior on the black-box gπ, i.e., gπ ∼
GP(µ, kBO) where µ and kBO respectively denote its mean
and covariance functions. The BO algorithm iteratively
obtains the next best candidate θ (to be explored) by maxi-
mizing a surrogate acquisition function, whose evaluation
depends on the posterior of this GP. The black-box evalua-
tion gπ(θ) is then used to update the GP posterior.

In our context, each candidate θt obtained at iteration t
is also transcribed into some composite kernel expression
kt , G(θt, π), which will be used to update the policy
posterior (Section 3.4). To account for this dynamic land-
scape of θ (subject to constantly shifting π), we adapt
this vanilla BO algorithm by decomposing the GP covari-
ance into three components, one of which characterizes
the kernel distance between two instances of generative
weights whereas the other captures the shifts in termina-
tion policies. Explicitly, given candidates θi and θj and
their corresponding policy posteriors (at time of discovery)
pi(wp|θi), pi(ws|θi), pj(wp|θj) and pj(ws|θj), the kernel
distance between these candidates is given as:

kBO(θi, θj) = kπp(pi, pj) · kπs(pi, pj) · kθ(θi, θj) (10)

where kθ is the standard Gaussian kernel and, letting DJS

denote the Jensen-Shannon divergence between two distri-
butions, we define:

kπp(pi, pj) , DJS

(
pi(wp | θi) ‖ pj(wp | θj)

)
kπs(pi, pj) , DJS

(
pi(ws | θi) ‖ pj(ws | θj)

)
(11)

3.4. Learning Policy Posteriors

Following the setup in Section 3.2, we let ηp , vec(ζp,Σp),
ηs , vec(ζs,Σs) and respectively assume Gaussian param-
eterization for the policy posteriors:

p(wp | θ; ηp) = p(wp | θp; ηp) , N (wp; θ
>
p ζp,Σp)

p(ws | θ; ηs) = p(ws | θs; ηs) , N (ws; θ
>
s ζs,Σs) (12)

This section details an update iteration of ηp and ηs given
a new candidate θ and its corresponding generated kernel
k(x,x′) =

∑m
i=1

∏ni
j=1 kij(x,x

′) where kij ∈ KB. An
apparent challenge is the lack of optimization objective
because it is hard to obtain the optimal stopping point for
an infinite generative trajectory.

To sidestep this challenge, we instead adopt the best esti-
mation in hindsight k∗, which is the best performing in-
termediate kernel expression with respect to the sampled
trajectory, i.e., k∗ , arg maxk′⊆Kk FΩ(k′). This serves as
an estimation to the optimal expression in the infinite sub-
space defined by θ. We argue that high-performing kernels

are likely to produce covariance matrices (on training set
τ ) reasonably similar to K∗τ which motivates the following
design of our loss functions:

`p(πp; ηp) , Eπ
[
〈Gπs(θ, πp),k∗〉τ

]
`s(πs; ηs) , Eπ

[
〈Gπp(θ, πs),k

∗〉τ
]

(13)

where Gπs and Gπp respectively denotes fixing the πs and
πp components of generator G and 〈K,K′〉τ , ‖Kτ −
K′τ‖Fro is the Frobenius norm of the difference between the
data covariance matrices corresponding to composite ker-
nels k and k′. We write `p(πp; ηp) to show the dependence
on ηp (and likewise for `s) since πp = σ(w>p Kτwp) and
the posterior distribution of wp is parameterized by ηp. As
generator termination is stochastic (Section 3.2), we approx-
imate these expectations with empirical losses ¯̀

p and ¯̀
s by

averaging over n` independent simulations.

Finally, this allows us to formulate the optimization tasks of
ηp and ηs as minimizing the empirical losses ¯̀

p, ¯̀
s, expected

over the corresponding posterior policy distributions:

η∗p = argmin
ηp

Ep(wp|θ;ηp)

[
¯̀
p(πp; ηp)

]
η∗s = argmin

ηs

Ep(ws|θ;ηs)
[
¯̀
s(πs; ηs)

]
(14)

As standard practice, the optimal parameters ηp and ηs can
be obtained by gradient descent update. The expected loss
gradients∇ηp ¯̀

p and∇ηs ¯̀
s, however, do not have analytical

forms due to having a generator component and require
simulation to compute. We circumvent this problem by
employing the randomized gradient technique (Nesterov
& Spokoiny, 2017), which estimates derivative at a point
by averaging over the instantaneous rates of change with
respect to some ε-perturbations around it. In particular, we
derive our approximate randomized gradient update for the
kth entry of ηp as follow:

ηkp = ηkp − γp∇ηkpE
[
¯̀
p(πp; ηp)

]
' ηkp −

γp
nε

nε∑
j=1

E
[
¯̀
p(πp; ηp + εjek)− ¯̀

p(πp; ηp)
]

εj

' ηkp −
γp
nwnε

nε∑
j=1

nw∑
i=1

¯̀
p(π

i
p; ηp + εjek)− ¯̀

p(π
i
p; ηp)

εj

where εj ∼ N (0, 1) is a random Gaussian perturbation,
ek is the one-hot vector with a single 1-entry at the kth

position and ¯̀
p(π

i
p; ηp + εjek) denotes the empirical loss

obtained with respect to the ith sample of wp drawn from
the perturbed posterior parameterized by ηp + εjek. Finally,
γp, nw and nε respectively denote the learning rate, number
of w samples and number of ε samples per update.
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(a) (b) (c)

Figure 3. Graphs of best kernel recovery error found over 100 iterations with various kernel selection methods on three synthetic datasets
constructed from hand-crafted kernels: (a) RQ×RQ; (b) PER×RQ×LIN×LIN; and (c) LIN×RQ×LIN+PER×LIN+RQ×SE.

(a) (b) (c)

Figure 4. Graphs of best nRMSE found over 100 iterations with various kernel selection methods on (a) DIABETES dataset (Efron et al.,
2004); (b) MAUNA dataset (Keeling & Whorf, 2004); and (c) PROTEIN dataset (Rana, 2013).

4. Experiments
This section evaluates and reports the empirical performance
of our kernel selection framework DTERGENS on a syn-
thetic kernel recovery task and kernel selection for regres-
sion on three real-world datasets:

1. The DIABETES dataset (Efron et al., 2004) containing
442 diabetes patient records (i.e., inputs) with 10 variables:
age, sex, body mass index, average blood pressure and six
blood serum measurements. The target output variable is a
quantitative measure of disease progression one year after
baseline.

2. The MAUNA LOA (Mauna Loa Atmospheric Carbon
Dioxide) dataset (Keeling & Whorf, 2004) measuring
monthly average carbon-dioxide concentration (in ppvm)
from continuous air samples collected over a 42-year period
at the Mauna Loa Observatory, Hawaii.

3. The PROTEIN dataset (Rana, 2013) featuring 45730
observations of protein tertiary structures, each consists of
9 physicochemical properties. The target output variable is
the size of residue (in kDa).

To demonstrate the efficacy of DTERGENS, we compare
our performance with the following benchmarks: (a) ran-

dom search over the space of kernels with max length
L ≤ 10 (baseline); (b) SVO: Structure Variationally-
Encoded Optimization (Lu et al., 2018) where we train the
VAE component using 25000 randomly generated kernel
expressions with max length L ≤ 10 (to show the advantage
of generative search); and (c) our own algorithm with no
stopping policy and fixing expression length3 L = 2, 4, 8 (to
show the advantage of having adaptive termination policies
for the generative components).

4.1. Black-box Model Configuration

For all experiments, we demonstrate the performance of
our framework on the black-box model Variational DTC
Sparse Gaussian Process (vDTC) (Hensman et al., 2013)
with the following configurations: (1) 80-10-10 train-test-
validation split (i.e., we use the validation fold to compute
BO feedback and the test fold to evaluate final performance);
(2) 100 randomly selected inducing inputs; (3) kernel hyper-
parameters are optimized using L-BFGS over 100 iterations.

3Termination of secondary component is chosen at random;
termination of primary component is guaranteed upon reaching
length L; vanilla BO is used to optimize generative weights θ.
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4.2. Generator Architecture

For primary unit Gp, we use a RNN cell consisting of: (1)
5-dimensional input layer; (2) two hidden layers with 10
and 20 dimensions; (3) two 5-dimensional output layer, one
of which encodes input to secondary unit Gs while the other
encodes the primary component’s feedback input. We use
another RNN cell to parameterize Gs for which the first
three layers are similar to the primary unit. This cell has two
output layers where one encodes the secondary component’s
feedback input (5-dimensional) and the other encodes the
one-hot representation of a base kernel (4-dimensional).

We use reLU activation for all non-output layers, softmax
activation for the kernel output layer of Gs and tanh activa-
tion for the remaining output layers. Finally, we optimize a
total number of 917 RNN parameters using REMBO (Wang
et al., 2016) (which has been adapted to account for the
dynamic optimization landscape - Section 3.3). Other BO
variants such as ADD-GP-UCB (Kandasamy et al., 2015) or
DEC-HBO (Hoang et al., 2018) can also be used to handle
this high-dimensional setting.

4.3. Synthetic Kernel Recovery

In this experiment, we investigate how well various kernel
selection methods recover a known covariance matrix given
synthetic data randomly drawn from its corresponding dis-
tribution. Unlike most real-world settings where a ground
truth kernel is not known and performance evaluation relies
on possibly noisy predictive accuracy, this scenario provides
a gold standard for kernel selection and allows us to directly
measure the success of various contending methods.

Explicitly, given a randomly chosen kernel k∗ (with arbi-
trarily initialized hyper-parameters) and n input observa-
tions τ = {x1,x2 . . .xn} ⊆ Rd i.i.d drawn from N (0, I),
we subsequently draw corresponding output observations
Y = {y1, y2 . . . yn} from Y ∼ N (0,K∗τ ) where K∗τ de-
notes the data covariance matrix constructed with k∗. We
then apply kernel selection for vDTC prediction on this
synthetic dataset with the standard black-box configura-
tions (Section 4.1) and measure our recovery error for any
selected kernel k by `syn(k) = ‖Kτ − K∗τ‖Fro. Fig. 3
shows the best recovery error achieved over a span of 100
search iterations with 3 different kernels: (1) kRQ × kRQ;
(2) kPER × kRQ × kLIN × kLIN; and (3) kLIN × kRQ ×
kLIN + kPER × kLIN + kRQ × kSE.

In all experiments, DTERGENS consistently achieve the
lowest recovery error after 100 iterations compared to other
methods. Random search performs competitively when the
ground truth kernels are short (i.e., L = 2, 4) and relatively
easy to hit via randomization. It expectedly performs the
worst when the ground truth kernel is longer (i.e., L =
7). We also observe that fixing L maintains a competitive

(a) (b)

Figure 5. (a) The linear-periodic trend of the MAUNA dataset;
and (b) No. unique kernels discovered by different methods (i.e.,
DTERGENS, SVO and random search) on three datasets.

(a) (b)

Figure 6. (a) nRMSE vs. number of sampled data points for policy
update; and (b) total time taken vs. number of sampled data points
for policy update for DTERGENS on DIABETES dataset.

performance for DTERGENS only when L matches the
length of the ground truth kernel and is outperformed by
other methods otherwise. This implies, without domain
expert knowledge, discovery of constant length kernels is
generally a bad strategy. Lastly, we observe that SVO is
most significantly outperformed by DTERGENS in the first
experiment. We reason that this is because the trained VAE
could be biased to produce longer kernels, hence it is more
difficult SVO to find a latent embedding that decodes to a
length 2 kernel. DTERGENS does not incur this problem
because its termination policy is also learned as it collects
information about the embedding space.

4.4. Kernel Selection for Regression

We investigate the performance of kernel selection for
regression tasks using vDTC (Hensman et al., 2013) on
three real-world datasets DIABETES (Efron et al., 2004),
MAUNA (Keeling & Whorf, 2004) and PROTEIN (Rana,
2013). In all experiments, we measure performance by
computing the root-mean-square-error (RMSE) of predic-
tions with a discovered kernel k on the hold out test set,
normalized by the RMSE obtained using the standard
square exponential kernel (i.e., SE). Explicitly, our nor-
malized RMSE (nRMSE) metric is given by nRMSE(k) =
‖y(k)− y‖2/‖y(kSE)− y‖2 where y(k) denotes the pre-
diction made by vDTC as we set its kernel to be k and y
denotes the ground truth test output.
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Fig. 4 shows the comparative performance between
DTERGENS and the competing methods. Across
all datasets, DTERGENS consistently obtains the best
performing kernel expression. On PROTEIN dataset,
DTERGENS also shows the fastest convergence among
all competing methods. On MAUNA dataset, DTERGENS
performs competitively with fixing L = 4 and both vari-
ants of DTERGENS outperform SVO. More interest-
ingly, the best kernel found for the MAUNA dataset is
kLIN×kPER×kPER +kRQ×kPER which seems to reflect
the linearly increasing periodic nature of the data (Fig. 5a).

Fig. 5b demonstrates the expressiveness of three kernel se-
lection methods (DTERGENS, SVO and random search)
measured by the number of unique kernels found over 100
iterations. As expected, random search consistently pro-
duces the same amount of unique expressions across all
experiments. While SVO discovers approximately the same
amount of unique kernels as does random search on all three
datasets, it tends to outperform random search as its dis-
covery is guided. Finally, we observe that DTERGENS
consistently discovers more unique kernels and also outper-
forms the other methods. This finding asserts our earlier
intuition on how adding expressiveness to the embedding
method also helps to improve search efficiency (Section 1).

Lastly, Fig 6 shows the performance vs. run time trade-off
for different numbers S of sampled data points for policy
evaluation (see Remark 2, Section 4.1) as observed on the
DIABETES dataset. As compared to policy evaluation with
kernels evaluated on full dataset, using approximate kernels
evaluated on a random subset of data saves 20% total time
at a reasonable cost of less than 0.2 nRMSE loss. For larger
datasets (such as PROTEIN), the saving is more pronounced
as the cost of evaluating kernels becomes the bottleneck,
however we do not show the results here because it takes
too long to achieve a full run for PROTEIN dataset with no
approximation.

5. Conclusion
We tackle the composite kernel selection problem for an
arbitrary black-box model. The proposed DTERGENS
algorithm reformulates the kernel search problem as a pa-
rameter optimization task for a recursive kernel generator
equipped with optimal stopping mechanism. Operating
on this well-behaved space of generative weights allows
efficient traversing of the candidate space with Bayesian
Optimization. DTERGENS is able to explore arbitrarily
complex kernels and avoid putting restrictive assumptions
on the candidate space and performs competitively against
other state-of-the-art methods on many real-world datasets.
Last but not least, although we do not derive a convergence
analysis similar to well-known BO regret bounds due to the
difficulty of quantifying the embedding reconstruction loss

with a recursive kernel generator, we would like to address
this issue in a future work.
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